Chapter 8 Short Summary

* To Define a Function in maple
e.g. Write in Maple, to mean

* Map and Tilde

The function map() applies the value of its first argument to every element of its second argument and passes any subsequent arguments as subsequent arguments to its first argument, like this:
[bookmark: _GoBack]
> [image:]
[image:]
> [image:]
[image:]

Alternatively use the tilde keyboard-character ~ (not the one in the palette)
	
> [image:]
[image:]

* Select, Remove, Selectremove

select() and remove(), selects or removes elements for which a predicate evaluates to true for every element of a data structure.

e.g.
> [image:]
[image:]
> [image:]
[image:]

The set denoted mathematically by [image:], where [image:] is a predicate, can be constructed explicitly in Maple as [image:].

selectremove() splits it the data structure into two:

e.g.
> [image:]
[image:]
This can also be done as a mapping as follows:
> [image:]
[image:]

(* Mapping vs Expression.)

Maple understands "function algebra". For example, [image:] = [image:], [image:] = [image:] and [image:] = [image:].

*Domain, Codomain, Range

To find the range of a function [image:], where A is a finite set, use [image:]
or [image:].

*Specifying Functions on Multidimensional Sets

(A multidimensional set is the Cartesian product of 2 or more sets.)

e.g. (The function [image:])

> [image:]
[image:]
> [image:]
[image:]
This can also be implemented using vectors.

*Piecewise Functions

Option 1) Use the expressions palette.
To add rows to a piecewise template, select the template and press Ctrl+Shift+R.

e.g. (absolute value function)

> [image:]

Option 2) Use the function [image:].

The conditions are evaluated in order until [image:] evaluates to [image:], in which case the value of the piecewise-defined expression is [image:]. If no condition evaluates to [image:] then the value of the expression is the final unpaired value, [image:]if there is one. Otherwise it evaluates to 0.

*Defining Finite Functions in various ways:

Option 1)

> [image:]
[image:]
[image:]
[image:]
[image:]
[image:]
Option 2) (parallel assignment)

> [image:]
[image:]

Option 3) (map or tilde)
> [image:]
[image:]
or
> [image:]
[image:]

Option 4) (using assign() function)
> [image:]
[image:]

* Plotting Functions on Finite sets
e.g.
> [image:]
[image:]
> [image:]
[image:]
> [image:]
[image:]
> [image:]
[image:]

(* function equality)

* Checking Injective, Surjective, Bijective (for a finite function):

For functions on finite sets we have that
[image:]is injective ⇔[image:],
[image:] is surjective ⇔ [image:].

Thus define the following functions:

> [image:]
> [image:]
> [image:]
[image:]
(Remember how to implement: suppose we have defined the sets , and the function , then you need to type , which will return a logical value, to test for surjectivity)

* Constructing the Inverse function on a finite set. (using a loop or using assign)

(Remember the inverse only exists for bijective functions)

Option 1) (use loop)
e.g.
Suppose [image:] is defined as follows:
> [image:]
[image:]
> [image:]
[image:]
> [image:]
[image:]

Implement the requirement that [image:] for all [image:]as follows:
> [image:]
 [image:]
[image:]

[image:]
[image:]
[image:]
[image:]
[image:]
Option 2) (use assign)
Construct a sequence of equations that specify the inverse function:
> [image:]
[image:]
Then apply the function [image:] to this sequence of equations to define the function [image:]:
> [image:]

image4.wmf

image5.wmf

image6.wmf

image7.wmf

image8.wmf

image9.wmf

image10.wmf

image11.wmf

image12.wmf

image13.wmf

image14.wmf

image15.wmf

image16.wmf

image17.wmf

image18.wmf

image19.wmf

image20.wmf

image21.wmf

image22.wmf

image23.wmf

image24.wmf

image25.wmf

image26.wmf

image27.wmf

image28.wmf

image29.wmf

image30.wmf

image31.wmf

image32.wmf

image33.wmf

image34.wmf

image35.wmf

image36.wmf

image37.wmf

image38.wmf

image39.wmf

image40.wmf

image41.wmf

image42.wmf

image43.wmf

image44.wmf

image45.wmf

image46.wmf

image47.wmf

image48.wmf

image49.wmf

image50.wmf

image51.wmf

image52.wmf

image53.wmf

image54.png
Graph of F

image55.wmf

image56.wmf

image57.wmf

image58.wmf

image59.wmf

image60.wmf

image61.wmf

image62.wmf

image63.wmf

image1.wmf

image64.wmf

image65.wmf

image66.wmf

image67.wmf

image68.wmf

image69.wmf

image70.wmf

image71.wmf

image72.wmf

image73.wmf

image2.wmf

image74.wmf

image75.wmf

image76.wmf

image77.wmf

image78.wmf

image79.wmf

image80.wmf

image81.wmf

image3.wmf

