Chapter 4 Short Summary

* Finite set
Define finite sets in Maple using braces. e.g. {1,2,3}

(Remark: You can’t use braces for any other purpose. Maple removes duplicates, and may change the order of elements.)

* Names in Maple.
A name can be a letter followed by letters, digits or underscore characters (_), or nothing. Uppercase and lowercase letters are distinct.
(Remark: Names can be more general and consist of a string of zero or more arbitrary characters enclosed in backward quotes, but this is best not used without good reason.)

* Assignment operator
-> The assignment operator is used to assign a name to some object. Type := or find it in the common symbols palette.
e.g. A:={1,2,3}

(Remark: A new assignment replaces a previous assignment)

(Remark: Assignments are only remembered while a Maple file is open; they must be re-executed (if to be used again) when it is re-opened.)

(Remark: Certain symbols are protected and cannot be used as assignments, e.g. sin:= or π:=. You can circumvent this using advanced Maple techniques).

-> Remove an assignment
(An assignment may need to be removed if you want to use the name symbolically again for something else.)

Two ways to remove an assignment:

Option 1) > [image:]
(unassign() accepts an arbitrary number of variables).

Option 2) > [image:]
[image:]
(Option 2 uses forward quotes.)

* restart Maple server
This has the same effect as closing and opening a Maple file, but faster, (and unassigns all assigned variables).

Two ways to do this:

Option 1) Click on icon in toolbar:
[image: Macintosh HD:Users:Vatsal:Desktop:Screen Shot 2015-07-18 at 13.57.06.png]

Option 2) Execute the command:
> [image:]

* Predicates and is()
-> A predicate is a function that returns a logical value, true or false.
e.g. isprime(), [image:]= [image:].

* Checking for Set membership

Two ways:
Option 1) e.g.
> [image:]
[image:]

Option 2) member() is for specifically for testing membership (of sets, lists, etc.).
e.g. > [image:]
[image:]

(Remark: ∈ and ∉ are inert operators, so do not do anything on their own.)

* Empty set
Define the empty set using {} or using ∅ from the common symbols palette.

* Subsets and Proper Subsets

-> There are three ways of testing subsets:
> [image:]
[image:]
> [image:]
[image:]
> [image:]
[image:]

(The subset operator is a predicate so you do not need to use the is() function.)
(The subset symbol is found in the common symbols palette.)

-> Maple has no built-in notion of proper subset. A proper subset symbol ⊂, exists in the Relational Round palette, but it has no defined function.

To test for proper subset, e.g.
> [image:]
[image:]

Aside: The way to make ⊂ work as an active proper subset operator is like this:
> [image:]
e.g. > [image:]
[image:]

* Finding the Power set
Use the following function to find a power set in maple:
> [image:]
[image:]

* Unions and Intersections

-> Unions: e.g.
> [image:]
[image:]
> [image:]
[image:]
The union can also be used as a function: (good for several sets)
> [image:]
[image:]

-> Intersections: e.g.
> [image:]
[image:]
> [image:]
[image:]
As a function:
> [image:]
[image:]

* Set Difference and Symmetric Difference
-> For set difference, use the \ symbol in the common symbols palette or keyboard.
e.g.
> [image:]
[image:]

-> Symmetric difference: symmdiff()
e.g.
> [image:]
[image:]

The △ symbol (which can be found in the Miscellaneous palette) has no defined meaning in Maple.
We could make it represent symmetric difference, like this:
> [image:]
e.g. > [image:]
[image:]

* nops() and set cardinality
-> Use nops() to count the number of operands in an expression.

-> When applied to a finite set, nops() returns the cardinality of the set.
e.g.
> [image:]
[image:]
(Remark: |A| is the notation for absolute value or modulus in Maple.)

* Binomial coefficient
-> Find the binomial coefficient template in Expression palette
or use the function binomial(), i.e. [image:] = [image:].

-> Binomial coefficients can be expressed in terms of factorials like this:
[image:] = [image:].

* Lists and sequences
A list uses square brackets:
> [image:]
[image:]

A sequence uses no parenthesis:
> [image:]
[image:]

(Remarks: Ordering of elements and duplicate elements are preserved in lists and sequences. Lists and sequences are primarily computational.)

* seq() and $, (generating sequences/lists/sets)
-> seq() examples:
> [image:]
[image:]
> [image:]
[image:]
> [image:]
[image:]
> [image:]
[image:]
> [image:]
[image:]
> [image:]
[image:]

seq() accepts an optional final argument representing the step size. e.g.
> [image:]
[image:]
or more succinctly,
> [image:]
[image:]

To generate a sequence in decreasing order, specify a negative step, e.g
> [image:]
[image:]

Note: seq() cannot remain symbolic. (Has the same semantics as add() and mul()). E.g.
> [image:]
Error, unable to execute seq

Just like [image:] and [image:], [image:] also accepts data structures other than ranges, and instead of setting the control variable to each integer in a range, it sets it to each top-level operand of a data structure. E.g.

> [image:]
[image:]
> [image:]
[image:]
The $ operator described below, does not accept this syntax.

Remark: the sequence [image:] will be empty unless [image:],

> [image:]
[image:]

-> $ examples:
> [image:]
[image:]
> [image:]
[image:]
$ can remain symbolic:
> [image:]
[image:]

The $ operator is most useful when used in one of its two shortcut forms: [image:] generates a sequence consisting of [image:] copies of [image:], e.g.
> [image:]
[image:]

$a ..b expands the range, e.g.
> [image:]
[image:]

(The analogues using [image:] are [image:] = [image:], and [image:] = [image:].)

(Remark: $ has the same semantics as sum() and product())
(Remark: [image:] can do everything that [image:] can do, but using [image:] where appropriate is more succinct.)

(* Aside: Generating nested structures)

Examples:

1) Generating [image:]

> [image:]
[image:]
> [image:]
[image:]

Now replace [image:] by [image:] to give

> [image:]
[image:]

2) Generating [image:]

> [image:]
[image:]
> [image:]
[image:]
> [image:]
[image:]

Note that a sequence of sequences is just a sequence; sub-sequences lose their independence, e.g.
> [image:]
[bookmark: _GoBack][image:]
image4.png

image94.wmf

image95.wmf

image96.wmf

image97.wmf

image98.wmf

image99.wmf

image100.wmf

image101.wmf

image102.wmf

image103.wmf

image5.wmf

image6.wmf

image7.wmf

image8.wmf

image9.wmf

image10.wmf

image11.wmf

image12.wmf

image13.wmf

image14.wmf

image15.wmf

image16.wmf

image17.wmf

image18.wmf

image19.wmf

image20.wmf

image21.wmf

image22.wmf

image23.wmf

image24.wmf

image25.wmf

image26.wmf

image27.wmf

image28.wmf

image29.wmf

image30.wmf

image31.wmf

image32.wmf

image33.wmf

image34.wmf

image35.wmf

image36.wmf

image37.wmf

image38.wmf

image39.wmf

image40.wmf

image41.wmf

image42.wmf

image43.wmf

image44.wmf

image45.wmf

image46.wmf

image47.wmf

image48.wmf

image49.wmf

image50.wmf

image51.wmf

image52.wmf

image53.wmf

image54.wmf

image55.wmf

image56.wmf

image57.wmf

image58.wmf

image59.wmf

image60.wmf

image61.wmf

image62.wmf

image63.wmf

image1.wmf

image64.wmf

image65.wmf

image66.wmf

image67.wmf

image68.wmf

image69.wmf

image70.wmf

image71.wmf

image72.wmf

image73.wmf

image2.wmf

image74.wmf

image75.wmf

image76.wmf

image77.wmf

image78.wmf

image79.wmf

image80.wmf

image81.wmf

image82.wmf

image83.wmf

image3.wmf

image84.wmf

image85.wmf

image86.wmf

image87.wmf

image88.wmf

image89.wmf

image90.wmf

image91.wmf

image92.wmf

image93.wmf

