EBU4375 Signals and Systems Theory

Dr Maged Elkashlan
Basic Time Signals

Basic Continuous-Time Signals

• The Unit-Step Function
• The Unit-Impulse Function
• Complex Exponential and Sinusoidal Signals

Basic Discrete-Time Signals

• The Unit-Step Sequence
• The Unit-Impulse Sequence
• Complex Exponential and sinusoidal Sequence
The Unit-Step Function (CT Signals)

• the unit (or Heaviside) step function is defined as

\[u(t) = \begin{cases}
1 & t > 0 \\
0 & t < 0
\end{cases} \]

i.e. it’s discontinuous at \(t = 0 \)

\[u(t) \]

\[t \]

• the shifted (retarded) step function is similarly defined as

\[u(t-t_0) = \begin{cases}
1 & t > t_0 \\
0 & t < t_0
\end{cases} \]

e.g. \(t_0 = 1 \)
The unit-impulse (Dirac-delta) function is defined as

\[\delta(t) \equiv \begin{cases} 0 & t \neq 0 \\ \infty & t = 0 \end{cases} \rightarrow \int_{-\varepsilon}^{\varepsilon} dt \delta(t) = 1 \]

\[\varepsilon \rightarrow 0 \]
The Unit-Impulse Function (CT Signals)

- It is also defined by

\[
\int_a^b dt \phi(t)\delta(t) = \begin{cases}
\phi(0) & a < 0 < b \\
0 & a < b < 0 \text{ or } 0 < a < b \\
\text{undefined} & a = 0 \text{ or } b = 0
\end{cases}
\]

- A delayed (retarded) delta function \(\delta(t - \tau)\) is defined by

\[
\int_{-\infty}^{\infty} dt \phi(t)\delta(t - \tau) = \phi(\tau)
\]
The Unit-Impulse Function (CT Signals)

Properties of $\delta(t)$:

$$\delta(at) = \frac{1}{|a|}\delta(t)$$

$$\delta(-t) = \delta(t) \quad (2)$$

$$x(t)\delta(t) = x(0)\delta(t) \quad \text{(if } x(t) \text{ is continuous at } t = 0)$$

$$x(t)\delta(t - \tau) = x(\tau)\delta(t - \tau) \quad \text{(if } x(t) \text{ is continuous at } t = \tau)$$

A continuous-time signal $x(t)$ may be expressed as (we prove this in the following lecture)

$$x(t) = \int_{-\infty}^{\infty} d\tau \, x(\tau)\delta(t - \tau)$$
Complex Exponential and Sinusoidal (CT Signals)

Euler’s formula: $e^{jw_0t} = \cos(w_0t) + j\sin(w_0t)$

where $j = \sqrt{-1}$, $w_0 \neq 0$ is real, and t is the time.
Complex Exponential and Sinusoidal (CT Signals)

Since

\[e^{jw_0 \left(t + \frac{2\pi}{|w_0|}\right)} = e^{jw_0 t} e^{j2\pi \frac{w_0}{|w_0|}} = e^{jw_0 t} e^{j2\pi \text{sign}(w_0)} = e^{jw_0 t} \]

we have

\[e^{jw_0 t} \text{ is periodic with fundamental period } \frac{2\pi}{|w_0|} \]

Note that

\[e^{j2\pi k} = 1, \text{ for } k = 0, \pm 1, \pm 2, \ldots. \]
Complex Exponential and Sinusoidal (CT Signals)

- $e^{j\omega_0 t}$ and $e^{-j\omega_0 t}$ have the same fundamental period.

- Energy in $e^{j\omega_0 t}$: $\int_{-\infty}^{\infty} |e^{j\omega_0 t}|^2 dt = \int_{-\infty}^{\infty} 1 dt = \infty$

- Average Power in $e^{j\omega_0 t}$: $\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |e^{j\omega_0 t}|^2 dt$

 $= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} 1 dt = 1$
Complex Exponential and Sinusoidal (CT Signals)

\[Ce^{at} \]

where \(C \) and \(a \) are complex numbers.

If

\[C = |C|e^{j\theta} \quad \text{and} \quad a = r + jw_0 \]

then

\[Ce^{at} = |C|e^{j\theta}e^{(r+jw_0)t} = |C|e^{rt}e^{j(w_0t+\theta)} \]

\[= |C|e^{rt}\cos(w_0t + \theta) + j |C|e^{rt}\sin(w_0t + \theta) \]

\[\text{Re}(Ce^{at}) + j \text{Im}(Ce^{at}) \]
Complex Exponential and Sinusoidal (CT Signals)
Periodicity and Fundamental Period (CT Signals)

Consider two sinusoidal functions $x(t) = \sin(\omega_0 t + \theta)$ and $x_m(t) = \sin(m\omega_0 t + \theta)$. The fundamental angular frequencies of these two CT signals are given by ω_0 and $m\omega_0$ radians/s, respectively. In other words, the angular frequency of the signal $x_m(t)$ is m times the angular frequency of the signal $x(t)$. In such cases, the CT signal $x_m(t)$ is referred to as the mth harmonic of $x(t)$.

Examples of harmonics.
(a) Waveform for the sinusoidal signal $x(t) = \sin(2\pi t)$; (b) waveform for its second harmonic given by $x_2(t) = \sin(4\pi t)$.

![Figure A](image1.png)

![Figure B](image2.png)
Periodicity and Fundamental Period (CT Signals)

Proposition A signal $g(t)$ that is a linear combination of two periodic signals, $x_1(t)$ with fundamental period T_1 and $x_2(t)$ with fundamental period T_2 as follows:

$$g(t) = ax_1(t) + bx_2(t)$$

is periodic iff

$$\frac{T_1}{T_2} = \frac{m}{n} = \text{rational number}.$$

The fundamental period of $g(t)$ is given by $nT_1 = mT_2$ provided that the values of m and n are chosen such that the greatest common divisor (gcd) between m and n is 1.
Periodicity and Fundamental Period (CT Signals)

Example
Determine if the following signals are periodic. If yes, determine the fundamental period.

\[g_1(t) = 3 \sin(4\pi t) + 7 \cos(3\pi t); \]

Solution

\[\frac{T_1}{T_2} = \frac{1/2}{2/3} = \frac{3}{4} \]

The fundamental period of \(g_1(t) \) is given by \(nT_1 = 4T_1 = 2 \text{ s}. \)

The fundamental period of \(g_1(t) \) can also be evaluated from \(mT_2 = 3T_2 = 2 \text{ s}. \)
The Unit-Step Sequence (DT Signals)

- The unit-step sequence $u[n]$ is defined by

$$u[n] = \begin{cases}
1 & n \geq 0 \\
0 & n < 0
\end{cases} \quad (3)$$

Unlike $u(t)$, $u[n]$ is defined at $n = 0$

- The shifted unit-step sequence $u[n-k]$ is similarly defined by

$$u[n-k] = \begin{cases}
1 & n \geq k \\
0 & n < k
\end{cases} \quad (4)$$
The Unit-Impulse Sequence (DT Signals)

- The unit-impulse (or unit-sample) sequence \(\delta[n] \) is defined by

\[
\delta[n] = \begin{cases}
1 & n = 0 \\
0 & n \neq 0
\end{cases} \quad (5)
\]

- The shifted unit-impulse (sample) sequence \(\delta[n-k] \) is similarly defined by

\[
\delta[n-k] = \begin{cases}
1 & n = k \\
0 & n \neq k
\end{cases} \quad (6)
\]
The Unit-Impulse Sequence (DT Signals)

• Unlike $\delta(t)$, $\delta[n]$ is readily defined. From (5) and (6) it is evident that

$$x[n]\delta[n] = x[0]\delta[n]$$
$$x[n]\delta[n-k] = x[k]\delta[n-k]$$

are the discrete-time counterparts of

$$x(t)\delta(t) = x(0)\delta(t)$$
$$x(t)\delta(t-\tau) = x(\tau)\delta(t-\tau)$$

• from (3) and (4), $\delta[n]$ and $u[n]$ are related by

$$\delta[n] = u[n] - u[n-1]$$
$$u[n] = \sum_{k=0}^{\infty} \delta[n-k]$$

A discrete-time signal $x[n]$ may be expressed as (we prove this in the following lecture)

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$
Complex Exponential and Sinusoidal (DT Signals)

\[x[n] = e^{jw_0n} \]

\(e^{jw_0n} \) is periodic \(\iff \) \(e^{jw_0n} = e^{jw_0(n+M)} \) for some integer \(M > 0 \)

\(\iff \) \(e^{jw_0M} = 1 \) for some integer \(M > 0 \)

\(\iff \) \(w_0M = 2\pi m \) for some integers \(m, M > 0 \)

\(\iff \frac{w_0}{2\pi} \) is rational.
Complex Exponential and Sinusoidal (DT Signals)

- If \(\frac{w_0}{2\pi} = \frac{m}{M} \) for some integers \(m \) and \(M \) which have no common factors, then the fundamental period is

\[
M = \frac{2m\pi}{w_0}
\]
Periodicity and Fundamental Period (DT Signals)

Examples

1) Is \(x[n] = e^{jn2\pi/3} + e^{jn3\pi/4} \) periodic? If it is periodic, what’s its fundamental period?

 For \(e^{jn2\pi/3} \), \(w_0/(2\pi) = 1/3 \), so \(e^{jn2\pi/3} \) is periodic with fundamental period 3.

 For \(e^{jn3\pi/4} \), \(w_0/(2\pi) = 3/8 \), so \(e^{jn3\pi/4} \) is periodic with fundamental period 8.

 \(x[n] \) is periodic with fundamental period \(24 = \text{lcm}(3, 8) \).
Periodicity and Fundamental Period (DT Signals)

Examples

2) Is $x[n] = \sin(3n/4)$ periodic? If it is periodic, what’s its fundamental period?

Since $\frac{\omega_0}{2\pi} = \frac{3}{8\pi}$ is irrational, $x[n]$ is not periodic
Periodicity and Fundamental Period (DT Signals)

Examples

3) Is \(x[n] = \sin\left(\frac{8\pi n}{31}\right) \) periodic? If it is periodic, what’s its fundamental period?

Since \(w_0/(2\pi) = 4/31 \), \(x[n] \) is periodic with fundamental period 31

\[x[0] = x[31] = 0 \]

Note that the continuous-time signal \(\sin\left(\frac{8\pi t}{31}\right) \) has fundamental period \(31/4 \)

But \(x[n] \) has no \(31/4 \)-th sample and it misses 0 between \(x[7] \) and \(x[8] \)
Operations – Amplitude Scaling (CT Signals)

Given a CT signal $x(t)$, scaling consist of multiplying it by a scalar value a, producing the new signal $y(t) = ax(t)$.

Scaling is defined in an analogous way for DT signals.
Operations – Time Shift (CT Signals)

Given a CT signal $x(t)$, time shifting by t_0 units of time produces the new signal $y(t) = x(t - t_0)$ (DT shifting is defined in a similar way).
Operations – Time Inversion/Reversal (CT Signals)

Time reversal flips the time axis producing the signal \(y(t) = x(-t) \).
Operations – Time Scaling (CT Signals)

Time scaling **expands** or **compresses** the time axis. Signal $y(t) = x(at)$ is a compressed version of $x(t)$ if $|a| > 1$, and an expanded version if $|a| < 1$.

![Graph of x(t)](image1.png)

![Graph of x(t/4)](image2.png)
Consider the signal $x(t) = u(-2t + 3)$. In order to obtain $x(t)$ we will take the following steps:

- Define the time-shift $y(t) = u(t + 3)$.
- Define the time scaling and reverse $z(t) = y(-2t)$.

As we can see, $z(t) = y(-2t) = u(-2t + 3)$ and therefore $x(t) = z(t)$.
In general, we can obtain the signal $y(t) = x(-at + t_0)$ by shifting $x(t)$ first and then by scaling and time reversing the result. Graphically, the signal $u(-2t + 3)$ can be obtained as follows:

You can see that $u(-2(1.5) + 3) = u(0)$.
Operations – Sum (CT Signals)

Adding two signals $x(t)$ and $y(t)$ means adding their values each time instant.
Operations – Product (CT Signals)

Similarly, we multiply signals by multiplying their values each time instant.
Operations – Time Shift (DT Signals)

When a DT signal $x[k]$ is shifted by m time units, the delayed signal $\phi[k]$ is expressed as

$$\phi[k] = x[k + m]$$

If $m < 0$, the signal is said to be delayed in time.
Operations – Time Shift (DT Signals)

Example
Represent the DT sequence shown in (a) as a function of time-shifted DT unit impulse functions.

\[x[k] = 2\delta[k] \]

\[x_1[k] = \delta[k + 1] \]

\[x_2[k] = 2\delta[k] \]

\[x_3[k] = 3\delta[k - 1] \]

\[x[k] = \delta[k + 1] + 2\delta[k] + 3\delta[k - 1] \]
Operations – Time Inversion/Reversal (DT Signals)

\[y(n) = x(-n) \]

positive time switches to negative time and vice versa

Example
Sketch the time-inverted version of the following DT sequence:

\[x[k] = \begin{cases}
1 & -4 \leq k \leq -1 \\
0.25k & 0 \leq k \leq 4 \\
0 & \text{elsewhere,}
\end{cases} \]
Operations – Time Inversion/Reversal (DT Signals)

Solution
To derive the expression for the time-inverted signal $x[-k]$, substitute $k = -m$

$$x[-m] = \begin{cases}
1 & -4 \leq -m \leq -1 \\
-0.25m & 0 \leq -m \leq 4 \\
0 & \text{elsewhere.}
\end{cases}$$

Simplifying the above expression and expressing it in terms of the independent variable k yields

$$x[-m] = \begin{cases}
1 & 1 \leq m \leq 4 \\
-0.25m & -4 \leq m \leq 0 \\
0 & \text{elsewhere.}
\end{cases}$$
Operations – Time Inversion/Reversal (DT Signals)

(a) Original CT sequence $x[k]$
(b) Time-inverted version $x[-k]$
Operations – Time Scaling (DT Signals) also known as Decimation and Interpolation

(a) Original DT sequence $x[k]$.
(b) Decimated version $x[2k]$, of $x[k]$.
(c) Interpolated version $x[0.5k]$ of signal $x[k]$.

(a)

(b)

(c)
Example
Sketch the waveform for $x[-15 - 3k]$ for the DT sequence $x[k]$.

![Graph](image-url)
Operations – Combined Time Operations (DT Signals)

Solution

Express $x[-15 - 3k] = x[-3(k + 5)]$ and follow steps (i)–(iii) as outlined below.

(i) Compress $x[k]$ by a factor of 3 to obtain $x[3k]$.

(ii) Time-reverse $x[3k]$ to obtain $x[-3k]$.

(iii) Shift $x[-3k]$ towards the left-hand side by five time units to obtain $x[-3(k + 5)] = x[-15 - 3k]$.
Operations – Combined Time Operations (DT Signals)

(a) Original DT signal $x[k]$.
(b) Time-scaled version $x[3k]$.
(c) Time-inverted version $x[-3k]$ of (b).
(d) Time-shifted version $x[-15 - 3k]$ of (c).