Hypnotic Blindness: A Behavioral and Experiential Analysis

Richard A. Bryant and Kevin M. McConkey
Macquarie University, Sydney, New South Wales, Australia

This research examined the influence of visual information on a decision task that subjects were administered during hypnotically suggested blindness. Real, hypnotizable subjects and simulating, unhypnotizable subjects were tested in two experiments. Experiment 1 focused on behavioral responses, and Experiment 2 focused on experiential reactions. In both experiments, the findings indicated that the behavioral responses of reals were influenced by visual information despite their reported blindness. The behavioral responses of reals and simulators were essentially similar. The experiential data in Experiment 2 provided information about the phenomenal nature of subjects' reported blindness. The experiential reactions of reals and simulators were essentially different. The research is discussed in terms of the issues that need to be considered in the development of a model of hypnotic blindness.

Hypnosis allows some psychological phenomena to be induced, controlled, and removed under conditions of careful examination. The present research was an attempt to delineate behavioral and experiential aspects of hypnotically suggested blindness, and the research was stimulated by the notions that hypnotic blindness not only is an interesting and challenging phenomenon in its own right but also is an analog of hysterical blindness. From at least the time of Charcot (1890), hypnosis and hysteria have been linked in terms of the phenomena and processes involved, and the present research is an analog investigation in the laboratory of a phenomenon that we have also investigated in the clinic (see Bryant & McConkey, 1988).

Previous investigations of hypnotic blindness have involved suggestions of selective blindness for stimulus components that influence visual illusions (e.g., Blum, Nash, Jansen, & Barbour, 1981; Jansen, Blum, & Loomis, 1982; Miller, Hennessy, & Leibowitz, 1973), visual distortion of distance (e.g., MacCracken, Gogel, & Blum, 1980), visual field narrowing (e.g., Blum, 1975; Leibowitz, Lundy, & Guez, 1980; Leibowitz, Post, Rodemer, Wadlington, & Lundy, 1980; Miller & Leibowitz, 1976), color blindness (e.g., Blum & Porter, 1973; Cunningham & Blum, 1982; Harvey & Sipprelle, 1978; Miller, Lundy, & Galbraith, 1970), and overall changes to visual acuity (e.g., Blum, Porter, & Geiwitz, 1978; Graham & Leibowitz, 1972; Pattie, 1935). Generally, the findings of these studies have indicated that the overt behavior of subjects on a variety of tasks is relatively uninfluenced by suggested blindness, even though the subjects indicate that they are experiencing the effect; that is, the findings have indicated that alterations of subjects' phenomenal experiences, rather than alterations of visual processing, play the major role in hypnotic blindness.

Sackheim, Nordlie, and Gur (1979) attempted to delineate aspects of hypnotic blindness and to specify the relationship between hypnotic and hysterical blindness through an analysis of two subjects who were instructed to experience hypnotic blindness and one subject who was instructed to fake hypnotic blindness. During their (genuine or simulated) blindness, these subjects were asked to report whether line drawings of happy or sad faces were happy or sad. The findings indicated that the simulating subject responded below chance, one real subject responded perfectly even though she reported complete blindness, and the other real subject (who had received additional motivating instructions for blindness) responded below chance. These findings raise important issues about functionally blind individuals' awareness of visual information and the role of motivation in hypnotic blindness, but the inferences that can be drawn are limited by the number of subjects and the type of task employed.

In the present research we used a less obtrusive task that we adopted from investigations of hysterical blindness (see Grosz & Zimmerman, 1965, 1970; Zimmerman & Grosz, 1966). This decision task involves subjects looking at a small machine and turning off a tone it emits by pressing one of three switches on the frontplate of the machine. The correct switch is indicated by a light, and the switch and the corresponding light vary across the trials. Hysterically (or hypnotically) blind subjects are not informed of the existence of the light. Recently, we employed this task in a case analysis of a hysterically blind individual (Bryant & McConkey, 1988). Across 21 test sessions this individual's choice of the correct switch changed from approximately chance to almost perfect performance, even though he reported that he could see nothing of the machine and that his responses were guesses.

We conducted two experiments in the present research, and in both we employed the real–simulating paradigm of hypnosis (Orne, 1959, 1979). This paradigm compares the performance of hypnotized individuals (reals) with that of nonhypnotized individuals who behave as they believe hypnotized individuals would (simulators). The subjects are initially instructed by an experimenter, and the hypnotic testing is conducted by a second
experimented with an experimenter who is unaware of the real or simulating identity of the subjects. The real–simulating paradigm is intended to allow a specification of the extent to which the demand characteristics of the test setting may have influenced the performance of the hypnotized subjects. Specifically, if reals and simulators respond similarly, then an explanation of the behavior of reals in terms of demand characteristics cannot be ruled out. If reals and simulators respond differently, factors other than demand characteristics, as indexed by the behavior of simulators, can be said to be involved in the responses of reals (see Sheehan & Perry, 1976).

The first experiment focused on the overt behavior on the decision task of real and simulating subjects who were administered a suggestion for hypnotic blindness. Because Experiment 1 pointed to an essential similarity in the behavior of reals and simulators, we conducted a second experiment that focused on the experiential reactions of real and simulating subjects. In Experiment 2 we investigated these reactions through an application of the experiential analysis technique (EAT; Sheehan & McConkey, 1982). With this technique, subjects view a videotape record of their hypnotic test session and describe aspects of their experience to an inquirer. In the present research, the inquirer was a third experimenter who also was unaware of the real or simulating identity of subjects. The EAT is intended to allow a specification of aspects of the phenomenal experience of subjects that may be relevant to their behavioral display of hypnotic phenomena.

Experiment 1

After a suggestion for hypnotic blindness, reals and simulators performed a decision task in which they chose one of three switches to stop a tone being emitted by a machine on a small table in front of them. There was a visual display of triangles above the switches, and the subjects were tested both with the visual display on (cues present) and with it off (cues absent). With the visual display on, the triangle above the correct switch was oriented differently from those above the incorrect switches. The cues-present condition allowed a test of the extent to which the visual information influenced subjects' performance. The cues-absent condition provided baseline performance data when no visual information was present to influence subjects' performance. The measures taken were the number of times that subjects selected the correct switch (i.e., correct response) and the length of time it took subjects to select a switch (i.e., response latency). These measures (see Grosz & Zimmerman, 1965, 1970; Sackeim et al., 1979) index the extent to which information provided by the visual display influenced subjects' performance in terms of both eventual choice (correct responses) and decision process (response latency).

Method

Subjects

Forty (30 female and 10 male) reals of mean age 21.97 years (SD = 8.34) and 40 (29 female and 11 male) simulators of mean age 26.52 years (SD = 9.27), who were undergraduate psychology students at Macquarie University, participated in return for research credit. Subjects were preselected on the basis of their extreme scores on the group- administered, 12-item Harvard Group Scale of Hypnotic Susceptibility, Form A (HGSHS:A; Shor & Orne, 1962). Reals had scored in the range 9–12 (M = 10.12, SD = 0.73), and simulators had scored in the range 0–3 (M = 2.02, SD = 0.97).

Procedure

Initially, an experimenter instructed the hypnotizable and unhypnotizable subjects according to the exact procedures of the real–simulating paradigm (see Orne, 1959, 1979). Reals were told they would be taken to a second experimenter who would conduct a hypnotic session with them. Simulators were told they would be taken to a second experimenter, and their task was to fool this experimenter into believing that they were hypnotizable individuals. They were told that the hypnotist did not know which subjects were hypnotized and which were faking and that she would stop the session if she discovered they were faking. The experimenter then took subjects to the hypnotist, who was unaware of the real or simulating identity of subjects.

The hypnotist informed subjects that they would be hypnotized and given a number of hypnotic suggestions. She then administered a hypnotic induction procedure and tested subjects on suggestions for hand lowering, moving hands apart, negative visual hallucination, and age regression. The hypnotist then administered the suggestion for hypnotic blindness. She told subjects their ability to see everything in front of them was fading, and that when she asked them to open their eyes they would not see anything. Subjects were then asked to open their eyes and describe what they saw. Subjects who reported being able to see were administered an additional suggestion and then were asked to describe what they saw. When subjects reported not being able to see, the hypnotist reinforced their blindness and instructed them that the blindness would be maintained until she told them otherwise.

After the suggestion a small table was placed in front of the subjects, and they were asked to place their hands on the machine on the table. The machine had a screen with a display of three triangles that could be illuminated in different orientations or not at all. This screen was about 50 cm from the subject's eyes, and below the screen was a front plate with three switches. Subjects were told that their task was to press one of the switches to turn off a tone that the machine would be emitting. Subjects were not given any information about the presence of the triangles and were not given any information about how to decide which switch to press. Subjects were presented with 20 trials of the decision task. For the first 10 trials, the screen displayed the visual cues for the correct switch (cues present), and for the second 10 trials, the screen did not display the visual cues (cues absent). The correct switch was varied randomly, and a silent counter at the back of the machine advanced when subjects chose correctly. The duration of the tone on each trial was recorded and measured through an oscilloscope and chart recorder. After the decision task the hypnotist cancelled the suggestion for blindness and awakened the subjects. She then rated the real or simulating identity of subjects and escorted them to the original experimenter.

The experimenter conducted a postexperimental inquiry into subjects' perceptions of the overall procedures, reactions to the blindness suggestion, and reactions to the decision task. Also, he asked simulators whether they had experienced any effect of hypnosis and whether they considered they had performed as a hypnotized subject would.¹

Results

In response to the blindness suggestion, 11 (27.5%) real subjects reported complete blindness (i.e., could see nothing), 14

¹ The hypnotist identified 55.0% and 42.5% of reals and simulators, respectively. Postexperimentally, no simulators reported they had experienced hypnosis, and all considered they had responded as hypnotized subjects would.
Experiments reported complete blindness, and 13 (32.5%) reported incomplete blindness (i.e., could see in a partial or fluctuating way), and 15 (37.5%) reported no blindness (i.e., could see normally). Twenty-seven (67.5%) simulating subjects reported complete blindness, and 13 (32.5%) reported incomplete blindness. Chi-square analysis of the pattern of responses by reals and simulators yielded a significant effect, $\chi^2(2, N = 80) = 21.77, p < .005$; that is, more simulators than reals reported complete blindness. This finding is consistent with the initial replication and extension of Experiment 1. As in Experiment 1, reals and simulators performed the decision task during hypnotic blindness (during suggestion). They also performed the task after the suggestion was cancelled (after cancellation). On both occasions, the visual display was on; that is, the cues for the correct switch were present. The during-cancellation condition provided baseline performance data when the visual information was available and subjects were not hypnotically blind. As in Experiment 1, the measures taken were correct response and response latency.

After the hypnotic session, the subjects participated in a session of inquiry into their reported hypnotic blindness. This inquiry session used the EAT, and subjects commented on their experiences in detail. Subsequently, videotaped records of the inquiry sessions were rated to provide data about aspects of subjects' experience of blindness. These aspects were selected in part on the basis of the postexperimental inquiry data obtained in Experiment 1 and in part on the basis of previous experimental analyses of hypnotic phenomena (e.g., Sheehan & McConkey, 1982). Specifically, the information obtained during the inquiry sessions was rated to provide data on the ways in which subjects tried to respond to the suggestion for blindness, their experience of blindness, and their reactions to the decision task.

Method

Subjects

Twenty-three (20 female and 3 male) reals of mean age 21.61 years ($SD = 6.04$) and 18 (13 female and 5 male) simulators of mean age 25.44 years ($SD = 8.83$), who were undergraduate psychology students at Macquarie University, participated in return for either research credit or a nominal payment of $10. Subjects were preselected on the basis of their extreme scores on both the group-administered, 12-item HGSHS:

2 Procedurally, Experiment 2 differed from Experiment 1 in ways intended to ensure that more reals experienced complete blindness. The hypnotizable and unhypnotizable subjects were selected through both group and individual screening for hypnotizability rather than through group screening only. The brightness of the visual display was reduced from the level of Experiment 1. The suggestion for hypnotic blindness was specifically for the machine rather than for everything in front of the subject. Finally, subjects were given the suggestion with their eyes opened, because comments by subjects in Experiment 1 indicated that opening their eyes following the suggestion interfered with their blindness. Also, it should be acknowledged that Experiment 2 differed from Experiment 1 in ways that were assumed not to influence hypnotic blindness; for instance, the hypnotist in Experiment 1 was a woman, and the hypnotist in Experiment 2 was a man.
A and the individually administered, 12-item Stanford Hypnotic Susceptibility Scale, Form C (SHSS:C; Weitzenhoffer & Hilgard, 1962). Reals had scored in the range 9–12 (HGSHS:A, M = 10.13, SD = 2.10; SHSS:C, M = 10.71, SD = 0.96), and simulators had scored in the range 0–3 (HGSHS:A, M = 1.39, SD = 0.78; SHSS:C, M = 1.24, SD = 1.09).

Procedure

As in Experiment 1, an experimenter initially instructed the reals and simulators according to the exact procedures of the real-simulating paradigm. In addition, real subjects were informed that after the hypnotic induction procedure and tested subjects on suggestions for hands moving together, arm rigidity, age regression, visual hallucination, and hand anesthesia. After this a small table was placed in front of the subjects, and they opened their eyes and placed their hands on the machine on the table. The hypnotist then administered the suggestion for blindness for the visual display on the machine. Subjects then were asked to describe what they saw on the machine. Subjects who reported that they could see the display were administered an additional suggestion and then were asked to describe what they saw. When subjects reported not being able to see the display, the hypnotist reinforced their blindness and instructed them that the blindness would be maintained until he told them otherwise.

After this the hypnotist gave subjects instructions for the task but did not give them any information about the relevance of the triangles. Subjects then were presented with 10 trials of the decision task with the visual cues present. After these 10 trials, the hypnotist cancelled the suggestion for blindness, and subjects were presented with another 10 trials with the visual cues present. After the decision task, the hypnotist awakened subjects, rated the real or simulating identity of subjects, and escorted them to a third experimenter.

The inquirer informed subjects that he would show them a videotape of their hypnotic session and that this would help them remember their experiences of hypnosis. Further, the inquirer told subjects that he would stop the videotape playback at a number of points and that they should describe their experiences at those points. Also, he told subjects they could ask him to stop the videotape playback and describe their experiences at any time. This inquiry procedure allowed the collection of data at a number of predetermined points and also allowed subjects to comment on anything they found especially meaningful.

The essential data obtained from the inquiry session were based on subjects’ reports of their expectations, images, and thoughts about the experience of blindness and the decision task. For instance, the inquirer asked subjects to comment on their response to the suggestion (e.g., “What happened after [the hypnotist] suggested that you would not see the lights?”) and on their performance on the task (e.g., “How did you go about solving the task?”). Following the EAT session, the inquirer rated the real or simulating identity of subjects and escorted them to the original experimenter.

The experimenter conducted a brief postexperimental inquiry into subjects’ perceptions of the overall procedures and their reactions to the blindness suggestion and the decision task. Also, he asked simulators whether they had experienced any effect of hypnosis and whether they considered they had performed as a hypnotizable individual would in both the hypnosis and the inquiry sessions.3

After the testing of all subjects, the videotape records of the EAT sessions were examined independently by the inquirer and a rater who was unaware of the aims of the experiment and of the real or simulating identity of subjects. Subjects’ comments about their blindness were rated for (a) the cognitive style involved in their experience of the suggestion (constructive, concentrative; see Sheehan, McConkey, & Cross, 1978), (b) the involuntariness of the suggested effect (1 = not at all, 7 = extreme), (c) their absorption in the suggested effect (1 = not at all, 7 = extreme), (d) the completeness of the blindness (1 = not at all, 7 = extreme), and (e) their belief in the genuineness of the blindness (1 = not at all, 7 = extreme). Subjects’ comments about the task were rated for (a) their attentional focus during the decision task (maintaining blindness, solving task), (b) their knowledge of the solution of the task (yes, no), and (c) their response strategy on the decision task (using visual display, guessing). Across these dimensions the interrater reliability ranged from .86 to 1.00. The experiential data reported are those provided by the inquirer.

Results

In response to the blindness suggestion, 12 (52.2%) real subjects reported complete blindness, 7 (30.4%) reported incomplete blindness, and 4 (17.4%) reported no blindness. Seventeen (94.4%) simulating subjects reported complete blindness and 1 (5.6%) reported incomplete blindness. Chi-square analysis of the pattern of responses by reals and simulators yielded a significant effect, \(\chi^2(2, N = 41) = 8.88, p < .05\); that is, more simulators than reals reported complete blindness. As in Experiment 1, this finding is consistent with the difficulty of the suggestion for real subjects and with the simulating subjects responding in a way that overestimates the performance of hypnotized subjects. A comparison of the pattern of responses by real subjects across Experiments 1 and 2 yielded a significant effect, \(\chi^2(2, N = 40) = 4.48, p < .05\); that is, more reals in Experiment 2 than in Experiment 1 reported complete blindness.

Behavioral Data

As in Experiment 1, our analyses then focused on subjects who reported complete blindness. Table 2 presents the mean number of correct responses and the mean response latencies on the decision task for real and simulating subjects who reported complete blindness. A 2 x 2 (Subject Grouping x Task Condition) mixed-model ANOVA of correct responses yielded a significant main effect for task condition, \(F(1, 27) = 320.18, p < .001\), and a significant interaction effect, \(F(1, 27) = 6.06, p < .05\); that is, subjects gave fewer correct responses during the suggestion than after its cancellation. Furthermore, reals gave more correct responses than simulators during the suggestion but not after its cancellation. A similar analysis of response latencies yielded a significant main effect for task condition, \(F(1, 27) = 8.26, p < .01\); that is, subjects responded more slowly during the suggestion than after its cancellation.

A 2 x 2 (Subject Grouping x Experiment) ANOVA of correct responses by reals and simulators in comparable conditions

3 The hypnotist identified 65.2% and 55.6% of reals and simulators, respectively. The inquirer identified 87.0% and 83.3% of reals and simulators, respectively. Postexperimentally, no simulators reported that they had experienced hypnosis, and all considered that they had responded as hypnotized subjects would.
Table 2

Experiment 2: Mean Number of Correct Responses and Mean Response Latencies

<table>
<thead>
<tr>
<th>Subject grouping and task condition</th>
<th>Correct responses</th>
<th>Response latencies (in s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Real ($n = 12$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>During suggestion</td>
<td>4.08</td>
<td>1.56</td>
</tr>
<tr>
<td>After cancellation</td>
<td>9.17</td>
<td>1.40</td>
</tr>
<tr>
<td>Simulating ($n = 17$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>During suggestion</td>
<td>3.00</td>
<td>1.12</td>
</tr>
<tr>
<td>After cancellation</td>
<td>9.71</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Note. Maximum number of correct responses is 10.

(i.e., cues present and during suggestion) in Experiments 1 and 2 yielded significant main effects for subject grouping, $F(1, 63) = 5.29, p < .05,$ and experiment, $F(1, 63) = 5.59, p < .05$; that is, reals rather than simulators gave more correct responses, and subjects in Experiment 1 gave more correct responses than those in Experiment 2. A similar analysis of response latencies yielded a significant main effect for subject grouping, $F(1, 63) = 3.86, p < .05,$ and a significant interaction effect, $F(1, 63) = 4.04, p < .05;$ that is, reals responded more slowly than simulators. Moreover, reals responded more slowly than simulators in Experiment 1 in comparison with Experiment 2.

Experiential Data

Table 3 presents the data concerning cognitive style, attentional focus, knowledge of task solution, and response strategy; Table 4 presents the mean ratings of involuntariness, absorption, completeness, and belief. In terms of the cognitive styles of all subjects who reported complete blindness, chi-square analysis indicated a significant difference between real and simulating subjects, $\chi^2(1, N = 27) = 5.73, p < .05.$ Whereas the majority of reals achieved blindness through a constructive style, most simulators used a concentrative style. An example of the constructive style of reals can be seen in the following: “I was thinking of a blind spot. We were doing experiments where you had to concentrate on one spot so that you couldn’t see another spot on the page. I was thinking of that, and of the way things go blank in the blind spot. I made the machine the blind spot.” Similarly: “It’s hard knowing that something’s there and yet you’re not allowed to see it. I concentrated on not letting myself see it by looking at the black screen instead of the lights on the screen. If you look at the detail of the lights you know it’s there, so I just looked beyond the lights at the black.” Use of a constructive cognitive style appeared to allow subjects to avoid information that interfered with their phenomenal experience of blindness.

On the other dimensions, comparisons yielded significant differences between reals and simulators for involuntariness, $t(25) = 4.41, p < .001,$ completeness, $t(25) = 3.44, p < .01,$ and belief, $t(25) = 2.84, p < .01.$ The comments of simulators conveyed greater involuntariness, more complete blindness, and a stronger belief in their blindness than did the comments of reals. The involuntary and complete way that simulators reported their blindness can be seen in the following: “The triangles were fading. It was like just taking my glasses away, so that I couldn’t focus. I couldn’t get them into focus, and then they just faded away.” In general, these data highlight that simulating subjects were overzealously performing their task of behaving like individuals who had experienced deep hypnosis.

In terms of the decision task, chi-square analysis indicated a significant difference between reals and simulators for attentional focus, $\chi^2(1, N = 27) = 19.35, p < .001.$ Whereas the majority of reals focused on maintaining blindness, most simulators focused on the task. An example of the way in which reals handled the demands of maintaining blindness during the decision task can be seen in the following: “I had shut the lights out. I didn’t want to see the lights and I didn’t want to think about the screen. It was just black. I was concentrating so hard on not seeing the lights that I didn’t really know what I was doing with the buttons. Not seeing the lights was the top priority.”

Whereas the majority of simulators reported that their blindness was not interfered with by the decision task, most reals reported that attending to the decision task enhanced their awareness of reality information in a way that conflicted with their experience of blindness and that maintaining blindness during the decision task made substantial demands on their attention. An example of the dilemma faced by reals can be seen in the following: “It was like a black sheet coming over the machine but it had material underneath, sticking up a bit. Occasionally, I would sort of feel I’d get them right, and I think that was probably when the bits underneath stuck up a bit.” This comment illustrates how some reals in one way were unaware of the visual cues but in another way were using this information to give a correct response on the decision task.

Discussion

All subjects who reported complete blindness gave more correct responses and responded faster after the suggestion than...
cognitive passivity; that is, simulators apparently believed that
lessly and that the visual information would not interfere with
reals would experience hypnotic blindness easily and effort-
be seen, however, as bringing into question the phenomenal gen-
way in which some hypnotized subjects responded should not
they could on the decision task with which the hypnotist con-
strategies were personally appropriate to achieve the desired effect
a problem-solving task, in which they had to use whatever strat-
han & McConkey, 1982). Many of the reals who experienced
attitude in a way that meets the demands placed on them by the communications of the hypnotist (Sheehan & McConkey, 1982). Many of the reals who experienced hypnotic blindness seemed to approach the overall situation as a problem-solving task, in which they had to use whatever strategies were personally appropriate to achieve the desired effect of experiencing blindness in addition to performing as well as they could on the decision task with which the hypnotist con-
fronted them.

The emphasis that our data place on the cognitively active
way in which some hypnotized subjects responded should not
be seen, however, as bringing into question the phenomenal genu-
truth of their experience. Simulators were responding in a
nongenuine manner, and the data provided by them points to
cognitive passivity; that is, simulators apparently believed that
reals would experience hypnotic blindness easily and effort-
lessly and that the visual information would not interfere with
that experience. The data from reals indicate, however, that this
was not the case, and this contrast between reals and simulators indicates that the reactions of reals cannot be interpreted solely
on the basis of demand characteristics.

The reals in our research were selected on the basis of their
performance on standardized group and individual scales of
hypnotic susceptibility and were not given practice in experi-
cencing hypnotic blindness before their participation in the re-
search. Arguably, reals who were selected more stringently and
given practice in hypnotic blindness would respond even more
differently from simulators than our reals did. If this were the
case, then research would be needed to determine the major
factors underlying the occurrence of the differences between
real and simulating subjects. Similarly, future research could
explore the value of detailed inquiry into the experience of sub-
jects while they were hypnotized, rather than after hypnosis, as
was the case in our research. With such an inquiry, reals and
simulators could be expected to report in appreciably different
ways. Blindness in our research was suggested to occur during
hypnosis, and future research could also investigate the behav-
ioral and experiential aspects of blindness that are suggested to
occur after hypnosis (for relevant procedures, see Cunningham
& Blum, 1982). The range of issues that one can argue need to
be subjected to further empirical analysis not only point to the
complex nature of the phenomenon of hypnotic blindness but
also highlight the need for a formal model to guide such an anal-
ysis in a systematic way.

Accordingly, a brief comment is needed on the relevance of
the present research to Sackeim et al.'s (1979) model of func-
tional blindness. In essence, although some of our findings are
consistent with features of that model, other of our findings
point to aspects of hypnotic blindness that are not reflected in
that model. For instance, the cognitive activity observed in our
blind reals is inconsistent with the passive blindness experience
that is the basis of the independent defensive stages of the model.
Furthermore, both the behavioral and experiential data from the
present research indicate that there is an interactive influ-
ence between phenomenal blindness and performance on visual
tasks that is not recognized by the model (see also Bryant &
McConkey, 1988). Overall, our findings indicate that the model
of Sackeim et al. (1979) does not account fully enough for the
complexity of the processes that appear to be involved in hyp-
notized individuals' behavioral and experiential reactions to
suggestions for blindness.

Finally, the present research suggests that what is required is
a more detailed elaboration of a model that accounts for data
from investigations of hypnotic and hysterical blindness. Such
a model will need to take account especially of data that have
been provided by a variety of methodological strategies and
measures of functional blindness. In that sense, the present re-
search represents an approach that has combined distinct
methodological strategies in its examination of hypnotic blind-
ness. The use of the real–simulating and EAT strategies to index
different influences on hypnotic blindness, therefore, has pro-
vided information that allows us to move closer to a more com-
plete account of the phenomenon.

References
HYPNOTIC BLINDNESS

