Chapter 6 Short Summary

* Boolean constants
Maple uses an extension of Boolean logic that includes three Boolean constants, True, False, and Fail. (For most purposes you can ignore fail).

* Relational operators
-> Most relational operator symbols found in palettes are inert. Some of these have defined meanings such as [image:], and can be used in a logical context. Out of these, only[image:]is active and evaluates to either true or false if possible.

Note: [image:]is always simplified to[image:]respectively. e.g.
> [image:]
[image:]

* lhs() and rhs()
lhs() and rhs() return respectively the left-hand side and the right-hand side of any defined symbolic relation or range.
e.g.
> [image:]
[image:]
e.g. [image:] = [image:], since is simplified to .

* evalb() and is()
evalb() performs simple Boolean evaluation. is() performs more sophisticated Boolean evaluation.

(In simple cases is() and evalb() produce the same result.)
e.g.
> [image:]
[image:]
> [image:]
[image:]

Remark: is() is more sophisticated thus is less reliable and still has a few bugs. Generally, [image:] will try harder to return a logical value whereas evalb() will just return its (simplified) argument if it cannot evaluate it directly, e.g.
> [image:]
[image:]
> [image:]
[image:]

Remark: The Boolean evaluator evalb() can only compare explicit numbers. (You can use floating point approximation for this). E.g.
> [image:]
[image:]
> [image:]
[image:]

* Boolean Operators: and, or, not, exclusive-or, implies.
-> and, or, not
(i.e. conjunction, disjunction and negation).

Truth tables:
[image:]
Symbols: [image:], [image:], ¬, are found in the Common Symbols palette.
> [image:]
[image:]

-> Exclusive-or
In Maple: xor, or ⊻ (common symbols palette)
i.e. [image:] = [image:]

The proposition [image:] is true if either [image:] is true or [image:] is true but not if both are true. (This is the sense in which it is exclusive.)
[image:]

(Remark: [image:] is equivalent to[image:]except that the latter requires explicit Boolean evaluation):
[image:]

-> Implies
In Maple: implies, or
i.e. [image:] = [image:]

Truth Table:
[image:]

[bookmark: _GoBack](* Boolean simplification)
e.g.
> [image:]
[image:]
> [image:]
[image:]
> [image:]
[image:]
> [image:]
[image:]
> [image:]
[image:]
> [image:]
[image:]

(* Boolean evaluation)
In Maple, [image:] implement ‘short-circuit’ or McCarthy evaluation rules. This means the left operand is evaluated first. If this determines the value of the expression then the right operand is not evaluated at all. Hence it matters which way round the operands are written.

(* Using Boolean operators as functions)
and, or, can also be used as functions with zero or more arguments, e.g.
> [image:]
[image:]
> [image:]
[image:]
> [image:]
[image:]
> [image:]
[image:]

e.g. A test to see whether all elements of a set S are positive:
> [image:]
[image:]
> [image:]
[image:]

* Testing if a set of sets S is pairwise disjoint.
To check if the elements of [image:] are pairwise disjoint (i.e. [image:] for every [image:] such that [image:]), use:
> [image:]

(* Aside: Link between sets and logic)
-> For sets A, B, we have
 [image:],
 [image:],
[image:].
-> De Morgan’s Laws
[image:],
[image:].

And analogously, if [image:] denotes the complement of set [image:], then
[image:],
[image:].

image4.wmf

image5.wmf

image6.wmf

image7.wmf

image8.wmf

image9.wmf

image10.wmf

image11.wmf

image12.wmf

image13.wmf

image14.wmf

image15.wmf

image16.wmf

image17.wmf

image18.wmf

image19.wmf

image20.wmf

image21.wmf

image22.wmf

image23.png
File Edit View Insert Format Table Drawing Plot Spreadsheet Tools Window Help

D2BESES XBE S

R N

lal
¢ In(a)
log,g(a) log,(a)

sin(a) cos(a) tan(a)

fla) flab)

fr=a—y

4] [
“ 4l

TP X s MIOHS @ KK @ [F B [scorch oo, oo, e
Tot @EDD Drawing Plot Anmation e
(Cmoupt _v) (Tmestiewromn v) (2 v) B

oras

> nota<x<b
not (a<x and x< b) as3)

We have now met the three principal Boolean operators, and, or, not, which are also called conjunction, disjunction and negation. These operators work much as they do in everyday language. Suppose that P and Qare logical propositions, i.e.
Pand Qrepresent statements or assertions that can be either true or false. For example, P might be the proposition that x > a and Q might be the proposition that x < b

The proposition Pand Qis true if both P and Qare true, and false otherwise. In a less mathematical context, a focus group might be composed of people who are all female and under 30 years old, meaning that for each participant it is true that she
is female and it is true that she is under 30 years old

The proposition P or Qis true if either Pis true or Qis true or both are true;
i

other words, P or Qis false only if both P and Qare false. (This is an example of de Morgan's laws, to which we will retum below.) The fact that the Boolean or operator
inclusive may not be what you would expect, but it tums out to be the most generally useful definition. (There is also a less commonly used exclusive-or operator, to which we will also retum below.)

Finally, not A is true if A is false, and false if A is true. The not operator just interchanges true and false. If you are not female then you are male; if you are not under 30 years old then you are 30 or more years old.
W Exercise

Y Boolean algebra

Boolean algebra is an algebra based on logic similar to normal algebra, but the Boolean constants are true and false instead of numbers, and the operators and, or, not play the roles of x, +, —. The rules of multiplication are often expressed using
‘multiplication tables, but we can't write down multiplication tables for all the natural numbers because there are infinitely many of them, so conventional multiplication tables tell only part of the story. However, the Boolean operators can be
completely specified by small tables called truth tables:

Truth table for Boolean "and"

true and true = rrue true and false = fulse

false and true = fulse false and false = fulse
Truth table for Boolean "

true or true=true true or false = irue

false or true=rrue false or false = false

Truth table for Boolean "not"

not true = false
not false = rue
L > Quiz

P Boolean algebra and set theory
b De Morgan's laws

b The exclusive-or and implies operators

P Boolean simplification and evaluation

image24.wmf

image25.wmf

image26.wmf

image27.wmf

image28.wmf

image29.wmf

image30.wmf

image31.png
File Edit View Insert Format Table Drawing Plot Spreadsheet Tools Window Help

L2BESE YXBEB 5

@ MIOHES ¢ BKEK R [F B |scochiohd s o

TP

log,(a) log,(a)

sin(a) cos(a) tan(a)

6 o -

fla) fla,b)
fma—y
J=(ab) ==

-x x<a

/(X)L:H ‘ x x>a

PRI

imk =k

44

. b b
4 4 4
4 1
b b [
4 A

(@D wat orawn vt umatin

Hide

| (e > Cad D@ BIU

[» Duvrean argevra
P Boolean algebra and set theory

b De Morgan's laws

Y The exclusive-or and implies operators

There are two other standard Boolean operators denoted by xor and implies, which are less commonly used in programming than and, or and not. Exclusive-or (xor) is important in low-level programming but not so much in high-level
programming. There is no completely standard symbol for xor but x is commonly used, is available in the Common Symbols palette and is defined in Maple: a » b=a xor 4. The standard symbol for implies is . Maple accepts this symbol in input
and uses it in output: a implies b=a = &

Truth table for Boolean "xor"
true xor true = fulse true xor false = irue

false xor true=truc false xor false = fulse

Note that xor is equivalent to = (i.e. has the same truth table) except that the latter requires explicit Boolean evaluation:

Truth table for "+"
evalbtrue + true) = fulse. evalb(true + false) = true

evalbl(false true) = rue evalbfalse false) = false

The implies operator implements implication in exactly the way it is used in proofs, although this is not immediately obvious.

Truth table for Boolean "implies"
true = true=rrue true = false = false

false = true=rrue false = false=rue

This means that a true premise must imply a true conclusion, but that a false premise can imply anything. (This is sometimes refer to in computing as garbage in — garbage outl)
> Quiz
P Exercise

P Boolean simplification and evaluation
b Using Boolean operators as functions
b Testing properties of sets of sets

b Synoptic exercises

image32.wmf

image33.wmf

image34.png
File Edit View Insert Format Table Drawing Plot Spreadsheet Tools Window Help

D2BESS ¥R S5 T > 3T @ M1 OFS ¢ BRK @ [E B [seorchorhep, sk, oo
N Math Drawing Plot Amation e |§
(C ICT] Y@y BIU
[7 Dovrcan ageora =

log,(a) log,(a)

sin(a) cos(a) tan(a)

6 o -

fla) fla,b)
fma—y
J=(ab) ==

-x x<a

/(X)L:H ‘ x x>a

PRI

imk =k

44

. b b
4 4 4
4 1
b b [
4 A

P Boolean algebra and set theory
b De Morgan's laws

Y The exclusive-or and implies operators

There are two other standard Boolean operators denoted by xor and implies, which are less commonly used in programming than and, or and not. Exclusive-or (xor) is important in low-level programming but not so much in high-level
programming. There is no completely standard symbol for xor but x is commonly used, is available in the Common Symbols palette and is defined in Maple: a » b=a xor 4. The standard symbol for implies is . Maple accepts this symbol in input
and uses it in output: a implies b=a = &

The proposition A xor B is true if either A is true or B is true but not if both are true; this is the sense in which is is exclusive.

Truth table for Boolean "xor"
true xor true = fulse true xor false = irue

false xor true=truc false xor false = fulse

Truth table for """

evalbtrue + true) = fulse. evalb(true + false) = true

evalbl(false true) = rue evalbfalse false) = false

The implies operator implements implication in exactly the way it is used in proofs, although this is not immediately obvious.

Truth table for Boolean "implies"
true = true=rrue true = false = false

false = true=rrue false = false=rue

This means that a true premise must imply a true conclusion, but that a false premise can imply anything. (This is sometimes refer to in computing as garbage in — garbage outl)
> Quiz
P Exercise

P Boolean simplification and evaluation
b Using Boolean operators as functions
b Testing properties of sets of sets

b Synoptic exercises

image35.wmf

image36.wmf

image37.png
File Edit View Insert Format Table Drawing Plot Spreadsheet Tools Window Help

D2BESS ¥R S5 T > 3T @ M1 OFS ¢ BRK @ [E B [seorchorhep, sk, oo
N Math Drawing Plot Amation e |§
(C ICT] Y@y BIU
[7 Dovrcan ageora =

P Boolean algebra and set theory
b De Morgan's laws

Y The exclusive-or and implies operators

There are two other standard Boolean operators denoted by xor and implies, which are less commonly used in programming than and, or and not. Exclusive-or (xor) is important in low-level programming but not so much in high-level
programming. There is no completely standard symbol for xor but x is commonly used, is available in the Common Symbols palette and is defined in Maple: a » b=a xor 4. The standard symbol for implies is . Maple accepts this symbol in input
and uses it in output: a implies b=a = &

The proposition A xor B is true if either A is true or B is true but not if both are true; this is the sense in which is is exclusive.

Truth table for Boolean "xor"

@) flah) true xor true=faise true xor false= rruc
=y false xor true=ruc Talse xor false=false
e
Note that xor is equivalent to + (L. has the same truth table) except that the latter requires explicit Boolean evaluation:
x x<a
T(x) e
| ¥ x2a Truth table for "+
. evalb(true = true) = s evalb((rue = false) = rrue
2 I &7 evalbifalse = true) = rrue evalblfalse = false) = false

imk =k

The implies operator implements implication in exactly the way it is used i

Truth table for Boolean "implies"

. true = true=rue true = false = fulse
5 o false — true=rrue false — false = ru
4 4 A
. This means that a true premise must imply a true conclusion, but that a false premise can imply anything. (This is sometimes refer to in computing as garbage in — garbage outl)
4 4 4 » Quiz
by 4 ey | > Exercise

P Boolean simplification and evaluation
b Using Boolean operators as functions
b Testing properties of sets of sets

b Synoptic exercises

image38.wmf

image39.wmf

image40.wmf

image41.wmf

image42.wmf

image43.wmf

image44.wmf

image45.wmf

image46.wmf

image47.wmf

image48.wmf

image49.wmf

image50.wmf

image51.wmf

image52.wmf

image53.wmf

image54.wmf

image55.wmf

image56.wmf

image57.wmf

image58.wmf

image59.wmf

image60.wmf

image61.wmf

image62.wmf

image63.wmf

image1.wmf

image64.wmf

image65.wmf

image66.wmf

image67.wmf

image68.wmf

image69.wmf

image70.wmf

image2.wmf

image3.wmf

