Chapter 3 Short Summary

Remark: the order of function arguments matter.


* sum() and product()
> [image: ] = [image: ]
> [image: ]= [image: ]

These functions are intended for symbolic computations. 


* add() and mul()

[image: ]

These functions are intended for adding or multiplying explicit finite sequences or expressions. 

e.g. [image: ] = [image: ].
e.g. > [image: ]
[image: ].

These do not accept symbolic ranges and cannot remain unevaluated (i.e. computational functions). They are much more efficient than sum() and product().

(Remark: add() and mul() also accept data structures other than ranges, and instead of setting the control variable to each integer in a range, set it to each top-level operand of a data structure. Look at lecture notes for examples.)


* eval()

eval() evaluates an expression at particular values (for any number of variables), e.g.
[image: ] = [image: ]
[image: ] = [image: ].
-> You can evaluate functions using [image: ] = [image: ], or [image: ] from the expressions palette. 
e.g. 
[image: ] = [image: ].

-> For two variables: e.g.
[image: ] = [image: ], 
[image: ] = [image: ],
[image: ] = [image: ].

Remark: Evaluating sequentially (e.g. [image: ] = [image: ]) is the same as evaluating simultaneously, unless the substituted values involve the original variables.


* limit()

-> Available in Calculus palette or use limit(f, x=a).

-> Right and Left-hand limits: use limit(f, x=a, right/left). 
Or, type a +/- next to the template. e.g.
Left-hand: [image: ] = [image: ]
Right-hand: [image: ] = [image: ].

-> Note that limit() cannot remain symbolic.


* taylor() and series()

-> taylor(f(x), x) computes a Maclaurin polynomial of f(x) with respect to x, of degree 5 by default.
e.g.
 > [image: ]
[image: ]
(where O(x7) is the big-O notation).

-> Maclaurin series can also be computed using functions encountered before. i.e.

[image: Macintosh HD:Users:Vatsal:Desktop:Screen Shot 2015-07-15 at 10.58.00.png], or, [image: Macintosh HD:Users:Vatsal:Desktop:Screen Shot 2015-07-15 at 10.58.22.png]

-> series() is a more general version of taylor(). See Maple help for more details on series() and taylor().


* Inert functions and value()
Inert functions do not perform evaluation, but may be displayed specially and/or recognized as data by other functions. E.g.
[image: ] = [image: ][image: ]
[image: ] = [image: ][image: ]
[image: ] = [image: ][image: ]
[image: ] = [image: ][image: ]
[image: ] = [image: ][image: ][image: ]
[image: ] = [image: ][image: ]


The function value() converts an inert function into an active function and evaluates it, e.g.

 > [image: ]= [image: ]


Remark: Standard inert functions normally have the first letter of their name capitalized.
Remark: The main structure is shown in grey, as a reminder that the function is inert. 
Remark: Inert functions can be evaluated in special ways by other functions. See lecture notes.


* Subscripts
-> Enter an active subscript by using the [image: ] template in the Expression palette.
-> In both 1-D and 2-D input modes, you can also use L[i], which is the same as Li.
-> In Maple 17 and later versions, you can also enter an active subscript by typing (CTRL & SHIFT & -).


* evalf()
-> evalf() performs numerical approximation of its argument (to 10 significant figures by default), e.g. 
> [image: ]
[image: ]
-> change the number of sig. figures using a subscript
e.g.
[image: ] = [image: ]or  [image: ] = [image: ].

[bookmark: _GoBack](Remark: evalf() will evaluate any components of an expression that have numerical values and leave the rest of the expression intact.)


(* Approximating definite integrals)
A definite integral with the integration variable as its only variable, should always have a numeric approximation. 

e.g. 
> [image: ]
[image: ]
> [image: ]
[image: ]
In situations like this, Maple may spend a long time trying and failing to evaluate the integral exactly. If you know that you want a numerical approximation, it may be significantly faster to use an inert integral, like this:
> [image: ]
[image: ]
or equivalently to give the function int a third argument of numeric, like this: 
> [image: ]
[image: ]
To specify the precision, use a fourth argument like this:
> [image: ]
[image: ]

(Remark: In non-trivial cases where Maple can evaluate a definite integral exactly, you may get not only a faster but also a more accurate or more appropriate numerical result by using only numerical integration. Look at lecture notes for example.)


* simplify(), expand(), factor()
-> Maple only does the most basic simplifying automatically. The main tool for simplifying further is simplify(). 
-> For polynomials, you can use expand() or factor() if simplify() does not do what you want. (Note that factor() will only work with polynomails)
e.g.
> [image: ]
[image: ]
> [image: ]
[image: ]
> [image: ]
[image: ]

-> You can have more control over the simplification options by providing second arguments such as ‘symbolic’. See maple help and lecture notes for more details.


* Prime functions: isprime(), nextprime(), prevprime(), ithprime(), ifactor()

-> isprime() tells you if a number is prime. E.g.  [image: ]= [image: ], [image: ]= [image: ]
-> nextprime() and prevprime() require their arguments to be integers and return respectively the next largest or next smallest prime.
-> ithprime() requires its argument to be a positive integer i and returns the ith prime.
-> ifactor() finds the prime factorization of an integer, e.g. 
[image: ] = [image: ]
(Applying the function expand() to the result gives the original integer back).
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