Chapter 8 Short Summary

* To Define a Function in maple
e.g. Write  in Maple, to mean 


* Map and Tilde

The function map( ) applies the value of its first argument to every element of its second argument and passes any subsequent arguments as subsequent arguments to its first argument, like this:
[bookmark: _GoBack]
> [image: ]
[image: ]
> [image: ]
[image: ]

Alternatively use the tilde keyboard-character ~ (not the one in the palette)
	
> [image: ]
[image: ]


* Select, Remove, Selectremove

select() and remove(), selects or removes elements for which a predicate evaluates to true for every element of a data structure.

e.g.
> [image: ]
[image: ]
> [image: ]
[image: ]

The set denoted mathematically by [image: ], where [image: ] is a predicate, can be constructed explicitly in Maple as [image: ].

selectremove() splits it the data structure into two:

e.g. 
> [image: ]
[image: ]
This can also be done as a mapping as follows:
> [image: ]
[image: ]


(* Mapping vs Expression.)

Maple understands "function algebra". For example, [image: ] = [image: ], [image: ] = [image: ] and [image: ] = [image: ].


*Domain, Codomain, Range

To find the range of a function [image: ], where A is a finite set, use [image: ]
or [image: ].


*Specifying Functions on Multidimensional Sets

(A multidimensional set is the Cartesian product of 2 or more sets.)

e.g. (The function [image: ])

> [image: ]
[image: ]
> [image: ]
[image: ]
This can also be implemented using vectors.


*Piecewise Functions

Option 1) Use the expressions palette.
To add rows to a piecewise template, select the template and press Ctrl+Shift+R.

e.g. (absolute value function)

> [image: ]

Option 2) Use the function [image: ].

The conditions are evaluated in order until [image: ] evaluates to [image: ], in which case the value of the piecewise-defined expression is [image: ]. If no condition evaluates to [image: ] then the value of the expression is the final unpaired value, [image: ]if there is one. Otherwise it evaluates to 0.


*Defining Finite Functions in various ways:

Option 1) 

> [image: ]
[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
Option 2) (parallel assignment)

> [image: ]
[image: ]

Option 3) (map or tilde)
> [image: ]
[image: ]
or
> [image: ]
[image: ]

Option 4) (using assign() function)
> [image: ]
[image: ]


* Plotting Functions on Finite sets 
e.g. 
> [image: ]
[image: ]
> [image: ]
[image: ]
> [image: ]
[image: ]
> [image: ]
[image: ]


(* function equality)


* Checking Injective, Surjective, Bijective (for a finite function):

For functions on finite sets we have that
[image: ]is injective ⇔[image: ],
[image: ] is surjective ⇔ [image: ].

Thus define the following functions:

> [image: ]
> [image: ]
> [image: ]
[image: ]
(Remember how to implement: suppose we have defined the sets ,  and the function , then you need to type , which will return a logical value, to test for surjectivity)


* Constructing the Inverse function on a finite set. (using a loop or using assign)

(Remember the inverse only exists for bijective functions)

Option 1) (use loop)
e.g.
Suppose [image: ] is defined as follows:
> [image: ]
[image: ]
> [image: ]
[image: ]
> [image: ]
[image: ]

Implement the requirement that [image: ] for all [image: ]as follows:
> [image: ]
        [image: ]
[image: ]

[image: ]
[image: ]
[image: ]
[image: ]
[image: ]
Option 2) (use assign)
Construct a sequence of equations that specify the inverse function:
> [image: ]
[image: ]
Then apply the function [image: ] to this sequence of equations to define the function [image: ]:
> [image: ]
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