Chapter 3 Short Summary

Remark: the order of function arguments matter.

* sum() and product()
> [image:] = [image:]
> [image:]= [image:]

These functions are intended for symbolic computations.

* add() and mul()

[image:]

These functions are intended for adding or multiplying explicit finite sequences or expressions.

e.g. [image:] = [image:].
e.g. > [image:]
[image:].

These do not accept symbolic ranges and cannot remain unevaluated (i.e. computational functions). They are much more efficient than sum() and product().

(Remark: add() and mul() also accept data structures other than ranges, and instead of setting the control variable to each integer in a range, set it to each top-level operand of a data structure. Look at lecture notes for examples.)

* eval()

eval() evaluates an expression at particular values (for any number of variables), e.g.
[image:] = [image:]
[image:] = [image:].
-> You can evaluate functions using [image:] = [image:], or [image:] from the expressions palette.
e.g.
[image:] = [image:].

-> For two variables: e.g.
[image:] = [image:],
[image:] = [image:],
[image:] = [image:].

Remark: Evaluating sequentially (e.g. [image:] = [image:]) is the same as evaluating simultaneously, unless the substituted values involve the original variables.

* limit()

-> Available in Calculus palette or use limit(f, x=a).

-> Right and Left-hand limits: use limit(f, x=a, right/left).
Or, type a +/- next to the template. e.g.
Left-hand: [image:] = [image:]
Right-hand: [image:] = [image:].

-> Note that limit() cannot remain symbolic.

* taylor() and series()

-> taylor(f(x), x) computes a Maclaurin polynomial of f(x) with respect to x, of degree 5 by default.
e.g.
 > [image:]
[image:]
(where O(x7) is the big-O notation).

-> Maclaurin series can also be computed using functions encountered before. i.e.

[image: Macintosh HD:Users:Vatsal:Desktop:Screen Shot 2015-07-15 at 10.58.00.png], or, [image: Macintosh HD:Users:Vatsal:Desktop:Screen Shot 2015-07-15 at 10.58.22.png]

-> series() is a more general version of taylor(). See Maple help for more details on series() and taylor().

* Inert functions and value()
Inert functions do not perform evaluation, but may be displayed specially and/or recognized as data by other functions. E.g.
[image:] = [image:][image:]
[image:] = [image:][image:]
[image:] = [image:][image:]
[image:] = [image:][image:]
[image:] = [image:][image:][image:]
[image:] = [image:][image:]

The function value() converts an inert function into an active function and evaluates it, e.g.

 > [image:]= [image:]

Remark: Standard inert functions normally have the first letter of their name capitalized.
Remark: The main structure is shown in grey, as a reminder that the function is inert.
Remark: Inert functions can be evaluated in special ways by other functions. See lecture notes.

* Subscripts
-> Enter an active subscript by using the [image:] template in the Expression palette.
-> In both 1-D and 2-D input modes, you can also use L[i], which is the same as Li.
-> In Maple 17 and later versions, you can also enter an active subscript by typing (CTRL & SHIFT & -).

* evalf()
-> evalf() performs numerical approximation of its argument (to 10 significant figures by default), e.g.
> [image:]
[image:]
-> change the number of sig. figures using a subscript
e.g.
[image:] = [image:]or [image:] = [image:].

[bookmark: _GoBack](Remark: evalf() will evaluate any components of an expression that have numerical values and leave the rest of the expression intact.)

(* Approximating definite integrals)
A definite integral with the integration variable as its only variable, should always have a numeric approximation.

e.g.
> [image:]
[image:]
> [image:]
[image:]
In situations like this, Maple may spend a long time trying and failing to evaluate the integral exactly. If you know that you want a numerical approximation, it may be significantly faster to use an inert integral, like this:
> [image:]
[image:]
or equivalently to give the function int a third argument of numeric, like this:
> [image:]
[image:]
To specify the precision, use a fourth argument like this:
> [image:]
[image:]

(Remark: In non-trivial cases where Maple can evaluate a definite integral exactly, you may get not only a faster but also a more accurate or more appropriate numerical result by using only numerical integration. Look at lecture notes for example.)

* simplify(), expand(), factor()
-> Maple only does the most basic simplifying automatically. The main tool for simplifying further is simplify().
-> For polynomials, you can use expand() or factor() if simplify() does not do what you want. (Note that factor() will only work with polynomails)
e.g.
> [image:]
[image:]
> [image:]
[image:]
> [image:]
[image:]

-> You can have more control over the simplification options by providing second arguments such as ‘symbolic’. See maple help and lecture notes for more details.

* Prime functions: isprime(), nextprime(), prevprime(), ithprime(), ifactor()

-> isprime() tells you if a number is prime. E.g. [image:]= [image:], [image:]= [image:]
-> nextprime() and prevprime() require their arguments to be integers and return respectively the next largest or next smallest prime.
-> ithprime() requires its argument to be a positive integer i and returns the ith prime.
-> ifactor() finds the prime factorization of an integer, e.g.
[image:] = [image:]
(Applying the function expand() to the result gives the original integer back).

image6.wmf

image7.wmf

image8.wmf

image9.wmf

image10.wmf

image11.wmf

image12.wmf

image13.wmf

image14.wmf

image15.wmf

image16.wmf

image17.wmf

image18.wmf

image19.wmf

image20.wmf

image21.wmf

image22.wmf

image23.wmf

image24.wmf

image25.wmf

image26.wmf

image27.wmf

image28.wmf

image29.wmf

image30.png

image31.png
¥ eval(diff(f(x)l, x8n), x=0) _, "N]
n

7(0) + add(

image32.wmf

image33.wmf

image34.wmf

image35.wmf

image36.wmf

image37.wmf

image38.wmf

image39.wmf

image40.wmf

image41.wmf

image42.wmf

image43.wmf

image44.wmf

image45.wmf

image1.wmf

image46.wmf

image47.wmf

image48.wmf

image49.wmf

image50.wmf

image51.wmf

image52.wmf

image53.wmf

image54.wmf

image55.wmf

image2.wmf

image56.wmf

image57.wmf

image58.wmf

image59.wmf

image60.wmf

image61.wmf

image62.wmf

image63.wmf

image64.wmf

image65.wmf

image3.wmf

image66.wmf

image67.wmf

image68.wmf

image69.wmf

image70.wmf

image71.wmf

image4.wmf

image5.wmf

> maon [l

L —

e
s o)

T N T —
ey

st ednrin e

i d ot st sy g nd s e e
o) Ty e e O s A
ey

T —
e ot o s g 130
T L A s

e
[—
e —Zous

= i

J e —
et

e ——

