Chapter 4 Short Summary

* Finite set
Define finite sets in Maple using braces. e.g. {1,2,3}

(Remark: You can’t use braces for any other purpose. Maple removes duplicates, and may change the order of elements.)


* Names in Maple. 
A name can be a letter followed by letters, digits or underscore characters (_), or nothing. Uppercase and lowercase letters are distinct. 
(Remark: Names can be more general and consist of a string of zero or more arbitrary characters enclosed in backward quotes, but this is best not used without good reason.)


* Assignment operator 
-> The assignment operator is used to assign a name to some object. Type := or find it in the common symbols palette. 
e.g. A:={1,2,3}

(Remark: A new assignment replaces a previous assignment)

(Remark: Assignments are only remembered while a Maple file is open; they must be re-executed (if to be used again) when it is re-opened.) 

(Remark: Certain symbols are protected and cannot be used as assignments, e.g. sin:= or π:=. You can circumvent this using advanced Maple techniques).

-> Remove an assignment
(An assignment may need to be removed if you want to use the name symbolically again for something else.)

Two ways to remove an assignment:

Option 1) > [image: ]
(unassign() accepts an arbitrary number of variables).

Option 2) > [image: ]
[image: ]
(Option 2 uses forward quotes.)


* restart Maple server
This has the same effect as closing and opening a Maple file, but faster, (and unassigns all assigned variables).

Two ways to do this:

Option 1) Click on icon in toolbar: 
[image: Macintosh HD:Users:Vatsal:Desktop:Screen Shot 2015-07-18 at 13.57.06.png]

Option 2) Execute the command:
> [image: ]


* Predicates and is() 
-> A predicate is a function that returns a logical value, true or false.
e.g. isprime(), [image: ]= [image: ].


* Checking for Set membership

Two ways:
Option 1) e.g.
> [image: ]
[image: ]

Option 2) member() is for specifically for testing membership (of sets, lists, etc.).
e.g. > [image: ]
[image: ]

(Remark: ∈ and ∉ are inert operators, so do not do anything on their own.)


* Empty set
Define the empty set using {} or using ∅ from the common symbols palette.


* Subsets and Proper Subsets

-> There are three ways of testing subsets:
> [image: ]
[image: ]
> [image: ]
[image: ]
> [image: ]
[image: ]

(The subset operator is a predicate so you do not need to use the is() function.)
(The subset symbol is found in the common symbols palette.)

-> Maple has no built-in notion of proper subset. A proper subset symbol ⊂, exists in the Relational Round palette, but it has no defined function. 

To test for proper subset, e.g.
> [image: ]
[image: ]

Aside: The way to make ⊂ work as an active proper subset operator is like this:
> [image: ]
e.g. > [image: ]
[image: ]


* Finding the Power set
Use the following function to find a power set in maple:
> [image: ]
[image: ]


* Unions and Intersections

-> Unions: e.g.
> [image: ]
[image: ]
> [image: ]
[image: ]
The union can also be used as a function: (good for several sets)
> [image: ]
[image: ]

-> Intersections: e.g.
> [image: ]
[image: ]
> [image: ]
[image: ]
As a function:
> [image: ]
[image: ]


* Set Difference and Symmetric Difference
-> For set difference, use the \ symbol in the common symbols palette or keyboard.
e.g.
> [image: ]
[image: ]

-> Symmetric difference: symmdiff()
e.g.
> [image: ]
[image: ]

The △ symbol (which can be found in the Miscellaneous palette) has no defined meaning in Maple.
We could make it represent symmetric difference, like this:
> [image: ]
e.g. > [image: ]
[image: ]


* nops() and set cardinality
-> Use nops() to count the number of operands in an expression. 

-> When applied to a finite set, nops() returns the cardinality of the set. 
e.g.
> [image: ]
[image: ]
(Remark: |A| is the notation for absolute value or modulus in Maple.)


* Binomial coefficient 
-> Find the binomial coefficient template in Expression palette 
or use the function binomial(), i.e. [image: ] = [image: ].

-> Binomial coefficients can be expressed in terms of factorials like this: 
[image: ] = [image: ].


* Lists and sequences
A list uses square brackets:
> [image: ]
[image: ]

A sequence uses no parenthesis: 
> [image: ]
[image: ]

(Remarks: Ordering of elements and duplicate elements are preserved in lists and sequences. Lists and sequences are primarily computational.)


* seq() and $, (generating sequences/lists/sets)
-> seq() examples: 
> [image: ]
[image: ]
> [image: ]
[image: ]
> [image: ]
[image: ]
> [image: ]
[image: ]
> [image: ]
[image: ]
> [image: ]
[image: ]

seq() accepts an optional final argument representing the step size. e.g.
> [image: ]
[image: ]
or more succinctly,
> [image: ]
[image: ]

To generate a sequence in decreasing order, specify a negative step, e.g
> [image: ]
[image: ]

Note: seq() cannot remain symbolic. (Has the same semantics as add() and mul()). E.g.
> [image: ]
Error, unable to execute seq

Just like [image: ] and [image: ], [image: ] also accepts data structures other than ranges, and instead of setting the control variable to each integer in a range, it sets it to each top-level operand of a data structure. E.g.

> [image: ]
[image: ]
> [image: ]
[image: ]
The $ operator described below, does not accept this syntax.

Remark: the sequence [image: ] will be empty unless [image: ],

> [image: ]
[image: ]

-> $ examples: 
> [image: ]
[image: ]
> [image: ]
[image: ]
$ can remain symbolic:
> [image: ]
[image: ]

The $ operator is most useful when used in one of its two shortcut forms: [image: ] generates a sequence consisting of [image: ] copies of [image: ], e.g. 
> [image: ]
[image: ]

$a ..b expands the range, e.g. 
> [image: ]
[image: ]

(The analogues using [image: ] are [image: ] = [image: ], and [image: ] = [image: ].)

(Remark: $ has the same semantics as sum() and product())
(Remark: [image: ] can do everything that [image: ] can do, but using [image: ] where appropriate is more succinct.)


(* Aside: Generating nested structures)

Examples:

1) Generating [image: ]

> [image: ]
[image: ]
> [image: ]
[image: ]

Now replace [image: ] by [image: ] to give

> [image: ]
[image: ]

2) Generating [image: ] 

> [image: ]
[image: ]
> [image: ]
[image: ]
> [image: ]
[image: ]

Note that a sequence of sequences is just a sequence; sub-sequences lose their independence, e.g.
> [image: ]
[bookmark: _GoBack][image: ]
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