Chapter 10 Short Summary

* Procedures
A procedure is a sub-program that packages a program into smaller components (so that it can be re-used and independently developed and tested).

-> Format:
(We have assigned the name myproc to the procedure below).
> [image:]
[image:]
A semicolon or colon after the last statement in the procedure body is optional, but all other statements must be terminated. A colon after end proc suppresses display of the procedure definition.

By default, when a procedure is executed it returns the value of the last expression evaluated in its body. (A procedure is called by using and evaluating it as a function.)
e.g.
> [image:]
[image:]

(Remark: Procedures need not accept input or return output.)

e.g.
> [image:]
[image:]
 [image:]
> [image:]
[image:]

-> A procedure that consists of only a single expression can be written using the [image:] shorthand notation.
 e.g.
> [image:]
[image:]
is shorthand for
> [image:]
[image:]

(Tip: It is a good idea to begin each procedure definition with a comment that states what the procedure returns, what its parameters represent and any assumptions about their values.)

* Local and Global Variables
Variables that are used only inside a procedure should be declared [image:], like this:
> [image:]

This stops them getting mixed up with variables with the same name that are used outside the procedure. (Variables that are not declared local are called global). Local variables are completely distinct from global variables, even if they have the same names.

(Remark: Function parameters are not variables, so they are neither local nor global. Do not declare parameters to be local.)
(Remark: Maple will try to guess which undeclared variables should be declared local and do it for you, with a warning, but never rely on this.)
(Remark: A terminator before [image:] causes a syntax error, so never put a terminator just after proc(), e.g.
> [image:]
Error, unable to parse
[image:])
(Remark: The control variable used in [image:] (i.e. the variable n in seq(n!, n=0 ..5) for example) does not cause a warning if it is not declared local, although it is nevertheless good practice to do so. The same applies to [image:] and [image:].)

[bookmark: _GoBack]
* return
The [image:] statement can only be used in a procedure. It does two things: it terminates execution of the procedure and it returns the value of the expression following the keyword [image:], as the value of the procedure call.

e.g.
The following procedure returns [image:] if no set in a given set of sets, is empty (or null).
> [image:]
> [image:]
[image:]
> [image:]
[image:]

* Recursive Procedures
A recursive function calls itself or is defined in terms of itself. (It must include a base case that does not involve a recursive function call, and the general case must lead toward the base case.)

e.g. The factorial function [image:], defined by
[image:]base case,
[image:]general recursive case.

> [image:]
[image:]
Note that the ‘if then undefined’ bit in the above procedure avoids an infinite loop if the argument entered is not a natural number. E.g.
> [image:]
[image:]
> [image:]
[image:]

(Remark: Be careful of infinite loops, and check the base case when writing recursive procedures.)

* Tracing and Debugging Procedures
-> Tracing primarily displays the input and returns values at every call of the traced procedure.

e.g. To trace procedures [image:], [image:] and [image:], evaluate the following function:
> [image:]

To turn off tracing, evaluate the following function:
> [image:]

Re-executing procedure definitions also turns off tracing (since the trace function adds some information [image:] not normally included explicitly in procedure definitions).

e.g.
> [image:]
[image:]
> [image:]
[image:]
> [image:]
[image:]
> [image:]
{--> enter myfactorial, args = 3
{--> enter myfactorial, args = 2
{--> enter myfactorial, args = 1
{--> enter myfactorial, args = 0
[image:]
<-- exit myfactorial (now in myfactorial) = 1}
[image:]
<-- exit myfactorial (now in myfactorial) = 1}
[image:]
<-- exit myfactorial (now in myfactorial) = 2}
[image:]
<-- exit myfactorial (now at top level) = 6}
[image:]
(This tracing output shows how recursive function calls are stacked until the base case is reached, and then unstacked to compute the required result.)

-> Maple also provides an interactive debugger (similar to that found in other programming environments) which pops up its own window. Search for help on the Interactive Debugger for details.

* Aside: See lecture notes for a case study of computing permutations of a list using recursive procedures.

image4.wmf

image5.wmf

image6.wmf

image7.wmf

image8.wmf

image9.wmf

image10.wmf

image11.wmf

image12.wmf

image13.wmf

image14.wmf

image15.wmf

image16.wmf

image17.wmf

image18.wmf

image19.wmf

image20.wmf

image21.wmf

image22.wmf

image23.wmf

image24.wmf

image25.wmf

image26.wmf

image27.wmf

image28.wmf

image29.wmf

image30.wmf

image31.wmf

image32.wmf

image33.wmf

image34.wmf

image35.wmf

image36.wmf

image37.wmf

image38.wmf

image39.wmf

image40.wmf

image41.wmf

image42.wmf

image43.wmf

image44.wmf

image45.wmf

image46.wmf

image47.wmf

image48.wmf

image49.wmf

image50.wmf

image51.wmf

image52.wmf

image1.wmf

image2.wmf

image3.wmf

