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1 he economi< vvorki is a mis;y regioo. 
The first exp/0«,r.; used anaided visioll. 

Mathem;irie, ;, ll•f? f.)ntem by wnich what was befar,, 
dim,'y oi.~ihl<' now looms up in fitm, bold outline!.. 
The old p/1antasmaqpria I disappea~ 
we se,;, better. We also see fual>e, 
-i.-,ing Fi~her (189?) 

This chapter covers d few topics io linl!ar illgebr a that dre not always treated in standard 
mat he ma lies courses for economics students. We assume that the reader is f amrliar with 

some basic concepts .ind results, which are neverthel(eSS briefly reviewed in Section 1. 1. A fuller 
treatment, including many practice problems. can be found in EMEi\ or in rn,my alternative 
te>ctbooks. 

In an economic model described by a linear system of equations. it is important to l(r,ow 
when that .~ystem has a solution. and when the solution is uoiqul!. General conditJons for 
existence and uniqueness are most easily stated using the concept of linear independence, dlong 
with the related concept of the rank of a matrix. These topics ilre treated in Sections 1.2 and 
1.3. They are applied to linear ~quation systems in Section 1.4. Two important theorems give 
cruoal ir.formation about the solutiorn. In particular, Theorern 1.4 .2(b) introduces the important 
concept of degrees of freedom for linear systems. 

Section 1 .5 discusses eigenvalues. Tiley are indispensahle in sever al areas of mathematics cf 
interest 10 econom,st.s---irt particular. st11bili1Y theory for difference and differential ~quations. 
F. igenvalues and the associated eigenvectors are also important in determini~<J-when a matrix 
can be ··diilgon,llized", which greatly sirnplifies some calculations involvinl) the matrix. ,his is 
discussed in Section 1.6. 

Sections 1.7 and 1.8 look at quadra:ic forms-first without linear constraints. therr with 
them. Such quadratic forms are especially useful in deriving and checldng second-order condi­
trons for multivarioble optimization. 

Lastly, in Section 1.9 we briP.fly consider parritioned matrice~. These ilre useiui for com­
putations involving large miltriccs, esp1Kially when they have ,i SpPC1al structure. Oni;> area of 
applic,1tion is in econorr.etrics. 

1 "l'hantasmago,ia" is a term invented ill 180210 describe an cxhihirion of opcical illusion8 pToduced 
by mc•ns ~,f H m~gic lan""1). 



2 (H A f'TE, 1 i TO PI ( $ iN L,NEAI\ ALG Ul RA 

1.1 Review of Basic Linear Algebra 
An m x " U1at1'ix is a rectangular ,uray wilh m rows and n colmnus: 

( ::: ::~ 
A , , (a,1 ).., x., "" : : 

Omt c.lm1 

(1) 

Here a,j denot""' the elelllent iu tl1e ilh row and the j ilt colunut. 
lf A = (a;; i ... ,.., 11 = (b1j),,.., 3nd a is a scalar (a numhe.r), we de.fine 

A+IJ == (a;_; +b11lm,.,, !YA= (aa,j)m.<n , A-B = A-H - l)B = ((l;j --bij )my.• (2) 

Suppose that A = (a,j)m,.• and that B = (h,1) .. ~,·· Then the product C =.: AB is 1hem x p 
mauix C "' (c,; ),,. •P• whose clement \11 tho ith row a11cl the jth columJl is lbc inner product 

(or dot product) of the ilh row of A and the jth column of B. That is, 

,·- \ 
It is important 10 n,)te that the product AB i~ defined only if the number of. colunms iu A is 
equal to the number of rows ii i B. 

If/\, n. a11d C are matrices whose <limen.,ions are such that the given op<:rntions are 

defined, then the ba.sic propenics of matrix multiplication are: 

(AJl)C = A(DC) 

A(.li +C) = AB + AC 

(A + B)C ~ .. AC + BC 

(associittive law) 

(left dislributive la,•) 

(right distributive law) 

(4) 

(5) 

(6) 

If A and n are ma trice~. it is possible for An to be defin<:J even if BA is not. More-Over, e.vcu 
if AB and BA are both defined, AB is not neee. ... sarily equal 10 BA. ~atri.\ multiplication is 

11c,t commutative . In fact, 

AB t, BA. except in special case.\ 

AB = 0 does not imply that A or 8 is 0 

AB = :AC and A "'f' 0 <l.:, not imply that B = C 

(7) 

(ll) 

(9) 

By using matrix multiplication, one can write a general system of linear ~quations in a very 
concise way. Specifically, Che system 

(l aX1 + a12x1 + · · · T 01n Xn .,, b, 

a21 x; + «z2xi + .. . + <J2,,x. = hz 

( 

au 
a:1 

if we dec1nt' A = : 

' ''ml 

(112 

0~}. a1. l 
"~· 

• • flflfn 1 

can be w1itlcJ1 a.s Ax= b 
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A matrix is square if it has an equal number of rows and c..,lunws. If A is a square matrix 
(11\d n is~ p,:,siti vc integer. we ddine die nth power of A in thu obvious way: 

A"=AA --- A 
'---v----' 

n fa,.,"1'.or.. 

r'<JT dincunal matrices it is particularly ea.;y lo compure pow~n;: 

(

<~ 

D=- . 

0 0 
(

d'{ 
() <1; 

0 

0 

0 

(10) 

l) 
"' . 

(II) 

The identity matrix of order 11, denoted by 10 (or often just by 1), is then x n matrix having 
oo.e.s along the IUain diagonal and zeros elsewhere: 

(
l O .. . 0) 
0 l ... 0 

I,. = . . . . 

0 0 I " " ' 

(identity matrix) (1 2) 

If A is any m x II matrix, lheu Al. = A = I,,,A. Jn panicular, 

AL. = I. A :: A for ever,• n x " matrix A ( 13) 

If A ~ (a;_;)m xn is any 01atri,c, the Cranspo.sc of A is defineJ a~ A' _ (aj1)-.,,.,. The 

&ubscripL~ i and j a.re iotcrcbanged bec'.lusc every row of A ~comt'S a column of A', and 
every column of A becomes a row of. A' . 

The followini,: wlcs apply to 1.llalrix tran,positiou: 

(i) IA')' "'A (ii) (A + B)' =A' + B' (iii) (o:A)' = aA' (iv} (AD}' = R' A' (14) 

.'\ square matrix is cal led sylll.lDetrk if A = ,\' . 

Determinants and Matrix Inverses 

Rt:call chat the detenninatit.~ !A! of 2 x 2 and 3 x 3 matrices Mt', dclined by 

1• 1 --.·· I «t l a12 I " = «11<122 - az1a1~ n:n 022 

'. a~, 
1A' = ;a21 

ja3; 

Detcnninaots of order2 anJ 3 h:ive a geometric interpretation which i~ shown and e,q,laine<l 
in Fig. 1 for the. ca~(. n = J. 
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... ·;:' .. ..... ··-. ········~:-:•/ 

Figu~ 1 

the volume of the 
"box" spanned by 
the three vector,. 

For a general n x n matrix A ~ {a;i }. the determinant !Al can be de.fine<l remrsively. In 
fact., for any i "" I, 2, ... , n, 

IAI = a,1,1n +a;-zA;2 + · · · + a,jA,j + · · · + a;.A;. (15) 

where each cofactor A;1 is the detetminam of an (n - l) x (n - l) matrix given by 

a11 ai.i-1 II j {11.j+; ... a1,. I 
lt2L a2.j-t a j a2.J·H , · · (J2n 

Aij = (-lit; 
eu a,,, r 

. i 
. ~---ertrl 

(16) 

I 

aul .i,.j-J J; 
I 

a,,.j+l a,01 j 

Lines have been rlra"'11 through row i and column j, which are to be deleted from the matrix 
A to produce ,1u, Formula (15) giV()S the cofactor 1,xpansio11 of IAI along 1/ie i1h row. 

In general, 
a;1 Ail + a;2 An + · · · + a;. ,t;. = [Al 

OiJAu+a;2An+ .. ·+a;.A1n ==0 (k,'=i) 
(17) 

ai;A1; +a:iA2; + · · · +a.iA•; = IAI 

a1i.4lt + a2;An + .. · + a.;,'1n1 = 0 (k ,'= j) 
(18) 

Thi8 result ,ays that an expau.sion of a determinant along row i in terms of the cofactor, 

of row k vanishe~ when k t= i, and is equal to IAI if k = i. Likewise, 1iI1 expansion along 
wlumn j in ce1ms ofrhecofact0rs of columnk vanishes when kt,. j, and is c.-.qual to IAI if 

k = j. 
The following rule1: for manipulating detenninants are often useful: 

lf two rows (or two columns) of A are interchange<!, the determinant 

changes sign hut its absolute. value remains unchanged. 

If all rhc elements in a single mw (or column) of A are multiplied 

by ; number c, the determinant is multiplied by c. 

If two of the rnw$ (m columns) of A are proportional, then IAI == 0. 

The value of !Al remllins unchanged if a multiple of one ruw (or one 

column) is added to another row (or cohunn). 

(19) 

(20) 

(21) 

(22) 

Furrhcnnore. 

SECTION 1. REVIEW Of OA~IC Ll-'-IF.ft.!\ ALGEB~A 

1A'I .,. IAI, where A' is the transpose of A 

!ADI= IAI · IBf 
IA~ 81 i= IAI + JBI (usually) 

Tne inverse A .. 1 of a~·;, x n matrix A i8 definect so that it satisfie~ 

B ,,. A 
1 = AB "' 1. = BA"' l. 

It follows rh11t 

If A= (a;; l.x,, and IAI :ft 0, the unique iuvc.rs,~ of A is given by 

A"1 = _!_ adi(Al 
IA! , ' ( 

Au 

ad'(Al = A12 ~. . . 

,AJn 

where 

5 

('23) 

(24) 

(25) 

(26) 

(27) 

(2&) 

with .4;;, the cofactor of the element au, given by (16). Note carefully the order of the 
subscripts in th<' adjoint matrix adj(A), with the column number preceding the row number. 

The matrix. (A;j).x,, is called 1he cofactor matrix. whose tmnsposc is the 11djoim matrix . 
In particular, fof 2 x 2 matrices • 

if -b) 
a 

1l1e following are important rules for inverses (when the relevant inverses exist): 

(A-1)-1 =A, (AB)-1 =8-lA- 1 , (A')-1 =(A' 1)', (cA)-1 =c-1A·-1 

Cramer's Rufe 

Consider a linear system of n equations and 11 unknown~ 

IIJ 1x1 + a12X2 + · · · + 111,..to = bi 

,1i1x1 + anx2 + · · · -+· ai,.x. "'- bi 

This has a unique solution if and only if !Al== l(a;;lnxnl ':fo 0. Th0 solution is then 

xi "' IA;I/IAI, j = 1. 2, ... , n 

(29) 

(30) 

(32) 

where iA1 I denotes the dercrminant of A with irs jlh column replaced by the column with 
components b1, bi, .... b.; rhat fa, 

1€11) Ot.j-1 bi al.j·H a1n r 
ai1 a1.j-1 hi a2.;,;,1 a,n 

IAi! =' : (33) 
l 

f •lnJ a,1.j-! b. lln,i+J il,;n 
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Jf the righ1-ha11d side. of (31) .:Jmsists of only zeros, so that it can be writcen in matrix 
fom1 as Ax "" O. the system is called homogeneous. A homogeneous sy~tem will always 
have the triY.IA I S<>lution .r.i =• xi = · · · := x. :..· 0. The follov.iug result i., useful: 

A:,i: "" O (where A is sq,we) has nontrivial solutions ¢."1> iAI = 0 (\4) 

Vectors 
Ro:.;all 1bat an 11-vector is ·:u.1 ordcre<l rt-tuple of numbers. It is often conv~nient lO re.gurd the 
rows and columns of a malrix as vectors, and an n-vector can be understc:>o<l cir.he.c us a I >< 11 

matrix a "" (u1• a·i, . .. . "•} (a raw 1:ector} or as an n x J m11trix a' = (a1. a2 , . ... a,,)' (a 
column vect<Jr). The oper3tions of !tddition and subtraction of vectors, a~ well as multiplica­
tion by scalar1<, are defined in the obviou.s way. 1ne inner product (dot product or scalar 
product) of rile 11-vectors a ,: (111, a,i, .. . , a.) nnd b = (h1 , bz . ... , bn) is de.fined as 

n 

a , b = u1b1 +a-,./12 -r ·· · +onbn :::: L a;b; 
l=I 

U a and h ar~ regardw as n x J matrices. then tbe i,me,. product of" and his a'b. 
ff a , h . and e ace n-vectors and tr i~ a scalar, then 

(35) 

(i) a. b = b . ,., (ii) a. (b + c.) = a. b +a · c, (iii) (o:a) · b = a · (ah) = a (a · b) 136) 

11\e Euctide1m uonn or length of I.he vector :1 == (a1, a,!, .. . , ar.) is 

~ --- - -
]IPII == .Jji"::i == v a;- + a? + · · · + "~ (37} 

Note thal gc:raR == ja llja ll for all scalars an<l vecrors. The fullowing i.nequalitie.~ also hold: 

la· bl :E llal! · 1\bl! 

na + hfl ::: Uo.l + AbU 

(Cauchy-Schwarz inequality) 

ttriangle inequality for vcdor norms) 

The angle e between nonzero vectors a and b in fl" is dcfi.neJ by 

a· b 
rose = Half· ~b~ ' 

o € 10, rrJ 

t3S) 

(39) 

(40) 

11,c Cauchy- Schwarz inequality implies that tile right-hand side has i,bsolute. value ~ I . 

AW>rding to l 4U), cos O = 0 if and only if a · b = 0. Then H == n /2 = 90". 
By definition, a and b in R .. arc orthogonal if thcic inner product is 0. In symbols: 

a .L b ¢..:.~ a · b "° 0 (4() 

The sui,,ight lioe thro11gh 11.,) di~tiiict point! a "" (a, , .. . . 11,) and b = (b1. . . , b.) in!'!" 

is the .. ~r of i<ll x = (x1 • • . .• x.) in n• such that. for S(1/lle n:al number 1. 

X ~ 111 + (1 - t)b (42 ) 

1.2 
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TI1e hyperplane in~· that p...ss~& througll the point a "' (a1 •.. • , u.). aud is <•11h0gonal. 
to the nom.ero vecK>r p = <: pi, ... , p,. ), is the ~et of ,di puint.< x ,,, (x , , ... , A',,) sud1 thi!.t 

p · (x-a)::; 0 (43) 

Linear Independence 
Any system of linear equation~ can be written a~ a vector equation. For instance, the system 

2x1 +2x2 - · X3 == -3 

4x, + 2.1) = 8 

6x2 - :3.t3 = -1 2 

can be "'Titceo as the vector cqoatinn 

in the colU(On vc.:tors a , = ( ; ) . a1 -:o ( ~ ) . a:, = (-!), and b ( -: ) . 

0 6 -3 - -12 
We say lhat ( *) expresses b as a lluear combin;tion of the three column ve~·.tors of the 
codlicient matrix A. Solving system (*) we get x 1 = 1/2. x2 = - l/2, and x3 = 3. Thus 
b = (I / 2)::i i + (- I /2)a2 + 3a3. ln this C.ISC, we say !hat b i~ linearly dependem on the 
vectors a 1. a2, and a3. 

More generally, a set of vectors in Ii<"' is srud to be li,u:arly de.pendenr if iL ha~ the 
property lhat at lea$.! one of the Ve(:tors can be e.xpresscd as a linear combination of the 
others. Otherwis.i, if no vector in the set can be expressed as a li.uear combination of the 
others, lhcn the .set of vectors is linearly i11depmufem. 

It is convenient to have an equivalem hut moro symmetric dcliuition of linearly dependent 
aod indepeudcnt ,·ectnrs: 

k~~t.i.t;JJJ!PJ1:,; ... ·· ··, --....... · ·· · ··· , .. -· , ... ..... ·· ··-·· ·--.. .. ·-····"···-"· ..... ....... . 
i 

t 
1. 
I 
t •. 

Then vectors a,, ai, .. . , a,. in Ill"' are linearly dependent if there exist nl!mbcrs 
c1. c2, ... , c.,, not all '.lero, such that 

If this equation holds only in the .. trivial" case when c1 = c2 "' .. • = c., = O, 
then the vectors are lioearly independent 

. .. ----, ... - ., .... ..................... - ····-···---·--·--· .. ··-··-·· .. -· .. -·-- - ----- .. -·-··· --. .... ·····-·----.----...... - .. ..... 

(1) 

So a linc.1r combinaliou ot' lineatly independent vector~ cau be the i.cro vector ,m ly in the 
rrivial case. 'fo ~that lhe two definitions of lineartlcpGIJdence are cqlli.valent, suppose first 
that a, , ai. . .. , a. are line«rly dependent accordi ng to dcll11itio11 (I ). Then the equation 
c, a1 + c2a2 + · · · + ,·.a. "' 0 holds with at lea.st one of the coefficients c, ditfere.nt from 0. 
After reorde.ring the vectnn; a; am! t:he corresponding scalars c1• if nece.~s:au,·. we can assmne 
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thatq ;,!:0. Solvingeqnation(l)fora1 yields Di= -(c2/ci)a2 - ··· -(c./c1)a,,. TI1us, 

a 1 is a linem- combination of the other vectors-
Suppose on the other hand that 11 1• say, can he. written as a linear con1hination of the 

others. with a1 = tiia2 +d3a3 + · · · + d.11 •. Then (-l)a1 +d~a2 +· d3a, + · · · +d,a. = 0. 
The first coeflkient in this equation is ,f. 0, so the set a1, a2, ... , a. is linearly depeorlent 

as dctioed ill ( 1 ). 

(.E.~AM PL.f" 
1 

· (a) Provte that 31 "" ( ~) and 32 = ( ~) are linearly dependent. Uluslrate. 

(b) Prove that n1 = (~)and az "' (;) are linearly i11dependent. lllustnte. 

Solution: 

(a) Here a,= 2a1,&02a1 -a2 = 0. Choo~ingc1 "'2andc1 = -1 yield&c1a1 +c2a2 ""'0, 
so according to definition (1), a1 and a2 are linearly depenclem. The vector a2 points in 

the same direction a.< a 1, and is I wice as long. See Fig. 1. 

Figul'<! t a 1 a~d a1 .re linearly depen,lent. 

i'' 
1 I _,a, 
I I _ _..--------·· 
~:--_,,.,-

1 ~ 

Figure 2 11 1 and io2 are linearly 
ind<-pendent. 

(b} In this case the equation c1a1 + c2112 =· 0 reduces to 

:'lr.1 + C2 = 0 

C1 +2c2 = 0 

The only solution is c 1 = c2 == O. so a 1 and n~ are linearly independent. See Fig. 2. 

It is vecy bdpflll to have a geometric feeling for !he. meaning of linear dependence and 

indC'pemlence. For the case of R2 , Example 1 ilhi~trated the possibilities. Jn R\ let a1 and 

a2 be two non-parallel 3-vector. starting at ihe origin. If t1 and t2 are real numher~. then 

the V(\Ctor x = r1a 1 + r1 a2 is a linear comhioation of a, and a2. Geometrically, the s~t of 
all linear combinations of a 1 and a 2 is called the plane spanned by a, and a2. Any vector 

in the phtnc spanned hy a 1 and a2 is linearly dependenr on a1 and a2. 

Suppose. we take another 3-vecl<>r a3 that is not in the plane spanned by a1 anrl a2. 111cn 

the three vectors n 1, a2, and a~ arc lin..:arly i.ndependent, beca1m~ no vector in the set can 
be written a, a line,tc combination of the otht.-rs. In general, three vectors in R3 arc linearly 

dependent if and only if they all lie in the •ame plane. Three vcctor.s in R3 are linearly 
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independ~nl if and only if thtre is no plane that wntains all of them. Figures 3 ancl -I give 
geometric ilh1stmtion.s of these stalcnrent,. 

f -· . .,. . •1 
..,, 4, 

II) 

. 
··--

···--·------.. x, 
Figure 3 Vectors a 1 , a 2, and 
a3 are. linearly dependem. 

al 

x~ f 
f I\ . .._ . 
;~:/ a2\. 31 

i/ 
. -·------··-..... ~ 

···--------.. •. _ .. X; 

Figure 4 Vectors a 1 , a2, and 
al are line•rly independent. 

In iRm, the two m-vectors a1 and a2 are linearly dependent if and only if one of the vectors. 

say a,, is proportional to the other, so that a1 :: ca2- If c i 0, the two vectors are called 
parallel. 

Suppos~ that a, b. aud care three linearly independent vectol'S in JR". Are a - h, b - t, 

and a - c linearly independent'! 

Solution: Supposcc1 (a ·--b) +c2(b-c)+c3(a-c) = 0. Rearraoging, we get (c1 +c,)a+ 
(-c1 + c:)h + (-c2 - c3)c ""0. Siucc a, b, and care linearly independenL c1 + c:1 = O, 
-c1 + c2 = 0, and -(:2 - c_; o= 0. These cqna1ions are satisfied (for example) when 

c1 = c2 = I, an<l c:i = -- l. so a - b, b -· c, and a - c are lin~ly dependcn1. I 

Linear Dependence and Systems of Linear Equations 
Consider tlw general system of m equations in II unknowns, written both in irn usual form 
and also as a vector r;-quation: 

(2} 

llmlX! + • • • + amnXn ::e b., 

Here a1, ... , a. are the column vectors of coeflicients, and b is the column vector with 
comporu:nls bi, ... , bm. 

Suppose that (2) ha.s two solurions u' == (u 1, .•. , u,,) and v' => (u1, •.• , t•,,}. 111en 

u1a1 + · · · + u.,a. "'band 111a1 + · · · + v.a.. = b. Subtracting the second cquati~n from 
the first yields 

Let c1 "'· u1 - t11, .•• , c. "" u. - v •. The two solutions u' and v' are different if und 
only if c,. . ... c. are nor all equal to 0. We conclude that 1f system (2) ha~ more than 

one solution, then lh~ column vectors a1, .... a. are linearly dependeot. Equivalently: ff 
the colum11 vectors 111, .... a. ari- linearly i11dependenr. th,,,n system (2) lias ti.t mew nne 
solurion. Without saying more about the right-hand .side vector b. b('wcver. we cannot know 
if there are any solmions at all, in general. 
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Consider. in particular, the case m ..,_ n. 

1HEOR.cM 1.2 .1 

l11e ri <;0lumn vectors a 1, az . . . . , 110 of tlie 11 x n matri.,; 

(lJl, .. 
a21 t122 .. ft).r. a'!.i 

A -= . C "'") whc-re ("'') llj = : 

a., a.i. c.lnn a.n j 

are lintMly independent if and only if !Al 'I' 0 . 

Proof : 1lJe vectors 111, a2, •. . , a. are linearly independent if and only if the vector equation 
x1 a 1 + x2o2 + · · · + x.a. =: 0 has only the trivial solution XJ "' x2 = · · · = x. = 0. lliis 
vector equation i.s C'(\Uivalent to a homogeneous syflem of equations, and according, to 

(J .1.34). the. triYinl solution is the only one if and only if IAI 'I O. • 
According co this thc.orem, three vectors a, , ai . and a3 in IR3 are li nearly dependent if and 
only if the determ.i.uant lat a2 al l ofthe matrix with colulllll& 111, a2, and a.1 is 7.ero, which is 
true if and only if tht volume shown in Fig. I . l . l colfapse.~ to z.cro. 

<:t · · 

('g) . b. · 1·(2) ·-·· (-1) 1. &xpres., 
9 

as a lutear com 111otion o 5 "'"' • 3 · 

2 . .Dtt~nninc which <)f th~ following pairs of vectors are lille.<itly indepcnJent: 

(a) (-D, (-!) (b) (-D· (!) (c) (-:) . (-D 
1 1) Z (0) @3. i'n)Ve th;11 (~ , (~).1111d : aredincarly indcpcndeni. (UseThcorem L.2. 1.) 

4. Prove that (1. J. I),(:!, I. 0), (:I. I , 4), ;md (J, 2, - 2} are linearly depeooenl 

5. If a, b, aod c arc linearly indepeodeol vcctof's in 'll:"'. pro"e that a+ b, b ·t- c, and a +c are also 
liJlearly indepcndeuL T~ the s:n,,c. true. of a - b. b + c, ~nd a+ c'! 

@ 6. (a) Supp<>~ thnt a, b, c E Al are all diffCTi:nt from 0, and that e .L b, b .l.. c, and a .L c. Prow 
that a, b, and c m: li11early inde-pendent. 

(b) Suppose mat a,, ... , a,. ~n: vec.tQrs in W'. all dillereut frocn 0. Suppc.,~e t!Ulf.8; l. AJ for 
aU i 'F j . r""'' lhal " ' . . .. , .a. are 1inca.<~Y imkpcndenL 

7. A b<.>.>k in mad1em•ti<:~ for ecm1omists ,ugge,c,, the follo,~ing ddiuition <Jf liuear clcpende11.:e: 
A set of vtctor; v1, •..• v,, j~ said '" he linearly dcpen.l,mt if (and only if) a.oy m eof thcroow be 
e.x.prc$sed a,~ li11ear combinaticm of th,; remaining ve.:to111. Test thi, definiti<'n ou the r,, llowing 
three ve,,:11,r.; wwch a.-nainty arc liocarly dependent: • , ,,. (J. fl). v~ = (I . I}, v:, = (2. 2). 

'l": · - . · r~ ·. 

1.3 
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8. (ai Prove that if a set of vcrn,rs i.s linrotly dqleudcnl. t},cr1 ;,,ry s;1pcrsct {that is. any !.e~ 

conrainini: the or,gi.u~I SCL) is also lillearty <lc(X11dc:m. 

ib) Prove. tliat if a :;cu,f vector. is liD4rly i11Jependen1., 1.h,;11 any suh~1: (.thaf is, any set ~c)nt:tl.ned 
itt i}ie <l1igi.oal sc.:.1) i$ al~o lin~rly independent. 

. ...... . . ~ .. . 

The Rank of a Matrix 
ASSQciatcd with any matrix is an importrmt iotegercalkd its ra1,k. Anm x " matri.~ A bas n 

colum11 vectors, each with m components. Tltc lafgest number of colu111D vectors in A that 
fonn a linearly independent set is called the rank of A, denott'.d by r (A). 

;;piF.(f:i1n9~: ...... ··· 
i 
t The ~ank of a niatrix A, written r(A), i~ !he 111axirouro nu1nber of lin~arly inde.­

pentk.ut column vei..1'0rs io A. If A is 1he O maui.x, we put r(A) = 0. 
(1) 

t--·-~ .... . 

This concevt is vically important in stating th~ main results in the next ~ection conctroi.ng 
we existen.:c and multiplicity of solutions 10 linear systems of equations. 

EXAM P.tE),;'; The rank of an II x n tllatriK A cannot excee.d 11, since it has Ollly n columns. In fact, 
according to 111.:orem 1.2.1, !he n column v.:ctors nf A arc linearly independellt if und only 
iflAI I 0. Weconclodetl1at asquaremat1ix.A ofordcrn ht1.$rank11 ifondonlyif;Ai ,p O. f 

The ,ank of a matrix can be eharacteri:i:eJ in term~ of its nonvanishing minors. In general, a 
ml nor of order k in A is obu1i!led by ddc1i 11g all but k rows and k colUUlll.,. and then taking 
the <kterminan! of Ille resulting k x k matrix . 

Describe all the minor.; of I.be matrix A = ( i 0 2 l) 
2 4 2 . 

2 2 ' · 
Solution: Because there arc only 3 rows, there are minors of c>rder l , 2, and 3. There are: 

(a) 4 minors of order 3. These are obrained by deleting a.ny one of the 4 columns: 

! 1 0 2 ! 11 0 I ' 11 2 11 (0 2 I i 
(o 2 4

2
,. o 2 2, . o 4 21 . '.? 4 21; 

IO 2 0 2 l fO 2 l ! 12 2 l 

(b) 18 minors of order 2. These ate obuiinc.:d by deleting one 1·ow ;ind two cnlumns, i.11 all 
po;:si.ble ways. One of them is: 

1
0 I a 

! 
! 2 I! 

(tlcktir1g the SC(;Olld c<>W antl lhc first and third columni 

(c) l 2 mirrors •>f order 1. 11te.•e arc all tl1e 12 individual elements of A. 
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NOTE 1 An m x ·n ma1rix has G)G) mioors of order k·_ for insra!lce. in H~amplc 21ho; 

3 x 4 matrix A has (~)(;) = H · H = 3 · 6 = 18 minors of order 2. (R....:all lhat lhe 

ninomial coefficient is defined as(';)= !!!f!!,-1/ ;l"'..=t+ll = k!{t~~tJ!' with O! = 1.) 

The .relation bc1w.::.en the rank and the 11ti110111 is expressed in the following theorem: : 

T HEOf\ fM I . 3 . 1 ·' ·-·-·-··- ....... ,.---···-····---···~····----.. --.-····· ·~· ·----·~···-··-·--"'·•··-····"""--··· - 1 

·me rank r(A l of a matrix A is equal to the order uf the largest minor of A that 

is different from 0. 

i 
i 
! 
I 

........ ,.--·····-·····-······--·----··---··--~----·----------·--------- .J 

EXMIPLE 3 

If A is a square malrix of order n, thcu the largest minor of A is IAI itself. So r(A.) = 11 if 
and only if IAI f:. 0. This agrees with Theorem 1.2.1. 

Find the mnks of the following ma1rices: 

(a) 
(~

1 

Solution: 

~ ~ ~) 
2 2 I 

(

-1 

(bl -2 
-3 (

. I 

(c) -2 
-3 

(a) The rank is 3 because I~ ~ ! I = -4 is a nonzero minor uf order 3. 

Io 2 2 
(bl Be,;au.~c columns I, 3, and 4 are proponional, all four minors of order 3 are 0, whereas 

1
-1 01 . _

2 2 
, say. equals -2. Hence the rank 15 2. 

(c) All minors of order J and 2 are 0. Because not all I.he elements a.re 0, the rank is I. 

EXAMPL.E 4 Dct.cnninethe ranlc of A= ( 

5 ~ J.. I-~). 
1 

~).) for all values of) .. 

Solution: Expanding IAI by the 1hird column. we sec 1hat. 

!Ai= -(1 - ).} + (1- ).}[{5 - J..)(1 - J..) - 4) = J..(1 - "-)(A - 6) 

!5-).. 21 lf). ,! O. >. t, I, and.\. t 6, lhen the rank is 3. Because rhe minor j 
1 0 

= -2 -;/, 0, 

wh1ttcver the value of J.., we see tbat the r-Jnk of the matrix i.~ 2 when .\. i.s 0, 1, ur 6. I 

" for" l'fOOf of this chcMt!lll, see e.g. Fhleigh and Beauregard (1995). 

SECTIOtJ ! 3 I THI' ftANK Of A MATRIX 13 

Recall thal according to (I. I .2J), the detem1foam of a marrix is equal to th~ deterotinanr of 
its transpose. The following result i$ there.fore not surprising: 

L
E~(t.l)£··--·--······--·-·., ..... , ----.. ····-···-----··-·"·""·--··-- .. ,-............. _ ........ ··········. 

The rank of a marrix A is equal to the rank of its transpose: r(A) = r(A'). 

-· ~-···--.... ·~··"··- ....... _._. ............ ~ .. .,., ... ,. .. ,--........ -.... ,,.. ,, ___ ........... -............ --······ ·-.. -, .................. ,.",·· - . 

E A .PbE S 

Proof: Surrose !DI is a minor of A. Then iD't is a minor of A', and vice versa. tlecausc 
!J)'i-= IDi, the result follows from Theorem I .J. I. • 

Jt follows from (J) and Theorem I .3.2 fhat the ranlc of a maaix can also be characterized as 
the ma~imal number of linearly independe111 rows of A. So we have three ways of showing 
that r(A) = k: 

(a} Find one se1 of k columns that i~ linearly independent, and then show that no set of 
m;,re than k columns is Iineady independent .. 

(b} Find ooe set of k rows thal is linearly independent. and then .show that no .set of m,,re 
than k rows is linearly independent. 

(cl Find 011e minor of order k that i~ not 0, and then show that a/111,.inors of order higher 
thank are 0. 

An Efficient Way to Find the Rank of a Matrix 
None of the method~ (a}. (b ), and ( c) for fintling the rank of a matrix is very efficiem. A better 
approach use.~ rhe fact that rhe rank ofa mu1rix is not affected uy t!lementary operarions. ~ 

In the following, if a matrix A is transformed into a matrix 8 hy meaus of clernenrary 
operatioru., then we write A ~ 8. 

( 
I 2 3 2) 

Find lhe rank of 2 3 5 I . 

I 3 4 5 

Solution: We use the elementary operation~ indica1ed. That is, we multiply the lir,t row 

by -2 and add it to rhe second row, and also multiply the fim row by -· l ~nd add it to rhc 
tllirJ row. etc. 

( 
I 2 ) 2) -2 -1 ( I 2 3 
2 3 5 I +--1 f ~ 0 -1 -I 

. I 3 4 S •-··---' 0 I I 
-~) 1 -(~ 

1 ~ () 

2 
-1 

0 

3 
-I 

0 -D 
The rnnk of the last macri.t is obviously 2, hecame there are prccisdy two linearly inde­
pendent row~. So the original matrix has rank 2. I 

3 
Ele.wen1ary row (column) operaLions arr: (a) interchanging n,,o n,wj (column~); (b) multiplying 
a ,·ow (colurnn) by a S<'alara # O; (c) adding a rimes a row (oolumn) to s diffcrem row (column). 
See EMF-A or Fraleigh and Beaurcganl (1995}. 
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P~OBLEMS FOR. SECTION .1.~ 

® 1. Dcte,minc the ranl<s of the foilowing au1111ces: 

(j 2 -1 3) 
(c.) 4 -4 

--~---2 -1 C "'\ · 1 3 4) 
(a) i"6) \I,) (2 O l 

( ~ --2 .... ~) 1 t 
(f/ -l -l -3 

-2 -5 -2 () (d) ( ~ 
J 0 ") (C) ( -~ 

I 1· 

4 0 -1 4 1:) 
-1 2 2. . 3 2 

@>2. Dcte.nnine the ranks of the follc,wing 11iatriccs for ill values of 1he pararnc1en;: 

(i 
X y n (j 0 _.; ~ 2) ('+3 5 6) t,., 

1a) 1 (h) -l r-3 -6 (c) 
X y 

X x-1 . 1 1 1+4 ttJ 

3, Give an example w):lcre r(AB) f r(BA). (Hill!: Tiy some 2 x 2 matri~s.) 

1.4 Main Results on Linear Systems 
Cunsitlcr th.: general linear system of m s.i.roultaneous equation~ in n unknQwns: 

<111X1 + <1[zX2 + · · · + clJnXn ""b1 

a·i1x1 + unx2 + · · · + a2,,_,., = hi 

·························· 
or Ax=I> (1) 

w\le.rc A is the. m x 11 coefficient mallix. Deline a 11ew m x {n + I) matrix Ao that cnnmins 

A in the fir~t n colu111ns and b in cohw111 n + L so: 

e:: 
,1,2 "'·) C' 

ar2 UJn '') aiz tl~n Ab= a~J 
fJ't:! a2,, b2 

A= . anJ 

"ml .. a,,.n' ilMl i11!'f2 anm b,.. 
llml 

Tium ,\1, is called the augmented matrix of the ,ystem (l ). It turns out that the relationship 
between the ranks of A and 1\b is crucial in detcrmiuing wheth~r ,y8tem l I) h.1s a solut1on. 

· · • lh · k f· • i · •'erta.i.n\v ur,,ater than or equal Ilecansc all th~~ columm m A occur JR,.,,, e ran o , .. ,, '· , .,.-
to tl,c rank of A. Moreov,~r. because Ai, contain~ only one more column 1.han A, !he number 

r{Ai,) can.m>t be greater than r(A) + l. 

15 

THEOREM t.4:Li 

! ___ ... 

A ncces.<ary and sufficictJt condition for a linear sysr.e,n of equations to be co11-
sistent (that is. to have al least one ~Qlur.io11) is that the rllnk of the coefficient 

matrix is equal lo lhc rank of tbe augmented malrix.. Briefly: 
,•. 

,-\" = h ha~ a solurion 

Proof· Lc1.1hc colunw veclor8 in ,\b he a,. a·i, ... , a0 , b, am! suppose Iliac (1) bas a solu1ioo 
(x1 .... ,.,.), so lhat x1a, + .. · + x.a. = b. Multiply tile tim n colwnn8 in A~ l)y -x1, ..• , -x., 
respectively, and add each of tl,e resulting colulllfl vcctc.>n; llJ [he lase column in Ai,. These elementary 
column opcraiio11s make die last column 0. h follows that Ah ~ [111, ... , a,, O]. l!ecau~e e.Ie.rnenmry 
colurru1 opcratioos preserve the rank. this mai,i:t has the same rank as A, so r(A0) = r(A). 

Suppo~. on the other hand, chat r(A) = r(Ab) = k. Th~n k of the columns of A arc huearly 
indepenJcnt. To simplify notation, su1>pose lbat the first k culumus, a1, ...• ah are linearly inde­
pendeot. 13ccause rtAb) = k, the vccrors a1, ... , u,, b arc linearly dejleudent. Hence 1.here exist 
nnmbus .:1, ••• , q and /J, 1101 all eqo•I to 0, iucb !11at c1a1 + · · · + cia, +Pb='- 0. If {3 = 0, Ulen 
a 1 .... , .t; WC)Uld not be linearly illdcpc11dcnL Hence P '! 0. Th~n b = .r?a1 + · · · + xf a, where 
x? = ·-c;i {f ... , x? = -c,! p. JI {ulluws thal (xf, ... , x~. 0, ... , 0) i~ a solution of Ax = b. • 

NOTE 1 If A is n x 11 and r(A) = n, the11acconling to Theorem l.4.1 the sysre01 Ax= b 
doe.~ have a solution. It is uniqul! according to a remark preceding Theorem l .2:l. 

1Nhai happens to ,yslem(l) when r(A) =: r{Ab) = k aude.ither (i) k < m or (ii) k < n? 

~r·:;(1,rt0Riiv11 ';j:i'.' · · 
, .. ·.Ii. ''"'"~ .... ·-·> ;;p~ose that system t_l) bas solutioos with r(A) = r(Ab) = k. 

! 
i 
·1.-,-.... --., ... 

(;\) If k < m, i.e. the common rank k is less than the nwnber of .:quations m. 
then m - k equations are supertluous in the sense lhal if we choose any 

subsystem of equations corresponding It) k linearly independent mws, th.:n 

any solution of these k equations also satisfies the remaining m --· k equations. 

(b) If k < n, i.e. 1hc common rank k i~ less lhan the number of unknowns 11, then 

lhcrc exist 11- k variables that can be chosen fre.ely, whereas die remaining k 
variables are unique.I y determined by the choice of tl1csc rr - k. free \'ariables. 

TI1c system then hi!.8 11 - k degrees off.reedom. 

Proof: (a) By the dcfi11i1i.,n of rank. there c~ist k mw vectors in A• 1bat arc lineatly ii1depende111, 
and any orher row vector in Ab is a linC>tr comhination of chose k vectors. We prove tha1 if 1he vector 
(x?, .r.?, ... , x;;) satisfies 1hc A equations corresponding IO lhc k li11eruly independent row vecton; in 
Ab, then it alsn ~ati~fies all the 01hcr cqua1.fo11~ c.ont'.sponding 1.0 the remainiug rows in Ab- These 
rcm:sining equa1.i,.ms arc thus superfluous. 

To simplify notlition. re1}1ricJ· 1.he equations so th,u the tit~! k row •·ec~.>r. in Ao arc line:,rly 
iudcpeadent. The ()lbcr wws are dependent on thc.~c rirsc k rows, so for s = k + 1 ..... m, 
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EX~MPLE 

• 
(a,1.n,1, ... ,u, •• b,) ~ I),,;(an,a/l, .. . ,a,,, b1) (*) 

l=I 

for suitable cons1ams i.,;, >..,2, •.. , ;...,,. Jln1rn ( • }, we r,ee in particular t.h>CI. a,j = L~,. r J..,1a1, and 
h, = I;;.., >..,1b1. Suppose that z::.;,., a,;.,J ~, b1 for {=I, ... , k, !-O that (..r~ •... . x~) satislie.~ !he 
first k. equations in(l). Fors= k +I. ... , m, we chen get 

I:a,,xf = t(ti.,1a11)xf = i).,,(tai;xf) = t>..,b: "'b, 
_i:.:d }=l iwl I=) J=, l · 1 

This confinos that if the ve.·t<•r (xf •... , x~) satisfies the il.r.,r.k equations in(!), then itan1oma1ically 
~ati8fie~ the lasr m - t equatioos iu (I). 

(b) Because r(A) := k, A ha~ at least one noozero nrinor of order k ('Theorem 1.3.I ) .. After 
reumnging the equations and the variables (if ne,:essary ). we can assume tha1 the k x k ma1nx: 

(

<111 a11 ·.. ai,) 
a21 u22 · • • ai.t 

C= . . . . 
: : ·. : 

, OtJ at~ · · • U~l • 

in the upper left-hand corner of A bas u nonzero determinant. If k < rn. \hen we have JUSt proved 
tllat 1he last m - k equations in (I) are sup<,'Tltuous. So the whole sysrem (1) has cx•ctly lhe sancc 
solutions as the fir~1 k equations on their own; 

" 
LdijXj = I>;. i = 1, 2, ... ,k 

J=t • 
1',ow move llll 1enns involving x; ... 1, x1 ... 2 ••••• x. IO lhe right-hand side: . ' L a;,:X-; r- l,,. - L a;;:rj, i = 1. 2, ... , k (11:•) 

j-· 1 j=J.~1 

Tiiek x k cc,;,llicicn• matrix on theJefl .. hantlside of(•*) is C, whkhbas rank k. Ac.cording to Note I. 
,y~tcm (~*) has a unique :;.,1lutio11 for x 1, x2 • ••• , x1 for each choice oi Xt+L, .<,.12, ... , x •. So 1he 
system has n - k degrees of freedom. • 

Dctennine whether the following system of equations has any solutions and, if ii has, 

f1nd 1he number of degrees of freedom and solve the system. 

Solution: Hen: 

A{ I -2 
-1 2 

3 5 --10 

.3 2 -4 

XJ + x, -· 2x3 + X4 + .Jx5 :.: I 

2x1 - -<2 + 2.x3 + 2x4 + fas = 2 

3x1 + 5x~ - IOx:1 - 3x4 - 9x5 "'3 

3x1 + 2.•2 - 4x3 - 3x, - 9xs == 3 

;l •,~ (l '2 -1 
and 

5 -3 -9 
-3 -9 3 2 

-2 3 

ll 2 2 6 
-JO -'., ... 9 
-4 -3 -9 

We know that r(Ah) ?.: r(A). All minors of order 4 in A11 are equal to O (no1e that several 
pairs of colm1111s are pmporliooal), so r(J.\b) ~ 3. Now, lhcre are minors of order 3 in A thal 
are ltiffe.rent from 0. For example, the minor formed by tbe fi.-st, third, and fourth columns. 
and by the first, second, and fourth rows, is different from O because 

$!.CTION 1.1! I MAIN R::5UI.TS O!I. LINF,,,H SYSTfMS 17 

!J -2 
i2 2 2 == -36 
h -4 -3 

lien.:e, r(A) == 3. B~ause 3 ~ r(Ab) ?. r(A), w~ have ,·(A) a:: r(Ab) = 3, so 1hc system 
has solutioas. TI1ere is one supe.rfluous equarion. BecatLse the first, second, 1111d foutth rows 
in Ab are linearly independcn1, the third equation can be dropped. The number of variables 
is 5. and hecausc r(A) = r(/\b) = 3, there :u-e 2 degrees offree.dom. 

:Next we find all the solutions to the sy~tem of equations. The determinant in ("') is 
difforent from 0, so we rewrite the subsys1em of three independent e..1uation~ as 

or, in matrix Coan, a.~ 

2 .., 
(

1 -2 

3 ... ; 

X1 - 2XJ .J,. X4 + Xz + 3xs = 1 

2°t1 + '.!x3 + 2t., - x2 + 6x5 == 2 

3x1 -4x3 - 3x4 + 2..r2 - 9xs:: 3 

~) (;;) + (-~ ~) C:) (!) 
-3 X4 2 -9 3 

(n} 

The 3 x 3 coefficient matli°t corresponding 10 x1, x~. and r4 in ( **) has a determinant 
different from 0, so it has an inverse. Therefore. 

(;:·) ""(~ -~ _!)-! (;)-(~ -; ~)··I(-~ !) CJ 
X4, 3 -4 3, 3 3 -4 -.> . 2 -9 

ft is MSY to verify that 

-2 
2 

-4 
~)-1.:;; .2. (=~ ; 

-3 18 7 
3) 

-~ 
Then, after some routine algebra, we have 

( ;;) = (~)- (' -!x2) = ( !~2 ) 
X4 0 3x, -3x5 

So if xi .:;; a and x5 = bare arbitrary rcru numbers, then there is a solution x 1 = l, x2 = a, 
x3 = !a, X4 = -·3b, xs = b. This confums that there are two degrees of freedom. (You 
should verify that the values found for xi, ... , ..rs <lo satisfy rhe original system of equation~ 
for all values of a and b.) t 

The concept of degrees of freedom is very important. Note t.h:,t.if a linear system of equations 
has k degree., of freedom, then tlicre e.xisr k variables that can be l'hosen freely. 11,ese may 
11ot he the first k variables. For instance, in Example I there arc two degre(,s or free<1om, 
bot x1 cannot Ii<: chosen freely because x1 = I. 
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PRO BLE M S FO R SECTION 14_ 

1. Use Theorem 1.4. l to ex31uine whether the following systems of e<Jualious have solutions. lf 
Llt<>Y do, determine the nua1ber of degrees of freedom. Find all t.he solunon$. Check the re~uJts. 

(a) -2.x1 - 3x2 + x 3 = 3 

4x1 + 6x1 - 2.t1 = 1 

(c} x, - -<2 -1- 2x3 + -"• = I 

2.tt + .t2 ... X!, + 3x4 := 3 

x 1 + ~x·i - Bx-i + x, "' I 

4x1 + 5x2 - 7x3 + 1x, = 7 

(b) X1 + Xl - .r) + ·'• = 2 
2., 1 --· XI + .r3 - 3x• = I 

(cl) x1 + .,2 + 2x1 + -"• = 5 

2.xt + 3x1 - X3 - 2x, = 2 

4.t 1 +5x2 +3x3 =7 

~ 2. Solve the following sys1ems and determine the number of degrees of freedom: 

(a) .Xt - Xl + X3 = 0 

X I + 2.x2 - X3 = 0 

2.x 1 + xi + 3x3 = 0 

(b) Xt T Xz. + X3 + X4 = 0 

x1 + 3x1 + 2x, + 4x, = 0 

2x1 + x2 - X• "" 0 

· ~ 3. Discuss dte oumbcr of s,)lmions c,f the following system for all values of a and b. 

X +2)' + 3z = l. 
- x+ay-2lz =2 

'.lx + 1y + az =b 

4. Let Ax "" bi,., a linear system of equations in mallilt form. Prove that if !<1 a,;d x, _a•: bod1 

sc,Jutions of rhc system. then so is .l.x1 + (I - A)x1 l'<>r every r~al numbc:.-r .l.. _use tb~s tact ro 
prove that a linear system of equations that is cousistent has e,rher rnie solutton or 111.fimtely 
many solutions. (For instance, it cannot have exactly three solu11ons.) 

5. Leta
1 
•.•. , lln ben linearly indcpe11dent vectors io R". Prove that ifa vcct,)rb inR" isorthogoual 

to all the vectors ai, ... , a,, then b = 0. 

~6. (a) Findtbe ran.kofA, = (; ; ; )forall realnumbc:.-rsr. 
4 7 - 1 - 6 

{b) Wbea 1 = -3, find al.I vectors x that satisfy the vector equation A_3x = ( 

1

{ )-

7. In an e,CQnornic model the endogenous variables .t1, ., 2 • • .• • x. arc. related to the exogenous 
variables bi. b1., .... b. by the li11e~r system (1.1.31 }, or in matrix form Ax .= b. Assume _that 
the n x n -matrix A is uonsingular. For each choice of b the vect(1r x IS urnquely de1em11ned 
by x = A- ' b. Suppose b; cb.1J1gc~ to/,;+ 61>; , but that aU tl1e other b,'s are. unchanged. The 

Corrc.spondiog values of the endogenous variables will t11en (in gener•l) all be changed. Let rile 
r n . (·- 11 · h ·· ')th lem·nt 

change inx, be denoted by t:..r;. Prove t11at Ax, = a11 A/,;, where a,; 1s I e V,) e < 

of th<: matrix A- •. 

SECTiON .5 i EIGENVALUES 19 

1.5 Eigenvalues 
Many applied problems, especially io dynamic economics, involve the 1x1wers A", 11 ::: I. 2, 
... , of a square matrix A. If the di01ensicrn of A is very large and x is a given nonzero vecior, 
1he-n computing A5x ~J",. even worse, A •00x. is usually a major problem. But suppose there 
h:,ppcns to be a scalar A with lhe special propeny that 

Ax =.l.X 

In th.is case, we would have A2x = A(Ax) = A(;..x) =).Ax ""' J..AX = >.2x and, in general, 
A"x = >." x. Many of the properties of A and A" can be deduced by finding the pairs (.l. , x), 

x ;t 0, that satisfy(*)-
A nonzero vector x that solves (*) is called an eigenvector, and the associated;.. is called 

an eigenvalue. 2e(o solutions are 1101 very interesting, of course, because AO = ),0 for 

every scalar J... 
In optimi.iation theory, in the theory of difference and differential equations, in statistics, 

in population dynamics, and in many other applications of mathematics, there are important 
argwnents and results based on eigenvalues. One contemporary example is how search 
engines Jik~ Google use eigenvalue metbods to order web pages so quickly and efficiently.• 

Eigenvalues for Matrices of Order 2 

In the case when 11 = 2, we have A = (aJ 1 

a21 
and x = . Then (*) reduces to a12) (-"I) 

This system can be ,,1ritten as 

(a11 - i, )XJ + 
a21X1 + (a22 - i..)x2 = 0 

a7.2 . xi 

or 
a ll.r1 + a12x2 = )..xi 

a21-"1 + a 22x2 = J....t2 

or in matrix form (A - H)x = 0 (I) 

where l is the identity tnatrix of order 2. According to (1. 1.34), this homogeneous system 
ha~ a .solution x -j:. 0 if and only if the coefficient matrix has determinant equal to ()-rhat 
is, if and only if IA - All = 0. Evaluating th.is 2 x 2 detenninanl, we get 

, , I au - .l a12 I , 2 . tA - ;.II = 1 , == ,. - ta(J + a21)).. + (alia22 - a12a21) = 0 
1 a21 an - " 

So the eigenvalues arc the real or complex solutioos of this quadratic equation. ru1d the 

eigenvectors art tile 00117.,cro vectors (xi) that satisfy system (I). 
-~2 , 

EXAM"_ii°~.{ .1 '. · Find the eigenvalues. and the associated eigt~nvcctors of the matrices 

(
I 2' 

(a) A = 3 0) (b) B = (-~ ~) 

------·--- - -----
" Sec E f~'rnandez Gallardo: "Google't secret and linear algebra•·. New.<lener of rhe European 

Mathcm<uical Society, March 2007. 
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I . . ) .,..__ . I . . .A I I i l - A 2 I 2 ' . Sc ut10n: (a , '"' e1g~nva ue cquaoon t! ! - .l. "' ! 
3 

->. .=, .l. - ,., - 6 s: O. 

This equation has the solutions At = -2 and .l.2 = J, wtiich are the eig~nvah1<:~ of A. 
for J.. :·z .l.r = -2. the two equario1ts of system (1) both reduce to 1~1 + 2x1 == O. 

Choosing xz = I, we have x 1 = -~r. The t:igenvc.::tors a~s<iciatcd with ).1 . = -2 are 

(
-2/3'' 

then'iorc x :., t 
1
· · )- r -p 0. U we put 1 ·- -3s, we can equivalently represent the 

cige1tvectors ~s x =: .• ( - ~ ). ~ 'F' 0. 

For ;,, = 3. ~ysk.rn (l) i,~plies !hilt x 1 = xz, so rhe eigenvectors are s ( : ). s. # 0. 

! -.l. 11 
(b) The eigenvalo" equation is ID - Al l ::: : 

1 
. ! = :,_l + I = 0, which has the 

1- - 1-1 
complex root~ ). = ±i. fn this case the eigerr~cctors are afllO complex, and they ll{e 

s ( / ) and t ( - ~), with s -j, O and t -I O: s 

The e.i genval ues A I and .1. 2 of the matrix A "' 

whose left-hand side can be writr.en a~ 
(

" Ii 

u21 
ll12) 
a22 

are the roots of equation (2), 

A2 - (a11 +n22),.+(a ,1 a 2.2 - a 12a2,l = (i. - A1)(A··· A2) = J..2 -(A1 + i,2)), + >..,>-.2 (3 ) 

We see from (3) !hilt the sum At+ Az of thecigenvaluei is equal 10 a11 +an, tbesum of the 
diagonal element~ (also called the trace of the matrix an<l denoted by tr(A)). The produce 
). 1i,2 of the eigenvalue& is equal to ouan - a,1a2 , = IAI. In .~ymbols: 

(i) i ,1 + A2 = tr(A) (ii) .l.1,l,,2 = IAJ (4) 

Many dynamic ecc>nomic model$ involvesqu~re matrices whose cigenvaluestlecerruine the.ir 
stability propen.ies. In the 2 x 2 case, important questions are when the two eigenvalues are 
real and what ar~ their si1,'l1S. The roots of the quackatic equation (2) sre 

(5) 

These root.~ arc real if and only if (1211 + a!~) 2 ::: 4(a11a12 - a 11a11 ) , which is equivalent 
to (a11 - <12~)~ + 4a12a21 ~ 0 . In part1eulai:, both eigc.nvalue~ nre real if the 1x,atrix is 
symmetric, because tbeu n12 = ll21 and so we haw the sum of two squa~s. (But a matlix 
may well have real eigenvalue~ ~en if it is not symmetric, as in Example l(a).) 

Tt follows from (4} that for a 2 x 2 marrix A with reul eige,n,alue.r, 

(A) hoth eigenvalues are positive = IAi > 0 and tr(A) > 0 

(B) both eigenvalues are negative -<== IAI > 0 and tr(A) < 0 

(C) tlw two eigenvalues hnve oppo~ite Yig11s ¢='-"-~ JAi .; 0 

Moreover, 0 is an eig,•1mtl11e if and only if JAi = 0. The o<~r eigenvalue is then ~.q,ral to 
,2 1t +a21, 

- - --·--·-- -
, l'or complex numbers, ~.e Appendi'i D.3. One. can do matrix alg<bnt with compli,,r, number.. in 

the ~ame w~y ._, witlt real ma1 rice,. 
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The General Case 

u:t us wrn to the general ca.se in which A is an n x n matrix: 

........... ,,. .. . ., . ~ ...... ' . " .. , .... 

If A is an n x n mmri.,c, theu a ~alar ,\ is llll eigenvalue of A if lhe-re is n noozem 
vector x in R~ such rl'H1! 

Ax = Ax 

'fbcn x is an eigenvector of A (a.~sociatcd with).). 

·---·- .... -----._ .... ........,._ ... _ -------..... --... •• ·· - -• •H .. ' • - ••"' ... ,,,. .. --"' •• ••-. - . . ~..- .... : 

(6) 

It should he norcd that if xis an eigenvector associnred with !he eigenv-alue ;., then so is ax 
for e~~-ry scalar~ -f. 0. Eigenvalues and eigenvectors are also called characteristic root, 
(values) and cl1Ancteristic vectors, respectively. 

How to Find Eigenvalues 

11ie eigenvalue equation (6) can be iYritten as 

(A-J.l)x = 0 (7) 

where l denores the identily matrix of order n. Accol'dio<> to ( I J 34) th· b . . . ., . .. , 1s omogeneous 
IHlear ~yslem of equations has a solutiou x f,. O if nnd only if the .:oefficient matrix has 
detecminant equal lcd )- that is, if and only if !A->.ll = O. letting p(J.) = !A -All where 
A = (a,j ). x• , we have the equation ' 

rll - >. a12 (lJn 

l=O 
, . a2, a12 - ). a:i,, p (.1.) = IA - ,.lj "" . 

(8) I 
I a., a112 (l"" :_A. f 

-~is i_s called the eharacterislic equation (ore-lgcnvalue equation) of A. nie polynomial 
P ) ,)_ 1s called the characteristic polynomial of A. It follows from (8) !hat pt'-) is a poly· 
nornta.1 of degree n rn A. According to the fll11damental theorem of algebra, eq~ioo (8) has 
e~actly n root~ (re:il or complex), provided that any multiple roors an: counted approprill!ely. 

ff the components of the vector it arc xt , ... , x., rhen (7) can he wrincn as 

(t1n - ).)x1 ·r unx~ .... . .. + 
a2,x1 + (,122 - i<)x1 +. · · · + 

(9) ········ ··· ·· · · · ······· ······· · ·· ··········· ··· 
tln?X2 + · · · + (a •• - .l.)x. "" O 

An eigem·oct:or a,:.~oci~led wir}) ;, is a ncmrri,•ial soluti<)n (:<,, ... , x,.) of (9). 
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EXAMPLE 2 

I TO?ICS iN LINLAR AtGfl!RA 

Find all th~. eigenvalues of the matrices and also the ei!!,covectors assoda1cd "'iLh the real 

dgenvalue.s. 

(a} A,= ( 112 0 6) 
0 0 

l/3 0 
( ) B= --~ 

-6 -6) 
4 2 

-6 -4 
(b} 

Solution: (a) The characteristic ~1aation is 

1-A O 61: :i 
\A·- All""' j 1/2 -J,. 0 = -A + 1 = 0 

I O 1/3 ->.., 

which ha:s J.. a: l as its 011ly real root. (Because-,.~+ l = (1 - J...)(J,..
1 + >-. + 1). there 

are two complex eigenvalues,,. = -! ± 4.J:i' i.) llie eigenvectors a&socialed with).= l 

&ati:sfy (9). which becomes 
-Xt +UX3 =0 

!-tJ - Xi = 0 

\.t2 - XJ = 0 

(·x,) (6) 
with eigenv.:ctor~ x = :~ = I 1 , whern I 'i= 0. 

(b) The characteristic c..1uation is 

1
5-). -6 

IB - H[ = - I 4 - }.. 
l J -6 

-6 I 
2 1 := -()_ -· 2)2(). - I) = 0 

-4-}., 

Thus, }.1 = 1 and i-.i = 2 ure lhe eigenvalues. 

for }.. 1 = I, th~. eigenvectors are 1' == I ( -! ) with 1 t= 0. 

for )..2 = 2, the dgenvcctors are the non1.ero solutions of the equation sy$tem 

3x1 - 6x2 - (ix3 = 0 

-X1 -r '2x2 + a3 = 0 

Jx1 -6x2 --6x3 =0 

The thre~ cqua1io.ns are all proponion(al;(~ ~~)systen(1 ~)s solut(i~;)ij with two degrees of 

fw~dom. TI1e.y can he written as x = : = . ~ s + ~ 1, withs an<l t i.n IR, 

not bo1b equal 10 0. t 

:. {X.,AMPL(3 . Let D = cliag(u1 .... , a.) be an tr x n diago11a\ matrix witbdiagonal element< a1, .. " 

·an. The char11Cteristic polynon1i:i.l is ll> ·- ).Jj ,,_. (ai - >-H"Z - i,) ···(a. - ).). Hc11ce, the 
eigenvalues of Dare the diagonal elemcnt5. Lc1 e; denote the jth unit vector i.a R", havi.ug 
all .;omponent.s 0, exccpl for tl1c jth component which is 1. Because De; = a;eJ. it follows 
1hat ,my uoru:cro mulliple of e

1 
is an eigenvector associated with the eig~.nvnlue a; of D. I 
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Suppo>l' we rewrite p(}...J in (8J as a p<1lyuomial i11 -}.,: 

11(>-.) '"' l ·- i,)" + b,,_1 (-)_)n-l .;... · · · + b1 r, ... ;., l + bo (10) 

The :wros of this poly'homia.1 are prcci~ely the cigenva.lues of A. Denming the eige.nvalllt'~ 

[,y i..1, i.2, ...• An, we have 

11(i..) = (--!)"(;,, - ,._,W- - ;.,2} · · · (i,. - ;,,,) (ll) 

Consider die. particular cocfficicntS bo andb,,-I in the char.tcrt,ri sric polynomial ( l 0). Polling 
;.. :cc O in (8) and in (!0), we see 1h:t.t p(O) == bo ,., JA(. But i,, = 0 in (I I) give~ p(O) = 
(-1)"(- J)"/q).z .. · :... = ).1.\.2 .. · An- Henre, bo = JAj == l1i..:;. · · · ) ••. 

As for bn-1, Lite product of 1he clemeuts on the main diagonal of the dete1minant in (8) 
is (a11 - },)(a22 - ,\.)···(<Inn - A). If we choose aii from the jth factor and -.i.. from the 
remaining n - J. ai1d then atld over j = l, 2, ... , rr, we ge.t 

(*) 

Now each term in the expausion of the de1enniuant in (8) con1:tins one clement from each 
row and one frow each column. l·Jence, e.xcupt for !he product of all the dc.uI.ents on the 
main diagonal, at mo&t 11 - 2 factors in each rerin come from lhe main diagonal, so the.re 
are no other term~ with (.,-}.)"-1• Hence, bn-l = a11 + a2i +-···+a •• , lhetr,11:c of A. By 
expaoding (11) we sec rJ1at the coefficient of (-}..J"- 1 in (10) i.s "•-I =}., 1 +Al+·,·+).,,. 
Thus we have: 

[ 

..

..... -.E .. O .... Jl. .... ·.f .... M •... •· ... _,.,'.~,::~ ,: ::,: "::· wim ,i,m•-,,. ,, ..... '"· ... 

(b) tr(A) = {111 +an+··· +a •• = At +>.2+ ·· · +.i..,, 
···-.-.. , ...... , .. -, ... ,.,, 

In other words: Jf A i$ an 11 x 11 matrix, rhc product of all the cigt~n~alues is equal 10 the 
determinant of A, while the sum of all the. eigenvalues is equal to the trace of A. This 
confirms the re.suUs we found for n ,~ 2. 

NOTE 1 ·n,c.orcm l.5.1 gives us1heccx,lficu:ntsb,._1 and bo inlbccb;,tacl<.-risticpolynomi.aJ (10). 
One can prove in ~cncral that each ~oefficient b ... 1, .... b,, l)(J in ( 10) can be characleJizcdas follows: 

b,. = tile sum of all pcincipaf ro.inor.. of A of Ol'der n ·- k (12) 

'llm~ l•u e<1u~l8 the dctcr,ninam of A, since ii i8 the ,inly principal mi!lor of ordr.r n, and b,_1 i~ the 
sum of all the 1>rincipai mi.noes of order I. i.e. rhc sum a 11 + a:2 .; ·, ·+a.,., 1!,c u·ace of A. (.l'.,r the. 
delioirion of princip~l min<>r•;, tt.c Sectio11 1. 7.) 



24 CHA?Tf:R 1 i •OP!CS IN LIN~AR ALG£8R/\ 

~ l. For the following matrices, find the eigenvalne~ and also those e.igenvectors I.hat corre.spond 10 

the reatl eigenvalue~: 

(~) G -7) 
-8, 

{b) (-~ :) (c) (! -~) 

G 
0 f) G 

I -1) (-l -I 0 
(<I) 3 (e) I 

-·~ 
(f) 2 -:) 0 0 -1 

Compute. X'AX. A2• and A3 when A= {: 
a 0) X) @2.(a) " ~ andX=(:. 

.0 0 

(h) Find all. the eigenvalues of A. 

(c} The characteristic polynomial p(>.) of A is a cubic function of A. Show Chat ifwe replace i. 
by A, Chen p(A} is the zero maau. (This is a special case of the Cayley-H11milton ll1eorern. 
See (1.6.6}.) 

3. A = (: : : ) has lbc di:envcctors Ve ( /~). v, ( ~). "i = ( - ~). with 
.c: ~ f -l l. I 

~ssociatcd eigenvalues /..1 = 3, ).2 = 1, and i-1 = 4. Dettnniue the mauix A. 

~4. (a) 
(

4 1 I 
. . I 4 I 

Fmd tb.e e1ge11Values of A = 
1 1 4 
l l I 

l} (Hint: Problem J.9.7(b) might be useful.) 

(b) OM. of the eigenvalues bas multiplicity 3. Find three linearly i.ndepe11de111 e:igenvectors: 
a~sociatc.i.l with rhi• eigc.nvalue. 

@5. J.et!\.=(-; -; -~). J:t•'(~)• 12=(-:), XF' (:). 
-·I -l 3 I O .l. 

(a) Verify that lit, x2 , and x3 are eigenvectors of A, and find the associated eigenvalues. 

(bl Let B '"'AA.Show that Bx2 = ll2 and lb.3 = xi. 18 lh1 = li1 ·/ 

(c} Let C be an arbi1rnry II x n matrix. ~11d1 lbul C1 .= C2.,. C. Pr«ve rhat if). i~ an eigenvalue 
r'ur C, then i. 2 = >.1 + ;. . Show that C + 10 has an inverse. 

6. Prove lhlt A is an eigenvalue of the marrill A if •11d <lJlly if/.. is an eigenvalue of A'. 

7. Suppose A~ a square manix and Jct A be an <eigenvalue of A. Prove thac.if IAI '# 0, then/.. -f. 0. 
In this c,ise ~how th~• I//.. is an eigenvalue of the inverse A .. 1. 

8. Let A ,·~ (n;i)•x• be a m~lri• whc.r,,. all coJwnn sums are l--!h31 i<, I;;'.,,, a,, "' I for j = 
I. 2, ... , n. l'n,vi, lhat i.. = 1 i, ~n ei~envalue. of A. 
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1.6 Diagonalization 
We begin by nc>ting a simple and usdul result Lee A and P l,e n x II matrices with P 
invertible. Then 

.• A and p-1 AP have the same eigenvalues (I) 

TI1is is true because the two matrices have the same char:icleristic polynomial: 

where we made USt: of rule ( J • I. 24) for determinants, and the fact rhal ir-1 ! = I/ II''.. 

An n x n marrix A is dlugonall7.able if there exist an invertible 11 x n matrix P and a 
diagonal matrix D such that 

(2) 

By Example 1.5.3, the eigenvalnes of a diagonal matrix al'e the diagonal clcmenLs. Bence, 

if A is diagonalizable, so that (2) holds, then r-1 AP= diag(Jq, ... , ;.,,), where )q, ... , ;... 

are the eigenvalues of A. Two questions arise: 

(A) \\7!1ich square matrices are diagonali7.able? 

(B) If A is diagonali£able, how do w.: find the ma1rix P in (2)'! 

TI1c answers to both of these questions ace given in the next rheorem: 

I. An n x 11 matrix A is diagonalizable if and only if il has a set of 11 linearly 
ind('pendent eigenvectors x1, ...• x •. In that case, 

L
'· p-l AP:: diag(J..1, ... , )."} 

where P i~ the 1na1rix with x 1 , ... , "• as its colnmn.s, and >.1, ... , >.. are the 

: . ·'·-----co~~:s_pc_m_d-in_g_~'.~~-nv_a_l_ue_.s~----.•... ___ . ___________ , __ .. _ ..• ,. ... , __ 

(3} 

Proof: Suppose A ha.s n linearly independent eigenvectors x1, .•. , Xn. with corresponding 
eigenvalues lei, ..• , l. •. Let P denote the matri~ whose columns are x1 •••. , x •. TI1en 
AP = \'I), where D ,.,, diag(J.. 1, ••• , )..). Because the eigenvectors are linearly independe111, 
P is invertible, so P .. 1 AP = D. 

Conversely. if A is diagonali~able, (2) 1nus1 hold. Then i\P = PD. -nie columns of P 

must be cigenvectol's of A, and lhe diagonal element~ of D the corresponding eigenvalues. • 

Verify Titcorem 1.6.1 for A"" G ~). (See Exanipk: 1.5. Ha).) 

Solution: From Example 1.5. l(a), the eigenvalues are ;..1 = -2 and ; .. l ""3. For!he matrix 

P we can choo~c P = ( 
2

3 

1
), whose inverse is p· 1 = ( '.~5 ··· :;~). Now dircc! 

- I ,,, "!~ 
multiplication $hows th;it r-1i\P = diag(--2, J). Theorem 1.6.J is confirmed. I 
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It follows frurn (]) that A = P diag(i.. 1, .•• , An) P 1• If m is a naiural nua,bec. then 

A"' " P diag(i..f, ... . ).~) p - i (4) 

($('~ PrubJem 3.) T his provide~ a simple formola for wmputing ,<\ .. when A is diagonaliz. 

~~ I 

NOTE 1 A nw.uix P iscalleJotlhogom1lif P' "" p - l , i . .,, P' P ,~ I . Jf x·, , .. ,. ll'.4 arc the n 

colunw v&tors of P, lben ~;, ... , x;, are Ille row vectors of the trnusposed matri.\, P' . 'J1ie 
condition P'P ;: I the n reduces to then2 c.1uatious x;x; = l if i = j arul x;xJ = 0 if i ~ j . 
Thus Pi& orthogonal if and only if x 1, • •• , x. a ll have length 1 and ru·c mutually orthogonal. 

M a11y of rue m:itrices cu.::.ounrcrcd in cco11oulics arc symmetric. For symmetric matrices we 
have the following important result: 

.-;r-fj.E_pfi.EM/ t,:6-'~;)f}!~ s~eci".RAL ri-itO"MM/.F.,o)f.svM!0ErRi.c;'.(.~~AT.&l'c(&L ··· 

If th~·. matrix A = (<1;; ln xn i.s synunelric, !hen: 

(a) All !hen eigc-~1valucs i..1, . . .. )., arc real. 

(b) Eig1mvectocs that correspooJ to diffcreut dge.uvah1e.~ are C>rthogonal. 

(c) There-e.xis~s an ,mhogoMl matrix P !i.e. with l'' = p - l) such that 

0 

>.z 

0 

The column~ v t, ' '2, . ..• vn of the matrix P lire cigenYccior~ of uu.il length 
corrcspnntling to <he eigenvalues>., , .A.2, .. . , i.. •• 

{5) 

Proof: (a) Supp<.>$C .\. is an eigenvalue for A, poS$ibly complel!, ~" that Ax= i..x for some vector 
x j, 0 d>at omy ha,-e cuniplex COU!ponems. Au:ording 10 (B.39), (A¥)'(Ax) is a real number,~ 0. 
Rc.:au~c A is a ~y11une1sic match with real entries, one has A= A and (Ax)' = lA! )' = (A xY =' 

"i' A' =- x' A. Therefor~. 

O !'£ (Ax)'(Al:) = ( i'A)(Axj = ( it' A)(i,,11)-= ).~(Ax) = Xi:'r)-x) ::. l 2 x'x 

Siocex'x isapo3i1ivr.renl number, i,,? isrcal and :c: 0. We concludethat.\.isn:al. (See l:'..umptt.B.3.2.) 
(b) Sup~ A,i, = >, I; and Ax1 = i.; Xj with A; t, >.;. Multiplying lhese c:qualitie& from the left 

by :r'. aod :(. rc.spcdively, we get ~ A:c, = ;.,_x;X; nnd xfAxJ "' .A.;x1x1. Since A is symmetric, 
transposing the fitsl equality yields x;Ax,- = )., xi x;. $uuhen l,X; Xj = :1.ix:xj, or (i,,; - ),,! ix;;t) c: 0. 
Sio-e i,,, "# i..1, ir follows 1hat x;x1 = 0, antl thus"' aod Xj ~"' onhn~oual. 
(c) S11ppose thu\ all U1c (real) cigcuvalue.~ are diffcre.nr. 11ien t1<.'t.l01ding 11, {b). lhc ~jgell'«IOTS are 
muruaJly ortllogooal. Problem U .. 6(b) tell~ us thar. lbe eigc,wc..:tm:s musr. be linearly iudepwdent. 
~v Toe,,rem 1.6. l , it follow~ thac A is tliagonah1.abl.e, ~nd (5) is valid with P ~s lhe matrix where the 
~~lun\lls arc 1.he e.igenvector.; :,:1, .. . , x •. We cai ch(J();lC rhe eige=rots ro that cl:ey all h•ve length 
l, by repladng each x; with X;/llx, 11- Accorcl\ng co Noic 1, the matrix J> i.~ t!Je.n orthogonal. 
Poe & proof of the ge11eml c·ase. whae s<1mc of the eigen,alucs arc cqu11I, see e.Jl. Fralci~ .nd 
Beauregard (1\195). • 

>lCtl<JN 1.6 I OrAC.ONAUZAT!ON 27 

NOTE 2 A fan1<>u.s and .~ui.kiug result is Cayley-Hamilwn 's rheorem which say.~ that ~y 
square matrix satis (ks its own charai.:t<oristic equation. Thu,. with reference tu the char~c ­
rerislic polynomial ( l.5.10) of A, 

(-A)"+ b._ ,(_.:-A i" -c + · · · ·,· b ;(-A) + IJQ[ == 0 

Fora 111Y1of, see J'addeeva (1959) or l~wis (1991j. 

! Caylcy- Hamilton) (/j) 

Test I.he Caylcy-lfarnilton theorem 011 the matrix A = ( ! ~). 
Solution: Example 1.5.J(a) showed that the characteristic po lynomial i$ >.'- - i,, - 6 = O. 
According to (6). the matrix A s:11isli<.".s the matrix equation A2 - A - 61 = O. In fact, 

A2 = G !). .~owe find 

A - A- 61 :.:: - - 6 2 ('7 2) (' 2) (1 
,3 6 3 0 0 

:1 ~ 1. Ve,ify (5) for rbe followiDg mllri~cs by findio.g !he mairix P explicitly: 

(a) G n (b) (: : ~ )· (<:) (! ~ ~l) 
0 () 2 4 0 

2. (a) Let che maufoes A, un(l P he gi\'en by 

'I k 0) 
A1 = (~ =~ ··: (

· t;Jfo - 3!./31 3/,./i""J) 
and P = .o= s:,.ffs 2/./14 

.3fv'l0 l/-v'35 ··l/ Jf.i: 
Firol the cliaracteriSlic <"Jualion nf A,. a11d dcf~nnine the \'alucs of k chat 1Wlke :di tlte 
eigenvalues re.tl. Wh:it a,-e the eigenvalue~ jf k = J7 

(b) Show th~t lhc colullU!s of r arc eigenvectors of A; , ond compute the malri><. product p• A3l'. 
\\.'bat do you =1 

3. !a) l'rf,vc that if A .. J'lll'-1• whcr~ P aud O arc 11 x n ma,:riccs, then Al= po1p- 1, 

(b) Show by inJuction tl•~t ,\'" = PD"'P- 1 forc11t:ry positive iDl~oer 111• 

4. Use (l) I>.> pn.we that if A and B arc J:>ut}, invtttible n x 11 m;1Lri.:c~. tl1e.u AJI and I.IA have the 
samo eii:en,'alues. 

~ 5. Cayley-Hantilt,,u ·s cheo'l'Cm ~an be- used to cornpuct lll"lwers of mamce,:. fn rruti.:ular. if A ,·a 
(ncf) is 2 Y. 2. theo 

Ai = t.rtAJA- IAII <•) 
Multip(J•ini: IIJis equation by A t1ntl usiniJ (+) again yif)ds A3 expressed in ccrm~ ,.if A an<l l. 

( 
Z 1 • etc. Use dus nrcth,xl to !ind A• when A • ) ,. l ~ . 

·. '•, ~ .... 
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1.7 Quadratic Forms 
~fany applications of malhematks make u.se of., spc-cial kind of function called a quadratic· 

form. A gc.-ncrJl quadratic form in two variables is 

(J) 

le follows from the definition of matrix multiplication fhat 

('2) 

Of course, x1x2 ""x1:r.1, so we can write a,2x1x, + a21x2x1 "" (a12 + a21h1x2. 1f we 
replace each of a12 and n2t by }(a12 + 1121), lhen the new numbers an and 021 become· 

equal without changing Q(.x1, x2), 111us, we can assume in (1) rhal a12 = a21- Then the· 

matrix (~ii h><2 in (2) becomes symmetric, and 

0) 

We are often interested in conditions on che coefficients <Ill, 012, and a11 ensuring that 

Q(x1, x2) in (3) has the same sii;n for all (xi, x2). Both Q(x1, x,) and ics associated sym­
metric matrix. in (2) ai-e t·alleil positive definite, positive semidefiriile, negalive definite,• 

or nt-galive semidefinite according as Q(x1,x2.) > 0, QC.xi, xz) ~ 0, Q(x1,X2.l < 0,. 

Q(x1• x2 ) ~ O for ~II (x1, :r.2) ,fa (0, OJ. The quadraticfonn Q(x1, x2) is indefinite if there 

exist vectors (.Tj, x2) and (yj, y2) such that Q(xj, xi) < 0 and Q(yi, Yi) > 0. Thus an. 

indefinite quadratic fonn ass11mes both negative and positive values. 
Sometimes we can see the sign of a quadratic form immediately, as in the next example. 

)(xJi.:M !'L ~)t Determine the definiteness of rJ,e following quadratic forms: 

Q, = x? +xr Q2 = -xf -· xr Q3::: (x1 - .xd = xf - 2x1x~ + x} 
Q4 ""-(x1 - x2f:: -xf + 2..qx2 - x?, Qs = xf- x] 

Solution: Q 1 is posicive definite because it is always ~ 0 and it is O only if both .x1 and 
x2 are O. Q3 is positive semitle.finite because it is always ::: 0, but it is not positive definite 

bcca11se it i~ O if, say. :r.1 = x2 = 1. Q5 is indefinite. be.cause it is I for x1 = L x2 "' 0, but 
it is - I for x 1 ""0, x2 "' l. Evidently, Qi = -Qi is negative definite and Q4 .= -Q1 is 

negative semidefinite. I 

In faample l it was very easy ro determine the sign of the quadratic forms. In general, it is 
ruirdcr, but the old !ride of completing the s4u:1re gives us necessary and sufficient coodilio ns 

quite easily. We claim that: 

( a) :~~' .- x2 ~ ;: pos. semidef. <"-"~ all ~ 0, an ~ 0. ,ind a H a27 -· a! 2 ~ ~l 
(b) Q(x1, x2 ) is neg. ~emidef. ¢=:} a,1 ~ 0, a:22 :SO. and a11a22 - ai2 :::: 0 I 
.. , ...... -·- ......... _ ........... , ................. , ..... _., ............ ·--··- -.,, .... ~ ............ ~ ............... ,-........ , ................ ----... ... --
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Proof: To prnvc (•). 6Uppose first thar ''11 :':'. 0, u~2 :=: 0, and a 11 a!2 - af 2 ;:: O. If ai: "' 0, then 
a,it112 -a{2 ::'. 0 implies a.,= 0. md so Q(x,. x,) = an.J :':'. 0 for all (ri, x2). If ,1,; :,, O. tnen bv 
.:ompleting the .square. we ,·an write • • 

Because au > 0 and aua.21 - a;2 ~ 0. we see that Q(x1, x1) ?:; O for all (xi, x~ ). 
1h pmve the reverse implication, suppose Q(x1• x2) ~ 0 for all (.,1• x2). 'fhe.n, in pan.icular, 

Q(I. 0) = a:, ::'. 0 and Q(O, I)= ar.:: 0. If o: 1 a.: 0, then Q(x,, l) = 2a12 x1 + a12, which i$ ~ O 
for all X1 if am! only if <112 ,,. 0. (Tf "n > 0, then choo•ing x1 as a lal'ge negative number makes 
Q(x1• l)negativc. lfa11. < O. thenchoosiogx1 asalarge.positivcnumbermalce.s Q(x1, I) negative.) 
Thus, aw•zi ; af1 = 0. If 1111 > 0. Eben( .. ) is valid and Q(-a12/<111, I}= [a11a22 - af

2 
l/a11 ?:; 0, 

so a 11an - "~z > 0. 
The proof of (b) is easy when_rou observe that Q(x1, x2) = u11 xf + 2a12..r1x2 + a22x] is;=: O if 

and only if -Q(:r.1,x2) .. -a,,.r; - 2a12.x1.t2 - a,2 xJ ~ 0. • • 

The following equiv~lences arc often useful: 

Proof: To prove (a), .suppose first thata11 > 0 and a11a,~ - a/
2 

> 0. By( .. ). Q(x1, x2) <: O for all 
ix,. x2). ff Q(x1, xi)= 0, then -<1 + a12X2/a11 = 0 and x·1 = 0, 5,0 x1 = x,. = O. This prove~¢:. 

To prove !he reverse implicaEioa, suppose Q(x 1 , .r2} ,. O for all l.l:t, x:J * (0, 0). In pai1icufor, 
Q(l,0) 0

~ a11 > 0, so( .. ) is v:tlid. Also Q(-a12ja11, I),. fauan -af2 1Ja11 > 0. 'lbeconclu~i<1r1 
follows. • 

Use (4) and (5) to investigate rhc definiteness of 

Solution: (a} Note rhm au = 5. a12 = - I (no! -2!), and 022 = I. Thus a 11 > O ancl 

OlJll22 -"fz "'5 - l = 4 > 0, so according to (S), Q(xi, x2) is positive definite. 

(b) an= -4,a,i = 6(not 12),anda22 = -9. ·nmsau s-O,a22 ~ O,anda11a:2-·<lfz"" 
36 - 36 =:: 0 ~ 0, so according to (4), Q(x1 • .t2) is nega[ive semidefinite. I 

NOTE 1 In (5) we say nothing about the sign of an. Bul if n;iau - af2 > 0, then 

a11a21 > a?2 ~ O,andsoa11ll22 > 0. Since,111 is positive. ~oisa22, Sowecouldhavcadded 
the condition a22 "' 0 10 the righc-hand side in (5)(a), but it is superfluous. Nole, howe.ver, 
lhutin(4)(a)onec,inno1dropthecondifiona21 ~ 0.1-'ori11srance, Q(x1,.x2) = O-x;-x1h3~ 
a11 ""0, a11 = O. and an= --l. so,111 ~ 0 ando 11 a 22 - ,1f1. ~ 0, yet Q(O. I)~-· J < O. 
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The General Case 
A qundrati<: forn1 in 11 variahles is a fnncti(ln Q of th..: fo1m 

n n ., 

Q(,q .... , xn} =:LL <l,jX,Xj = auxf + "1ix1x2 + · · · + r.l,jX,XJ-;- • · · + a •• x~ (6) 

i=l j~$ 

wh<src the ,
1
, are constant~. l::lach teau in the. tloublc sum either cont.iins Ilic square of a. 

vaii;lb]e or a ~roduct of exactly tWO of the variables. ln fact, Q. is ~OtnOgCUe0\1$ of tlC!!,"Tee 2. 
We can ~et: the ,,ructure of the quadrati.c form better if we write it l111s way: 

Q(xi, ... ,..t,,) = a1 1.>.:? + anx,x:-'- · · · +121,.Xt.:Cn 

+ a21x2.x1 + a22xl + · · · + <1·2,,X2Xn 

······················· 
' + an1XnXt + CJ,.zXr1X2 + ·' · + lln11X; 

(7) 

( ..• x,,)' anti A= '<,,·1·)n·sn· The11 it follows from the definition Supposewcputx== .x1.x2,. ~ 

of matrix multiplication that 

Q(.q .... , Xn) = Q(x) r- X Ax. (8) 

By tile same argunicnt as in the case n = 2, in (7) we can assume _I.hat a;i = 11;, foJ all _i. 

and j. which 0,eans that the malrix A ill (8) is symmeuic. Then ~ 1s culkd the sy111m.etnc 
motrix ass"cim,id with Q. and Q is catled a sylllmetric quadratu: form. 

EXAIV)l'L~;c.?. ' Write Q(x,, x2 • .r~) = 3xf+6x1x3 +.t1-4.t:;.x,+~x} in matrix form with A symmetric. 

Solution: We Lirst write Q as follows: 

Q = 3xr -f- 0. XJX2 + '.!x1X3 + 0 · X1XJ + x{ - 2.tzX~ + 3x3XJ ·- 2X3X·2 + 8x5 

Tht,n Q = x'Ax. whcl'e A"" ( ~ ~ -~) and x == (::) . 
. 3 -2 8. .:C; 

Next, we want to generalize the definitions after (3) and the as&ocia1ed result~ in (4) and (5) · 

10 general tJuadratic forms. 

'oH'lNITENESf OF A QUADf\A.i':lC'.·.fORM) ·. ··~ :• .. : .. :· . ·~· ·.. . ·. ·.· ........ , . .,. =·" 'S ••• 

A quadratic form Q(x) ""x' Ax, as well a~ its associated ~ynunetri_c matriit A, ~re 
said to be positive detloite, po-~itive seu1idefioite. negatne dcfirute. or negauve 

semidelioite according as 

Q(x) > O, Q(x) ~ 0, Q(x) < 0. Q(x) :c 0 

for all ll =,!,. 0. The quadratic form Q{ll) is inddinite if mere CJ<ist vectors ,._• 

a11LI v' su~h that Q(x•) < O and Q1y•l > 0. Thu~ an in<lcfiuitc quadratic form 

a.<xo:nes both negative ,md pmitivc values. 
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l,t order m gcncralize (4) a.nd (5) we need a fow new concepts. In St'ction 1.3 we defined rhc 
minors of a mau-i~. To ,1utly the ~ign of t}lladrati,; fo1ms we n.x<l some paiticular minors. 

An arbitrary 11ri11cipal minor of order r of an ,z x n mat1ix A= la,1 ). is the dc.tcmtinMt 
of :;. rnatrix obl.aincd by dck:ting n - r rows an<l 11 - r ce>lnmns such lhal if thc ith row 
(colunu1} is ~dc..:ICd, t\Jen so is the ith column (row). fn llanicular. a prillcipal minor of 
order ,. always includes exactly r el~ments of the ma.in (principal) <liagonal. Also. if the 
matrix Ai~ symmeuic, then so is each 111at1ix wl10.se <lctenninant ia a principal minor. 1l1c 
dctenninanl iAi itself is also a principal 111in<Jr. (No rows or colum11s are deleted.) 

A principal mi.no,· is called a lending principal ntinor of onlcr r (I < r ::: 11). jf it 

consists o[ !he first ("lea<ling") r rows and colunms of u\!. 

EXAMf lE_. ,4 Write down the ptindpal and the leading principal minots of 

Solution: I3y deleting row 2 and column 2 in AW<' get (a11). which has delerminant <111· 

(lkmembc.rlhat the detemunant of a I x l matrix (a) is the number a itself.) Deleting row 
I and coh1n111 1 in A we get (022), which ha.s det.ermi11a.11t ll·zi. The p1im:ipal minors of A 
aremereforeau, an, lllld IAI. The leading prindpal ruinors arc a11 ai1d IA]. 

The piincipal mi11ots of B are iB I itself, and 

I 
b11 b12 I ! b It 

bn. b22. b33. b • I h 
b21 22 31 

and 

while the leading principal minors are b 11 · I ::: ::: I· and IB I it~elf. 

Suppose A is an arbitrnry II x II matrix. Toe leading principal minors of A arc 

k = l, 21 ••• , n (10) 

ak1 au ao 

·n1cse detenninants are obtained from the elements in IA\ a<:1:ording ro the 1>attern 5uggested 
by the following arrangement: 

a1, a12 a13 a,. I 
a·21 ('22 a23 a2,, 
-------------

a3. I "Jr '1~2 aJ:~ 
(11) 

---· ··-- --------- ------ I 
I 

. llnl a,-.2 an~ a,rn I 
Not~ that there ar~ many more principal minnrs than there arc kadi.Jig principal minoJs.6 

" TI1c,:e are l:) l)rincjpal miDor.~ uf m<lcr k, hut ooly one leading principal min,,r of (mkr k. 
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lt is notatioually cumb<lrsome to represent a specific principal minor. bur we use ,~i as 
a generi,~ symbol to <l~.note (Ul arbitrary priocipal minor of ordcc k. 

The above concepts mal:.e it possible to formulare !he. following l.hec.>rem: 

}t8~9,~:~#;:.i;::.,.:.).~-·········---·-·----·- ·----·--·----------- ·--·-·1 
Consid~r the symmetric IIlllO'i:,: A .1od the associated i1uadrntic fonn 

. 
Q{x) = LI: au x;xj 

l=f i•d 

Let Dt be the lc!.tding principal minor defined t,y {10) and let At denote au 
arbitrary principal minor of A of order It.. Theo we have: 

(a) Q is positive definite ~ Di > 0 for k :: I, .... n 

(b) Q is positive semidefinite -=a> 

(c) Q is negative detinice 

(dJ Q is nt•gative semidefinite ~ 

{ 
At ~ 0 for all principal minors 
of order k = I, .. . , 11 

(-J)!D. :~ Ofor k = !, ... . n 

{
( ~ 1)1 A1 . :::: 0 for all principal 
llllnors ot orcfor k = I , . .. , n 

,: 

i 
I 

i 
,I 
I 

I 
I 

i 
i 
i 
! ··-··"' .. .... -·-··- ·--· ··- ..... ·---. ·-. ·-·-· .. .... _ ... -. .. .__.. .......... ..-............. --J'--... .. ---..- .. - l 

EXAMPLE S 

ff we change the ~ign of each elem~nc in a k x k ruatrix, then the deterlllinallt of 1he new 
matrix is ( -1)* 1imes the determinant of the original matrix. Since Q = L I:,a,jx;xJ l5 
negative (semi)dcnni~ if and only if - Q = }:I:,(- a,; lx,x; is positive (semi)detinite, we 
see that (c) and (cl) in Thcotem l.7.1 follow from {a) nod (b). For n = 2 we proved (a) 
and (b) in (5) and (4) atiove. For a gcnern.1 pr()()f, we refer to e.g. Fraleigh and Beauregard 
(199Si. 

WARNING: A r~ther common misconception is that weakening each inequality Dt > 0 in 
(a) to IJ, :::: O, give~ a neces1.ary and ~ufficient toodition for A lo be po~itive semidefinite. 
'lneore,m 1.7.l tell! us that ti) check for posilive semidcfiniteness ru1uires considering the 
sii,'11~ of all principal minors, not only the leading ones. For a couoterexamplc see Note I 
above. 

Use Theorem 1.7.1 t.o dete,-mine the detinilooess of 

Solution: It mokcs sense to .:heck: the leading principal minor, firnt, in ~nse- the matrix 
turns 0111 to be definite racher thau m.:rely seinidefioite. · 

(a) Th.e associ,m.•d symmetric matrix A is giv<.">n in Exarnpk 3, 1111d its leading principal 
minor~ are 

Vi:,, ]3 01 = 3. 
jO 1 1 

IJ 

°' = 0 - /3 
We conclude that Q i.~ posiche deliuite. 
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(b) The symmetric ,natrix A associate.:! with Q ha.• k.ading principal minors D1 = -· l , 
Di= 0, OJ = 0. lt follows that 1he conditions in tiart (a) QfToeorom 1.7. l are not satisfied, 
nor are lho~c i11 (b.l or (c). In order to chc.:k the conditions in (d), we mt1~t examine all the 
princip~l minors o[ A. As descrihe,1 in P.xample 4, the J x 3 matrix A hos three principal 
minor.; of order I, whose values ll.\li, A \21 , and ,:1.~l art" the diagona.1 element~. These 
satisfy 

(-l)1 t.,.\'l = (- 1)(--1) ,... I. (- 1)1 ll.fl,,.. (-l j(-9) = 9, (-1)1 ~ \31 = (-l)(-'2l = 2 

n,~re are al$O threes second-order principal minors. which satisfy 

ll,~l ) = 1-1 
- : 3 

3l _ o e,_l2l - '1·-1 oj·- 2 ~131 _1 - 9 oi = lll 
-9 i -- • ~ - {) - 2 - . - : - 0 - 2 I 

Hence (- 1)2 t.;ll O. {- 1 )2 A.i2) = '2, and (-1)2 ~
3l = 18. Fiual.ly, ( - l )J t., = 

(- fl3 D3 = 0. Thus (-J)k .61: ~ 0 for all prindpul minor~ t.lt of order k (k "" I, 2, 3) 
in 1he matrix A. lt follows from (d) that Q is negative semidefinite. I 

n,e definite~1tss of a quadratic form can often be dct.ennined mure easily from t.hl' signs of 
the eigenvalues of the associated matrix. (By Theorem l .6.2 these eigenvalues are all real.) 

THEOREM 1 7 2 .. ,_ .. ___ •. ._ ........ _,, ___ ,,. ..... .............. ··---·- -- · .... .. .................. _ ... , ......... .. 

l.ef Q = x' Ax be a quadrmic form, where the matrix. A is symmetric, and let J-1 , 

.. . , > •• be the (real) eigenvalues of A. ·n1cn: 

(a) Q is pMitive definite = >..1 :, 0, .... J... > 0 

(b) Q is po.sitive semidefinite ==> >.1 ::. 0, . . . • .l.0 ::. 0 

(c) Q is negative ddlnite ~ J..1 < 0, . .. , J..0 < 0 

, (d) Q is n~gative semidefinite ~ >. 1 ~ 0, ... , .l.n ~ 0 

l·-----·--·--·-- ... (e) . Q is indefinite., ... -- - ...... ~ ~ ... , .. Ahas both pos. and. neg. eigenvalues. 

Proof: By Theorem J.6.2, there exists an otth,,gonal malrix P such that P 'AP = diag(). 1 • • •• , .1..). 
u:t y -~ (y,. . .. , y.)' be the n x l mutrix dct\ned by y = P'x. Then ,c = Py, so 

(l2) 

(r. follows Lhal. x' Ax ~ O (resp. ~ 0) fo,- all .1: if and only if y'P' APy ~ 0 (resp. :E 0) for all y ;= 0. 
Also, x = Oif andonlyify = 0, andso l<'Ax > O(r~p.-: 0) for all x ,,I, Oifand c,nly ify'P' Al'y > 0 
ll'Cl'J'. < 0) for all y?> 0. The coa.:lusion follows imui«tialely. • 

u.~e To,:orein 1.7.2 to &1ermine !he delinir.cness of the quadrncic form in Ex.ample: S(b). 

Solution: The a.ssocialed matrix A ha.s chara.cteris1ic equalioo ->.(>. + 2) (). + 10) = O. 
50 the eigenvalues are 0. -.. 2, and -10. ·nieorcm l. 7.2 tells 11s that tb,, quartrntk form is 
negative S{"midefmih:. I 
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PROBL£MS f-OR· ~.£CTWN r. i 

1. U&e (4) and 15) 1.0 in,estigate the definiteness of 

(a) Q(x1 . ..:2) =-.xi+ 2.>·tx1. -6xf Cb) Ql.t:, .t2) = 4xf + 2.r,.xi + 25xf. 

2. Write out. I he do11Me sum in (6,l when " = '.\ and n,j =" aj; for i, j "' I. 2, '.\. 

3. Whal is the symnien:ic matrix A. a,sodatt'.d witll each of the following q11,.dratic fom1s'/ 

(a) x1 + 1.ty + y2 (b) <U.1 + h.x_y J. ,,y' (c) 1x; -· 2,,.,~ + 3.ttX} + .ri + JxJ 

4. What is the syuunetric matrix A ossocial.Cd with the following quadratic f,,mt? 

3xl - 2xtX2 + 4.t1X3 + ll.i:1.r, + xJ + 3:rixi + x:- 2:c,x, + .,~ 

@ill 5. Using Theorem 1.7. l or Tbeotcm l. 7 .2, or otherwise, detenni~c lhe de6niter1ess of 

(a) Q ,r- x? + 8xi {b) Q = 5.xf-+ 2.>:t-'3 + ZxI + 2xixi + 4xf 

(c) Q ,= -(XJ - X1)2 (d) Q = -3xf + '.'!x1X! - Xi+ 4:t2,X3 - &xi 

6. Let A = (u,; ). •• be sy1wnetti.c alld po8itive semitldlnite. l'tt)ve that 

A is positive definite <== iAI t 0 

@ill 7. (a) For wha1 values of c is the quadratic fonn 

Q(x, y) = J..:2 -(5 + c)xy + 2c/ 

(i) positive definite, (ii) po8i!ive scrnidetinitc, (ill) imlcf1ni1e? 

(b) Lei. B be an II x II matrix. Show that the mau·ix A = B'B is positive semidefinite. Can 
you find a nccfssary and sufficient .;e>nditio11 on ll for A to l>e positive defutirc, not just 

semidefinite'! 

8. Show that if Q = x' A~ in (&) is p,,siuve definite, then 

l 'bl ]"a a,j ·1 > O. · · 1 (") u;; > 0. i = , .... n , a,, ,,.,, I '· J "' , · , , , • 

9. Let A be a .,ynuuetrio rnal[ix. Write its chara.cte11st;o polynomial (l .5.10) a., 

(()().),., (·-1)"(;,• + .,,_,J:·-1 1· ···+a). + aoJ 

Prove that A j~ negative deiinitt if and only if a, > 0 for i ~ 0, l, .... n - \. 

~ 10. (a) Consider !he problem 

ma)((min) Q = 2.<( + 14x1x2 ·• 2x~ subje,el to x~ + xf "' 1 

The quadratic form Q can be written as Q "" x' Ax. where x = ( :~) and A ,~ (; i), 
U r,e L1grang.e ·s mcrhod (see Section 3.3) r., show that d1e firsi-or<.lt".c couditfon for x to sohc 
ciiher problrm is that xii an eigenvector for A. (Tiie eigenvalue is the Lagrange. multiplier.) 

c,t,) Prove 1hal lhc largc8t (smalksl) eigenvalue uf A is th< ma"Ulltum \uunimum) value of Q 
:;uhject to the ,onsll'aint .. !Hint: Multiply All = ),,x frolll th..- left by ~'.) 
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1.8 Quadratic Forms with Linear Constraints 

l' 

In constrained optimi:i.ati,,n theory the ~econd-onlcr conditions jnvulvc the sign~ of quadrati..; 

fo1ms subject ro lLomogeneous linear constraint,. 

Consider first the ciuadrntic form Q = a 1 ;xf + 2,11ix,x2 +· a22x} and assume that the 

variables are subject 10 lhc homogeneous linear constraint b1x1 + b:ix,. .::.: 0. where b1 # 0. 
Solving lhc ,:onstraint for x1, we have x1 = -b2.x~/b1. Sub~tituling thjs value for· .t1 into 

the CX~)fC~sion for Q yid<ls 

( 
b2r2)2 ., ( b2.,2) . , I 2 , , 

Q = <111 --- + ~all ·--- x2 -:-,122.t2 =-= "·2 (anh:i - 2t112b1b1 +a22bj)x1 (•,) 
b, . b1 · "i 

We say that Q(x1 , x2) is positive (negativ~) definite subject to the~mstraint b1.x1 + b2x~ 
~ 0 if Q is positive (negative) for all (x1, .1:2) I, (0, 0) that satisfy b1x1 + b2.x2 ,: 0. By 
c~panding the detemtinant below, it is ea~y to verify Iha! 

all/,~ - 2a12h1b7. + u22bf =-Iii 
b, 

Corobininii this wilh ( >t.) gives rile following e.quiva.lco~: 

(l) 

(2) b, I <1:2 < 0 

"12 

This is also valid when b J "" 0 but h1 ,= 0. Tht:. condition for negative definiteness is that 

the dctcrmill311l on the right-hand side of (2) i& > O. 

, EXAMPlE- 1 U~e (2) to vf.lrif)' lhc definiteness of tht, quadratic form .xf - 8x1x2 + 16x? subject to 

2x1 - x2 =0. 

Solution: 111c determinant in (2) is D = 

1

1 ~ 2 =! I· We find that D = -49, 
-J -4 16 

so rhi:: q11adratic fom1. is positive dcfiuite subject to the given constraint. 

Consider next the general (tuadratic form 

Q(x)"" LL";jx;x,1 
r.::·l J~l 

in II variables subject tom li11ear, homoge.ncous constrai11ts 

b11XJ + · · · + f>1,;Xn =0 

bmJXL i· · • · i- bn,n,tn :..... () 

or B" = 0, whcr.:, H ,.~ <A.1) is an m :< 11 mat.rix. 

(3) 

(4) 

We say that Q i~ positive (negative) definite subject to th~ linear constraints (4) if 
Q(x.} >0(•: O)forall1o:=<xt, ... ,x.l /:, (O, ... ,O)thatsmisfy(4). 
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Define the symruclric detem1inan!s 

i 
! 

0 0 

~ 0 0 
lJ, ,:- ! I,, h,,,1 ~ J 1 

; b1r b,., 

b11 

l>mi 

an 

Ort 

b,,,, 
a1, 

a,, 

r==l. ... . n 

Not.ice that thedewrm.iuantB, is the (m+r)th leadiog principul minorofthc (m+ri) >< (m+n) 

bordered matrix ( OWm 1} Then we have the following resllll: 

-\fHEOREM ~ I --- ·· .. - ·----·--·- -·· - - ··--- ----·-- --- --- - l 
Assume that the first m columns in the matiix (b11).., •• in (4) arc lin~Mly inde- I 
pendent. Then a necessary and rnflici cnt condition for tile quadratic torrn , 

! 
" n 

Q = L L 11;jX;XJ 
i;;;') j:-, l 

to be positive definite ,ubjcct to t.be linear constraints (4), is that 

( - l)"'ll, > o. r =-m + l , .. . , 11 

,. 
I 
l 

i 
l 

Tile oorrcspondiug necessary and sufficient condition for negative definitenes~ I 
subject to the constraiucs (4) i~ 

(5) 

(6) (- l)'D,>0. ,,,., m +l, .. .. n 

......................... ....... ......... --.. ---·--····: .. .......... -.......... -.. - --·----------· _ _J 

EX~MPlE 1 

Note that the number of determinants to check is 11 - m. The more degrees of freedom (i.e. 
the sm.aller m is), the more detenninants must be checked. If there is on ly one variable more 

than there are corutraints, we need on ly examine B • . If n = 2 and m = I, then l 5) reduces 

to (-J) B, > O for r = 2, that is, 82 < 0. (This Ct)nfirrns rhe result in (2).) 

Examine. the delini~s of Q = Jx} - Xi + 4.~ subj~t to x 1 + .t2 + .tJ = 0. 

Solution : Here" "" 3, m = I. According to (5) and (6), we must examine the detenuinant 

lJ, for r ::::. 2 .1nd 3 . We find 1hat 

l
o J 

ll2e. : ~ 
q 
01 = - 2, 

- 1 t 
11; .., 

0 I l I 

3 0 0 = -·5 
0 - 1 0 
0 0 4 

llence (- 1)1 Hz = 2 and (- 1)18 3 = 5, w (.5) shows that Q is 1lQsitive definite S\\bjcct 10 

th<> given w ntii.tion. (This is e.3sy to check tliN..:tly hy suhstituting -.~1 -· x~ for XJ in Q .) 
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P!l.OBLEM~FOR SHCJIQN t 8 

1. Determine the de6niienc~s of~ f - 2x,x2 + xf subject to.,, + .,1 = fl both directly und using 
Theorem 1.8. l. 

2. Examine the dcfinitene~s ,1f the following quadratic F,mns ~uhjcm to the gi~en linear ,;un~traint 
using 'lheorem 1.8.1: 

(a) 2xl - 4Xt.<? + .<? subjeel lo 3.c1 + 4x2 -~ 0 

(I>) - Xf + X1.T1 - Xf SUhjeC! 10 .S.x1 -· 2.t2 = 0 

..-.,, { .r + y+ i= O = 3. Eitamine the defrnircness of -Sx1 + 2xy + 4.t.t - y2 - 2z2 s.L 
4:.< - 2y + z ,, 0 

@) 4. Exarnine the definit.cness of _..z + 2xy + y2 + ,1 s.t. 
j X +2)' + Z >=0 
l 2x - y - 3z =- 0 

S. HnJ o ~e.=y and ruffic:icm condition for the quadiatic form 

to be positivet1efmi1e ~ubje..'110 rhe conslrnint g; (xj . x2)h, + g1(xj' , ..t2)h1 = 0. 

1.9 Partitioned Matrices and The ir Inverses 

XAMPlE I 

Some applications of lineacalgehra deal with matrices of high order. Sometimes, in order to 
see the structure of such matrices and to eru;e the computational burden in dealing with the~n, 

especially if a matrix has many wro elenu;nt~. it helps to consider the matrix as an &rmy of 

sobrnatrices. operation of subdividing a nmtrix into submatticcs is called partitioning. 

Consider the 3 x S matrix A = (1 ; 
2 

i.n a number of ways. For example, 

~ : ) . TI1e matrix A ~an Ile p.1rtitinnc:d 

whcre A11,A12.A21,.ind Az7 aresubmatriusof diinen~ions 2 :<2, 2 x 3, 1 x 2, amJ I x J, 

n-..spectivcly. This is uscfol be.cau!'e A11 is a :zcw matri.\. It is Jes~ usen1J to p:i.rtirion A illlc, 
tlucc row vecr,)T$, or into five colomn vecror.;. I 
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Though fa.ample l mises the possibility of part.iti<miug a m~trix into arbitrarily many .~ub­
ma1rice.~. the rest of thfa s.xtio11 con~iders only p:miti.onings into 2 x 2 arrays of s11brn.auiccs, 

a.5 in (~). 

Operations on Partitioned Matrices 
One can perform .~tandard 111:i.tri.x operations on parti1io11ed lll.:lttices, lrl:.1ti ng the s11bn1alricc.s 
as if they we re ordiMry matri,; e lements. 'Jms rcquin ~s obeying the rules for sw111i, differ­

ences, and pro<ln,ts. 
Adding or sub1racling partitioned matrices is simple. For example, 

(
A11 
A~1 

Ar2 + 811) 
An+ B-n 

(1 ) 

as long as !he din1<,11sions of A11 arc those of B11, the dimensions of A12 ru:e thoNC of .811, 

and so on. TI1e result follows directly frotn the defi.nitioo of cnatri.x addition. The rule for 

submicting panitioncd mill.rices is similar. 
The rule for multiplying a parti1io11ed rru\tri,: by a uurnber is obvious. For examl1le. 

er (A11 An )= ( a A11 erA12) 
A21 Au a A11 a An 

(2) 

T11e foUowing example shows how to multiply pa1t ilioocd matricc-.s . 

. ·~~.li:!),,I_P t:f)fo Let A be Ille p.artitiooed 3 x 5 malrix (+) in Example 1, aild let B be the 5 x 4matri., 

-(? .. J..U .. ~1-(JI" B12 '1 II - 0 0 ; 1 0 - B21 '1111 1 

0 0 : l 0 
, O O ; 0 l , 

with the indicated pattitioni11g. The product AB i, defined, and the ordinary rule., of matrix 

multiplication applied to the cntite malrices yie ld 

(

2 0 5 
AB == 1 2 6 

0 (J 3 

Consider next how to take advantngc of the partitioning of the two matrices to con1pute the 

pJ'\Jt:iuct AB. The dimensions of the partitioned malrfoes allow us to multiply them as if die 
~ubm.~tcice, wo.)tC on.linary matrix clements to obtain 

A11Bri + A12B22 ) 
A 21 B 1i + A :?2 8 22 

= (G ~)+(~ ~) 
! O O)+( O 0) 

G 1D +(~ :)) "" (·~ 
(0 0) + (3 4 ) 0 

0 5 
2 (i 
0 3 

(i) 
15 

4 
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TI1c method ~ugg..-sted by Exwnple 2 is valid in general. It is not difficult to formulate and 
prove lht: general result, though the nottltion becomes cumbcrsom<.:. {f you work through 
Problem I io dccail. the ge.ncriu ide;, should become cf~ar enough. 

Mulriply ing m>tlriccs using partitioning i.~ partk u.larly convt:nicnt if lhe m.1tricc.~ have a 

special strucrnn: and irlvolve ~mplc sub1n.1trices Oilce ide111i1y or zero ruatrices). 

.:{ X_.A !-,1 . .fLE \ .~ Use the indica.re.d partitil)Jling to rind M " for all" -.,: 2. 3, .... 

~) 

Solution: Multiplication b<i.vcs 

M2 =(:. ~) (! ~)= (~ (J' ~ T)Q ) and M3=(~1 (P2 + P + I)Q ) 
I . 

In general, for all natural numbers 11, it can be shown by induction that 

Inverses by Partitioning 
Inverting large ~quare mat.rice~ i~ often rm1dc much eas ier using pa1t itfoning. Con,ider an 
n X n mao:ix A which has an invt:rse. Assun1e that A is pa1titio1Jed a, follows: 

where A11 i~ a k x k matri,; with nn inverse (3) 

Hence An isak x (n-k) matrix, A2, is (n - k. ) x k, while A22 isan lll - k ) x ln-k) matrix. 

Since A has an inYerse, there exists an n )( n matrix B sucb that AB = I • . Parlltiouing B in 
the same way as A }i clds 

B = (B11 B12)'· 
8 21 B22 

111e equality AB a:: J,. implies the following four mattix equations for determining °811, 
8 12, Bz1 , an,l 11 22: 

li) A11.B JJ + A12B~1 = lk 

(iii) A1!B 11 + Au ll21 = 01r.-, )xk 

(ii) A11 B12 +A1 2H22 ". Otx(n - AJ 

{iv) A21 °B1~ + A1.2B22 = 1.., .. ., 

where the subscripts attached to I and O indicate the di mensions of r.he.~e rru,triccs. J3e,:au:;c 
A11 ha~an inve.rse. (ii) give.sD i z :..:. -A1/ A12Bn. Inserting this into (iv) giv~s '1B21 = Jn-b 

where .a = ,l\,;.z-A~1 A°jj1 A11.- So A bas an itl\'erse andB22 = 4 -, . Ne~t. ~olvc(i) forlh 1 to 
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obtatln B11 :: Ai/ - A1,1A11Bii. Iosening thi~ inoo (iii) yields A21Aj/ - A1;Aj} A12B11 + 
A12B1, = o. o r ulh1 = -A21 Aii1- lt follows tha t ~ I = - 6 - 1A11A11'and so B 11 = 
Aj/ ·t- A1/ :\126.- 1 Az1 A1;1. 1beconc!usion is: 

,,, .. • • ..,.,.,_ , • .,__,_.,.._, ' " ""'•••• .,,,. __ ,..., __ ,,,,. , ,,. ,1.,~,-_.,.._,, ... , ,,, _,..,.,.----·"--"•' ..... ,.___.., •-•-,..--, ..,.-,.,......,_._ __ ,._ •'"' I 

• ) .• ( ( -1 \ "' l A A l A A - I .'> J?. = A ll + t II 12"' • 21 11 
A1, - A - 1 A21A;-,1 

[ 

l 
! 
I 

(4) 

Fonnula (4) is valid if both A1/ and A- 1 exi~I. Similarly, if both A221 and A-1 e.tlst., the11 

r·--·- ... .,.,--,-... --.... .,. ----·-................. - --... -.......... ~.----·--· .... ,, ....... _______ ·_·-·- -··· .. ·-,.··· .. _.t 

(
A11 
A11 

r 
I 
! 
f 

t5) 

I 
\.,._,..,,,.,- ,, •' •·•··-'-'• ,,,,,~,._,, ,.,,,,,.,, _. , ,,.,,.,,,,,,,_ .• , .. - •, ,, '""' .,., n,,,,.,,.,,,,,.., ,,., , __ _,,.,., . ... ,.., .,._ .. ., ,,.,,.,_ ,.., _ _,..,,,,.' ,.,. ...... , __ ,, _..,. ••••••,•;,~ 

EXAMPLE 4 . ( }I ... -_-:1...1:.·--~l-· .0~ . ..60.) Compute A • when A = 
I -1 : 0 I 0 

-5 7 : 0 0 I 

An). 
A z2 

Solution: Because A21 = I.it is easlerro use formu!A (5) than (4). Note that A = A 11 , so 

by formula ( J.1.29), l-1 = ( =; ;). Theo 

- 4 3• _,) ' (-1 
-; (-3 2) =·· =: 

:ind so (you shoo Id check the result hy computing AA- 1 using p.1rtitioning): 

' ( •. 4 

l ,-3 

A' - (: 

;) 
-1·) - 1 

I (
(: : :)) J = (=i-} j.f .:.:J· 

0 I O 1 - I : 0 I 0 
0 0 I l ; () 0 l 

To /ind this invers.! wil'hout partitioning would be very rime consuming. 
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We conclud<' this ~ction by giving two useful formut~s for the derenninaul of an n x n 
111atrn A pan:itioncd as in (3) (se<: Prolllem 6): 

If Aj/ ex ist$. then 

If A2"} el!.iStS, then 

A121 1• . 'A • A- IA . A.,.. "",, 11, ·1 n -~z, 11 12! .. 

.. ... - .------·-·· -........ -... ... . --- ···-··· ...... -----·· . , ........ ·-····--·-- --·-··-- - ..... ....... -· . .. ·-··· "' . 

PROBLE M S FOR 's°ECTION l 9 

(6) 

(7) 

1. C:<•mpute the follc",ing matri x product U$ing: (i) onlin:uy tnatri~ muilipliClllion; 
(ii) the SUggeiS(t.d pattitionirtg. 

2 . Compute the folk/wing matrix prodoc1 using the sugge:.1ed pait itioning. Check d,e rc~ulr by 
onlinary m:i!o~ multiplica1ion. 

( _: (I _:) -~---·( C -1) 
' l 1 

@p3. ( ii;,: partitioning 1,, e<>mpme the inv«rses of the following matrices: 

C 
0 0) C o o ()) 

(tj (! 
0 () 0 

ll . 5 2 0 0 , 0 0 0 I I 0 0 
(uJ O 0 4 3 Chi O O I 0 (J I I) 

0 0 3 2 0 l O 0 0 0 l 
,l 0 1. 

@4. Leu\= : 
(

·n., : : : ''t) anJ X = (~
1

). where (Al '1· 0. Show 1har 

O.. ! .. . a~ X0 

I J 
- xi ;~1 x , dn 

IA+ XX'I = .' : = IAl (( -'- X:'A- 1X) 
I 

; l'll tla! a,.,. 

whc,rc lhe ! x 1 matnx X' A ' 1X is ,n,,.k.<l as a numher. (! !tis formula is useful in ecouomr.1rics.) 

5. If P and Q are invectihle S<Juare n1<~IJ'ice.,. prove that ( ~ R·)-' - (p-• .. p .. ;RQ· ' ) 
Q _ - 0 Q· ' . 
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HARDER PROBLEMS 

@6. {a) Sh<)w thit if A,2 t•r A1 1 i11 (3} is the ur,, mauix. !hen IAi = :A;, I · l~,I. 
(Hint: Use 1hc dcJlnition of., cletcnninant. Sec e.g. EMl-'.A, Chapter 16.) 

(b) SJ t. (ll -A,1A2j) ( A 11 
10W I 1al O Ia-! ' t\11 

An) = (A,i - A,2~ 'Ai.i .~,). and usethis 
Au , A2, " v 

result c,, prove (7). 

~ 7. la) Suppose A t~ n :... m aod n is m ~ 11. Prove lbttl iJ. + AB; ··= IJ,. + BAI. (Hint: Define 

D = (t t). E ~ ( ~ ~:). Then IC. + ABI = ii>~, ,. iD I jl:<;I = IEI iD! 

t.F.01 = II.- ;- M l.) 

(b) U~c the result in (a) to prove that if a,, . .. , u,. are all different from l, then 

ltl\ 

'I 

I 
: I ( ,. , 
I I = (<11 - l)(a1 - l) · · .(a. - l) 1 + L ~) 
: ••. , "· l 

''• 

{Hint: Let f = In+ Ar. ,..tU;.cn~ where A.., ", (
. I l 1 )' and a,'".:''i · a, -1 • " · • "• - l 

B 1:.n = ( I, 1, . . . , I).) 

Wisdom and m3tur/cy bfe the ,,st scttl,"s ,'n p1oneerir,9 
eotr:mlll'llties. 

• ··P. A. Samtff>lsoO (1985) 

. ~·~: 

:··\ 
:·;;, 

I n this chapter WC! cliscuss a number of topics in mul11varic1ble CillCulus. 

First Sec1ion 2.1 deals with gradimts c11.d <iir<!Ctional derivati-,e~, which are ust'ful con· 
c<1pts in optim.za1ion theory. The import;;nt properties of the gradicn1 vector are set out in 
Theorem 2.1.1 . 

The elementarf theory uf convP.x sets in IR" is disc1;s~ed in Section :u . (Somi, ddclitional 
results are presented in Sections 13.S and 13.6.) 

Sl>Ctions 2.3 and 2.4 give a rather det.J,led introduction to concave (and wovex}furxtions. 11 
is unportarit th.it you k'am to apµreciatc argumen~ based directly on the definition cf concavity. 
Many results in economic theo1y become so much simpler when one does not flav!: io "differ­
entiate everything 111 sight'·. Jenser'l's inequality, which finds many use$ ,n economic ar..ilysis, is 
es~entially an easy el\tcnsion of the definition. 

Although important in theoretical ,119uments, the definition of conc;ivi\y is essentiaily usc1ess 
·,men we want to checl-: ii a partic11l1tr function is conviw?. In establishing cooca:lity it u5eful to 
know that a nonnegative linear cornbin~tion of concave funa ions i:; con(J\I\) (Theore,,, 2.3.4), 

a11d that ar, increasing co11c<1ve function of a ,or.cJve fur,ction is conc;;ve (Theorem 2.3.5). 
HowE.''IN, we often have to rely on the st,mdard SE,cond-order conditions in Theorems 2 .3.2 and 
2.3.3 based or- the signs of the mir.ors uf !M Hessian matrix. 

Ouasiconcave iand quasicoovex) 1unctiono; are imponant in e<cnomJCs, mostly in utility the­
ory. It is worth noting thdt J sum of quasico:icave tunctiom need not be quasi,or.cave. 

In utility theory it is 1Jseful to know lh<1t an incrl!u~:ng tr,rnsforrr.;ition of a quasiconcave 
fun,:tion is ,iill QJasiconcave (,hc>orem 2 .. 5.).). Prop~rt:C?s of the Cobb-Dll•Jgl~s ,ind gerierali,ed 
(ES fuoctioos are cl=ilx'<l in ~me det;,1il. 

1\r9unlt'nts based on the b.isic charncteri«~:ions ot qu.,;iconca,'ty are important ,r. economic 
theory, hut are less useiui ir, deciding whether a :.ptecif,,:d function i, qua;;concave. The stand,1rd 
~P.tond-ordl'f cnnditions based on the signs of the minor, o1 the bordt>rt•d H~ss,an matrix are 
ti!t OL!t at th~ P.11d of the section. 
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2.1 

l:aylor's formula 1s a ma;o1 result ,n matherr.a!i(al an<1lysi5, ,md the brief Section 2.6 presents 
ti1e formula for fun(!ions of several variables. 

fven el,:,mentary books m m;,;themJtks for t..:onornist> need to disci.:s~ ir.iplkit function 
theorems. !n Sect.ion i. 7 we formulate predse results. 

Sewori 2 .8 begir.s with a discuss?O/l on degll'es of freedom i11 systems of equations. The 
triri:y <::onc.epr of functional dependenct• is d,~ait wittl next. Many texts state er<oneous1y that 
f-unttion,11 dependmcc of n functions is equivalent to the wmishing of the ;issociated Jacobian 
determinant. 

S(•ction 2. 9 ,s rather demanding and discus~ line~r approximations and differentiability. 
Final!y, Section 2. 10 gives some results on the existeo(e and uniquenes~ of solutions to 

Sy!,tems of equations. !fl particular. some results on global univalence are dis,:ussed. 

Gradients and Directional Derivatives 
lf r·1~afunctionoftwovariahlesandCisa1Jynumber, thegr.iphofthcequation P(x, y):;; C 

is called a level curve for r'. Recall that the slope of the level curve P(x. y) =Cata point 
(x, y) is given by the formula 

, , F1(x. y) 
F(x, y) = C "'? y --= - F/(x. y) (l) 

According to(!), if (xu, Yo) is a particula.-point on the level curve F(.x, y} = C, 1he slope 
at (xo, .vo) is - F; (xo, )'o) f F; (xo, .V(J). The equation for the tangeut line T shown in Pig. 1 
is y - .}H"' -(F; (xo. Yo)! FJ(xo. Yo)]{.r - xo) or. rearranging, 

F;(.co, yo)(x - xo) + F~(xo, .vo)(y - Yfl) = 0 (2) 

The innt,r product notation (sec (l. J .35)) allows us to write equation (2) as 

(I .. { (xo, .Yo), 1'~(xo, Yo))· (x - xo, Y - yo)= 0 (3) 

The vector ( r·; (xo. Yo), F2 (..to. Yo)) is called the gradient of F al (.rn, }'()), and is often 
denoted by v' F<xo, yo), The vtctoc (x - xn, y- _v0 ) is a vector on the tangent Tiu Fig. 1. 
and (3) means that V F(x(,, y11) is ortbogonitl to the tangent line Tat (xo, y0). 

y 
• 

. 'vFC .. '<J.Y.f) 

O,}ll) ~­

'\ 
n,. y) ~ C 

Figure 1 <J nx11, )))) is nrtl1ognual 
10 !he w.ngem liue Tat (xa, )'o). 
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:·,tfXAM~lE< 1 Compute V F{j, 2) for F(x. y} ""xy, and find the C<!Uation for the 1ang,~11t· to the curve 
xy = I at (}, 2). 

Solution: l'{(x,y) = y and F;(.t,y) 
equation of the tangen,c .is 

<,so~ F(}, 2) = (2, ~). Hence, by (J), tht 

(2,!)·(.:t-!,y-2)=0, i.e. 2x·-l+iy-·1=0, or Y""-4..<+4 

Suj>pose more generally that F(x) = F(x1, ... , x.) is a function of n variables defined on 
an open set ,tin R". and let x0 = (xr, ..... t~) ~ a point in A. The gntdient of Fat XO i.~ 
!he vecmr 

of fii:st•ordcr partial derivatives. Alternative notations for V P(,co) are F'(xf'J) and 1) F{xo). 

Consider the lt'vel mrface of F(x1 . ... , x.) corresponding to the fove! C. i.e. the se.t of 
points that- satisfy 

F(x1, ... ,.t.) = C 

If x'f = (xi'. ... , x~) lies on this leve.l surface. i.e. if F(x0)"" C. then the tangent hyper­
plane I<> the level surface at x0 is the set of all :ii = (x1 , ...• x,.) su~h that 

using the scalar product we can write this as 

(4) 

Since any poim x in the t.angem hypetl)lanc satisfies (4), the gradient v' F(x0) i& orthogonal 
to the tangent hyperplane al x0 . (See (1.1.4'.l).) An illustration is given in Fig. 2 for 11 = 3. 
(We assume that V f,'(x0) ~ 0.) 

f 

I 
.,.;,.~::~--·--·--.. Xl 

Figure 2 The grndient 'v F(x") i$ 
orthogo1tal to th~ cangl!n! plane of 
F(xl "" C at x''· 

}' 

+ 

I·\ X , \XX \,X 
I
. ! ','x-·,.., 

I .. >< -. .. 
-!f,! [,..,... •. ,····· --.. _____ --

.......... ,,... _____ .. _,..,., .t' 

Figure 3 f is homogeneou~ of de~ree k. 
The level curve~ are parallel alonl( each 
my from •he origin. 
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NOTE 1 ff the f!.1"3Ph in Fig. 2 is defined by : = f(x 1, x2). then th.: rangenl plane to this 
grai,h at the p-0int (xf, x~. z0) is (see e.g . EMEA, Section 12.8), 

Thus tJ1e. vector l!;i.x?, x~). f2(x\1, x~). -· t) is orthug.m.tl to the taugt nt plane of z = 
f (x 1,x2) at (x\•,xg, z'\ This 1angcnt plane i~ precisdy the plane obtained from (4) by 

plltrit\g f' (.~,. x~. Z) = f(xi. :t2) •• z. 

:EtfMP((;~.; Let /(x1 •••• , x. ) •~ f(x) be homogeneou~ of degree k. Then J/(x) is homogeneous 
of degree k - 1 for i = l. ... , 11 (see e.g. EMEA. Section 12.7). Hence, for). > 0 we 
have V JV.x ) = (f[(h), ... ,.r;v.x)) = ( J.. t-1 f{(x ), . ... l.l - • J:(xj) = .I. t-• iv f (X). So. 
al each poinl on a given ray through lhc origin the.: gradients arc proportionol, wliich implie.s 

that lhe tangent pl:mcs at eru:h poiut on the ray are parallel. See Fig. 3. To surruuarize: 

/(x.) is homogeneous of deb"l't.'Ck == 

The Directional Derivative 

{ 
lhe Je\•el surfaces are par<illel 

along each ray from the. origin. 
(5) 

Let z = f (x) be. a function of n vari ables. ·n1e p:1rtial deri vative. vf/ilx, measures tbe rate 
of change off (X) in the dil'ection pru-allel to Lht ith coordinalc axi~. Each prutia\ de1ivative 
says nothing about the behaviour of f in other directions. Wl: introduce. chc concept of 

Jiroc1ional ,lerivmive ill order to measure the rme of change off in an arbitrary diret:tion. 

Consider !he ve.:;ror x ==· (r1, ••• ,.ta) and let a::: (a 1, •••• a,) ;= 0 be a given ve.c,or. If 
we move a distance h l\>1 II > 0 frorn x. in the direction giveu hy "· we arrive at x + ha. The 
awrage rate.of ch:uigeof f from ,c lo x+ h.a i~ !he.a (/(x + ha)- f(x))/h. We define the 

derivative of f a/on~ the 1•ecror a, denoted J:<x ), by 

f.
' ) 

1
. J(x + ha) - J(x) 

(X ::;: 1m - --··- - -
- a h_.iJ h (6) 

or, with iLs co111po11ents written out, 

<We :,ssume tnat x + lrn. lies in the domain off foe all sufficiently s111all h.J In pw.icular, 

wilh n1 = I and rl.j = O for j t,. i , th~ de-riviuive in (6) is the partial dcrivaiive off w.r.t. x;. 
Suppose f is C1 in an open set. A. anJ let x be. a point in ,1.' For an arhitrary vector 

a, define Ille functiou g l>y g(/1} :a: f(x + Ira) = f<x, + lw,, .... .x. + ha~). Thci1 

- ··-----·-- ---
1 Open ~els and relnwt h>pologirnl Nn<:cpts .vc reviewed in Section 13. l. A I\Juctio11 j is said ~, 

he of cl.a."-~ c• (k :;: J) in a set U if .f and all it, partial dcril-'atives of order ~ I: cxisc and ~re 
cc,nlinu,ms throughl'>ot U. 
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(g(h) - g (Ol)/ h = (/(x + h a) - /(x))/ h. Lettiag Ji te,llf to 0, cqoarion (6i implies that 
g'(O) = /~( 'K). But according t(, the chain rule for ditfcrentii\ting composite fonction~. 

n 

g(hl ""'/(x. + ha) => g'{h.l = L f.'(x + ha) rz, (7) 
;-, 

so tlrntg'(O) = L7~, fj(x) a1. Hence we have shown t.hat 

" 
f~(x ) = L f,'(,c) ll; = v /(x l . a (8) 

,:.:al 

Pom,ula (8) shows that tlw d(•rivative of f " long the Vi'Ctor a is equal tu the inner product 
nfthc gradient nf f and a. 

lf fal = I , tl\e number f~(r.) is called (he directiooal deriiatlYe of f at x, in the 

direction a. It i~ precisely when a is a vect0r with length I !hat we huv.: rh~ followiug ni.;e 
interpretation of /~(x): moving a distance Ii in the direction gi.vca by a changes the value 
off by approximately J;(x.)h, provitlc<l hi& small. 

({?.<!.\MPLE. 3 Fwd the,dircctional derivutive of j (x. y) = x2 + 2.ty + y3 at lhc poir,t {x, .v) = (1. J) 
in the directiou given hy t1tt ve<~tor a = hi II bll, where b '"' (1, 3). 

Solution: Let b = (I, 3). Then ilhll "° (t2 + 32)
112 = ..Jio. The vector a= (a1, a1) = 

(1/-/10, 3/v'lO) isa vcaorof lenglb 1 in rhe same<lirection as b. Now, J;(x. y} = 2x +2y 
ruid / 2(.r , y) "° 2.t +Jyi.sothat f:(l , I) a: 4, f{!l . l)::: 5. According to{~) . 

j ''(l 1) = / 1' (1 l )a, + f.2' (1 l),io = 4- ~-- +5_:~= = 19 .jfo • ' . ' . . . ' v'io ../l O 10 

By introducing,> as lhe rwi;.Ic between Lhc vectors V f(x} and a (see (l. l.40)), we ha\'t~ 

(9) 

Remem~r that co.~q, :o I for all ,p and oosO = I. So wbcn Jla JI = l , it follows rhat at 

points where V f(xj t,. 0, the nwnber /~(Y-) is largest when q; = 0, i.e. when a poinr.s in the 
same direclion as v/(x), while /~(x) is smallest when <p = ,r (and hence cosr, = - 1), i.e. 

wbe!l a poi.ins in tl1e opp(•Site direction of 'v f(x). More.over, it follows that the lengrb of 

v J (x) equals the magnitu<k of the maxim.um directional derivative. 
The most important observur.i.ons about lhc gradient are g~th~ed in this th<!orem: 

....... , ........ ..... ... ... , ... ... .... . 

Suppose !hat / (x) = f (x,, ... , x.) is C1 in an open set .1. Then, al points x 

where V f(x) f. 0.1hc gradient vf(x) "' (/{(x). / 2(:c) . . . .. f~(x)) &ati~fies: 

(a) Vf(x) is 011.hogonal ro the level surface through x. 

lb) 'v_f(r.} poin{s in the difc('.tion of ro3xim:il iacrcase off. 

(c) li\7 / (x)r. measures how fm;t the function increases itJ tl1e dirC<:tiOlJ of max­
imal in~rca~e. 

' 
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We a.m1m<!d above thal V J{x) :j, 0. "Point~ 1' where V [(%) = 0 are called srationary poinls 

for f. lf f is C 1, it follows from (8) that all dirc..."iional <leriv111ives an: eq11al ro O at a 
scationary point. 

The Mean Value Theorem 

The mean valt1c theorem for f11nc1i.011s of one variable (see e.g. EMEA, Seclion 8.4) can 

easily be gcne.rali7..ed to functions of seventl variables. Suppose that x and y are points in 
R". Then define the closed and open line segments bcrwcen x and y as tl1e sets 

[x,y] == {)..x+(l -)..)y:).. E [0, 1)) and (x,y) = {).i.:+ O -· )..)y:).. Ero. 1)) 

respectively. 

Suppose that f : If?" --+ 

exi~tS a point w in (x, y) such lhat 

J(x) - J(y) == V J(w) · (x - y) (JO) 

Proof: Deline ,p(A) = J().x + (I - )..)y). 111en I!>'()..)"" V f("J..x + (I - )..)y) · (x - y). 

According to the mean value theorem for fuac!ions of oae variable, there ellists a number 

;.,1 in (0. I) such that q>(l) - q>(O) = rp'("-uJ. Putting w = .l.o" + ( I - >.o)Y, we get (IO). • 

1. Compute Lhe gradic:nL~ of the followmg functions at the giveo points. 

(a) f(.r,y)=/+xy at (2,1) (h) g(x.y,z)=xe''-z2 a[ (0,1.l, I) 

(c) h(x, y, z) = e' + t.2~ --~ c3
' al (0. 0. Oi (d) 1(.r. y, z) = e""17.,,3' at (0.0, 0) 

2. Lei /(1) be a (;1 fuocli(ln ofr wirh f'(1) ,f 0. 

(a) Put Fi.t, y} = f (.t2 + _v2). Find the gradient VF at an arbitrary point aod show that it is 
parallel to the stmighl line ~Cb'!Tlenl j(>inini: the point imd the origin. 

(b) Put G(x. y) = f(yix). Find 'v(; al an •rbilraty poiral where x ,;= O. and show 1h~t it i~ 
orthogonal 10 the straight Line segment joining the poim and the origio. 

@ 3. Cumpur., the dircetional derivatives of [he following functions at the giveu point~ and in the 
given direction~. 

(a) .f\t, _v) = 2,x + y -- I at 12, J ). in the dirc:cti,,n givr.n hy (1, I J. 

(b) g(:,, y, z) = u'' - xy-- , 2 at CO. l. l), in thedirtttion given by (I. I, 1). 
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4. Le, 

/(xi ..... .t.) =xf +.•} + .. ·-~-•~ 
Find the directional derivative. off in the direction given by !be occtor" = (.r,. "l, ... , a,) by 
using detini1ion (6). Check lhe result hy using (8). (Suppose. that ko)f = l.) 

~ 5. (a) Fiod the r.li!"TXtionaJ deriv•live of 

at(I, I, l)inthedirectiongivenbych1:ve.ctorfrom1hepoint(3, z. l)lothepoint(·-1, l, 2). 

(b) Determine alSQ the direction of maximal increase fr.om the point (1. l, J}. 

@6. Suppose that f(x, y) bas continuou8 panial derivatives. Suppose too that lh<1 maxi,num direc­
tional derivative of f at (0. 0) is e.qual co 4, and tha1 it ili attained in rhe di.l"ection given hy the 
vectodrom lbcorigin to the point (1,3). Find 'i7 /(0, 0). 

7. Let b"" (b., .. , b.) be a given vec1or and define-the function f(x) = .f(x1, ... , ,.) = b · X. 

Show Lhill the derivative (>f f along the vector a = (o1, .•• , a.) i~ b . a. 

8. Let f (v) = I ( vr, ... , u.,) denote a positive valued differentiahlc function of II variables defined 
whenever v, > O. i = 1, 2, .... "· The din-ctionul tlasllelty of.fa[ the point v along 1he vector 
v /J[v;I = a, hence in the direction from the orig.in co-., i~ denoted by El, f (v) and is, hy defulitiou, 

El fM = ~j-,(·v) 
• . . . f(•) • ' " 8= ---

flvJ! 

where ;~ (v) is the ,lirecrioual derivative of f in the di.!"ec-tion given by a l Jse (8) to sh,,w 1hat 

Ela /(v) = I)l;J(v) 

where EI, f(v) denotes the (l~rtial elasticity off w.r.1. "'· (When .f(,•J i, a production fi111c"tion, 
Ela J M is c.1lled die scale ehtsticity.) 

HARDER PROBLEMS 

8 9. (a) Prove that if I-' is C1 and l•'(x, y) = C defines y as a 1wi<:e differentiable function of.,, 
!hen 

F,' 1 
" I fF" ( F.')2 2F" g F.' F." 'F')''] l I 0 

y = -if-~)3 !t 2 - 12 t 2 + 22~ ': - = (F.~ / F{ Fi~ 
• 

2 I f,~ ,.21 

(Differentiate !he expn:s~ion for y' in (l) w.r.t. x.) 

(h) !.,et FlX. y) = x1
y = 8. USe tlie formula in (a} ro con,pute y'' ar (.t. y) = (:.!, 2). Check. 

the result hy differentiating .Y = 8/x2 twkt. 
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2.2 Convex Sets 
Convexity plays an im(>Qrtnnr role: in theoretical economic.~. In this lx...:,k we ,hall s.:c many 
exam ples of its importance. 

A set S in the pumc i~ calk.J convex if each pai( of points in Scan be joined by a line 
segment lying entirely wirJiin S. I::xaruples are given in Pig. l. In (d'l the non...:onwx .set is 
tJ,e union S1 lJ Si of two ovaL5. each of which is convex on its owu. 

C 

i~. 
(a) Co~vex (c) Not conve.~ (d) Not convcA 

figure 1 Convex and non-convex seLs. 

This definitio11 of a convex set can be extended to sets in H". Let x :tlld y be any two 

point5 in R". The closed 1i11e segm.eut between x aud y is the set 

~. y] = {z : there elli sts i. E [O, 1) such that z == .l.x + (1 - i.)y} {I) 

whose members urc the c:oovcx combinations z == )..x + ( I - J..)y, wilh O :;; .l. ~ I. of the 
two points x and y. Sec fig. 2. lf .l. "" 0, then z :: y. Moreo,:er. ;. = J gi,-cs z = x, anJ 
J.. = l/2 givcs z = ~x+ h, the midpoint between ;1:and y. Note that ifwe let i. run through 
all real v3Jues, then z dosl'-ribes the whole of the str.tight line L through x and y. Thi.~ line 
passes thro11gh y and h..s the <li.recrioo deterntined by x - y. (See Fig. 3 and ( l. J.42).} 

,.-· 

Figure 2 TI1e dosed s.:guieol (x, y]. figure 3 Tl,e sttaighl liDc duoug), x and y. 

Tile defuliUon of a conve;,c set in R" is now ca.sy to formulate: 

.. , ... ~ 

A set S in R" is calk~ cun~eJt i f (x , yJ ~ S for all x. y in S. or, equivalently, if 
(2) 

AX + (I - .!.)y f: S for all X, y in S and all ). ill [O, 1] 

.... ....: 
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Note in particular chat the emptf .ICt and al~,) any sci consi~ting of ooc ,iuglc p,)int are 
-,ouvex. Intuitively speaking. a con1•cx &et mu~t be. "co11necte<l" without. any "hol~s··, and 
iL, bowidary must nnt ''b<.,nd inwards" at any pou.1t. 

EX~M)'.L{f ;"..: The set fl of all polnts x = (xi, xi •. .. , xn) in IR'' that satisfy 

where p ,f: II, is a hyperplane ill R". (Su (l .1.43).) Th.:; hype.rplanc H. divides IR" into two 
convex sets, 

H+ =(x e lR" :p ·x ·:= m} and H-=(xe !R":p · 11:~ m} 

These two ~s are ealle<l hlilf spaus. To show that H+ is convex, talce two arbitrdI)' points 
x1 and x2 in H +· Then p · x 1 ::: m and p . x2 ~ m. For each >. in [O, lJ, we h.!ve to show 
that Xx1 + ( I - J..)x2 E H+. i.e. that p. (,\.x1 + ( I - .!.jxZ) ~ m. Jr follows easily from the 
rules for the iuner product, (l.1.36), lha.t 

p · (1,,x1 + (1 - i.) x~) = p · >. x1 + p · (J - J..Jx2 

= .l.p . x1 + (I - J..Jp · x' ~ J..m + (_I - J..)111 ;;;; m 

(Where did we \L~e the a.ssumptioo that i. E [O, 1}?) Convexity of H_ is sho ,,.11 in lhe same. 
way, and it is equally easy to show lhat (he bypcrpl:wc H itself is conve.>t. (Convexity of H 
illso follows from (3) below, since If. ;cc H+ n /L.) I 

If Sand 7' urc two convex sets in ~·, then their intersection Sn Tis also co11vex (see Fig. 4). 
More generally: 

S, , ... , S.., are convex sets in ,l" = S1 n · · · n S,,, i~ eonvcx (3} 

Proof: (One of the world's si.mpl.e~t.) Suppose lhat x and y both lie in S = S1 n . .. n S,. . 
Theo x and y both lie io S; for each i ,:: I, .. . , m. Because S; is convex.. the. line segment 

Lx, y] must lie in S; for each i = I, .. . , m and hence in the i.ntetscction S 1 n ·. · ti S,,. = S. 
This means that S is conv~x. • 

\ -
Figure 4 Sn T is convex , but SV T is not. Figure 5 r, is ;; COOVL'X ~Cl. 

The union of convex sets is usually nut convc~. See Fig. 4 again. a.s wcJI a.s Fig. l(d) . 
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d~fi.{,~(f.i;_t'. Let U(x) "' U(xr, ... , Xa) denore a consumer's utilit)' function. I( U(x(1) = a, then 
tlic 11p1~.r Je·nJ ~-et or upper contour !rel r. = {x : V(x) ~ a) consiStS of all commodity 
ve.c(or.; x that tbe c,,nsumer wl'akly prefers to x0 . ln consumer the,,ry, l\ is oft,.i assumed 

to he~ convex set for every a. (lbe function U is then called quasir."nc,we.) Figure 5 ~hows 

a typical upper level ~et for the ca~e o f two goods. 

Let x = (x,, . . . , Xn) represent a commodity vcc-tor aml p ·= (,Pi, . .. , Pu) the corres­

pondingprice ve.cror. The11 p ·x = p,xd· · · ·+ p.x0 is thecostofbuyingx. AconswneTwith 
m dollars to spend on the comn1odi1ies has a budget .,et :B(p, m) defined hy the inequalities 

J) · ,i: = p,xi + · · · + p. x,, ::: m and X1 ::: 0, ... , .t,, -~ 0 (4) 

'(be hudget scl .8{p , m) consists of all collllDOdity vectors Iha! tbc consumer can a!Tord. Let 
!R'.;. denote the set ofall -:dor which x , ?. 0, . ... ;r• ::: 0. Then £ (p, m) = H_ nR'.;. , whi-re 
H_ i~ the convex hitlf space introduced in Example I. It is easy to see that R'.j. is a convex 

set. (lfx ;;=; 0 and y ~ 0 and J.. E (0, I), then evidently AX+ (1 - J..)y ~ 0.) Hence .'B(p, m) 

is convex accordini to (3). Note thQ.t this means thet if rhe s:uns umer can afford either of 
the commodity vector~ x and y, she can also afford (lny convex combination of 1hcse two 

vector~. I 

1. Determine whi,·h c,f the following four sets are co11ve:,:: 

0 
(aJ 

3
;::) 
I ···. 

/ . L. .. : •I , .. ·' . 

(b) (C} Cu) 

2. Oclcnnine 1>11.kh oftlte fol ~>Wing sets= convex by dr:iwing e:icb. in !he xy-plane. 

(~) {(x, y) : ., : + y~ < 21 

(<:j !(.r,y) : ;r1 + i.,. 81 

(e) {(x, y): xy;:: I! 

(h) {(x. y): x::: 0, y :: Q} 

(d} {~t. y): X;:: 0, y :!: 0, X'J C: I) 

(f) l(x. y) : Jx 7 .fy !; 2) 

3. )~IS be the sel of &11 points <:<,, .. . , x,) in W- dial ~at.i>fy all them ,ne.iu~liries 

flJl ~' l + tl,r!A:: + · • • + OtlSX/\ ~ bi 

"11.c, + aux, ... · · · + f1i,.X« ~ ~ 

nad moro:wcr ore s11ch that x1 :::, O ..... .r. :: 0. Show 1hat Sis a convc, set. 
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4. Its and 'I' arc:: (WII :<(:IS in R" 11111l 1J and>, :ire scalar"' let w , ... ttS + bT dem1te tne ll:l l>f au 
points of the fonn m, + hy. w~ s F. S and y " T. (Thffl W is caltoJ a linear combiua.tion 
o,f 1ht two ~L,.) l'nwc that if S aud T are both 1:onvrx. ti1en <o i~ W = a S .;. b T. 

5. If S and T = 1111y 1wo ><ets, 1he Cartesfan produce S " T of Sand '/' is <kfined by S x T = 
f (.,, e) : ., c S, t E Tl, 3~ illu$tratw in the figu.re tor the ca.~e when Saad T an: interv~ls of the 
real line. Prm·c that ir S and T ate eonvex sets in R· •nd R", n:"J'CCtively. then S x T i$ nho 
Convex (in R" ... ). 

r ..... [.:.~~B]t;.;_L 
..... r·· . .,~:·-.,~~~:-: ?·,.:·.::~ .. , 
' . i -...... i _____ : _ __,, 

s 
Figure for Problem 5 

@ 6. (a) I.ct S = {x E Jr' : Jx P. == r) be the closed n-dimensioaal ball l'enlrr.d at th~ orii;in and with 
rad1\ls r .,. O. Prove that Sis conve~. 

(b) If we replace S with <, "'•or ::! in. lhe definition of.<;, we gellhrtc new sets S, , S1, and S3. 
Which of them are convex.? 

HARDER PROBLEMS 

® 7. (u) Let S be a set of re.ii num~r~ with lhe prop•rty tl1a1 if .r1, , 1 F. S, •hen the midpoint 
}(x1 ;- x2 ) also belongs to S. Show by ;:,,1 example that S ii m)l necessarily convex. 

(b) Does it make 3ny difference if S is cl06e<l'I 

® 8. Show that if a convex subset S of R ci,nwins more than one poinc, ic mu~c he ~n interval. (Hint: 
Show first that if S is bounded. then S must he an imervnl witl1 endpoints inf S an,l ~up S. See. 
S~.crioo A.2.J 

2.3 Concave and Convex Functions I 
Recall that a C'? function of one variable y = f(x) is called concave on the interval I if 
j " (x) .::: 0 for all x in I-the graph then tum.~ its hollow side downwards: ,......_, 

We need a defi nition that is valid more generally, preferably for functions of n va.riabk~ 
that may not even be differentiable. Here is our fU'St geometric attempt. 

'(/,;) f1mctivn f i., ~·ailed conrave (C<lm·ex.) if it is drftned ()II <1 ('(,nvex ser and the line 

segment joining w,y rwo J>Oints 011 the rimph is ntw:.r above (hc/cwj tl1r! graph. 
Thi~ detinitiou is <lifticult to use din'.ctly. After all, for a function rhat i~ specifie,1 by ~ 

cmnplicarcd fonnula. it is far from «videm whether the conditiQU i~ s111isfiec! or not. For 
cu11c11Ve functions of two variabli:.s 1he rlcfinition is illu.strated in Fig. 1. 
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! 

figure 1 f is w nca\'e; for all points 
P and Q on the graph of /, the line 
<cgment P Q tic~ below lllc graph. 

figure 2 TR.'"" f(;,,: + (I - · i.)y) 2: 
TR = J..f(x) + (1 - l.)f(y) . 

TI1e two p<:>ints P and Q ia Fig. 2 correspond to points y and x in the domain of f such r.h.nt 
P::. (_v, f(:;)) and Q = (x. f (x)). An arbitrary point R on the line se,gment PQ has the 
coordinntcs ,-Q + ( I - J...)P = (,-x + ( I - J...)y, >../(1) + ( I - J...)/(y)) for a suitable }. in 
[0, 1]. This point lies <Jirectly above the poi.ill >..x + (1 - .l.)y ou tbe line segment between 
x and y in the "x-plane". The com:~pondi.og {)Oi.nt on the graph of f can be expressed as 
R' = (AX+ (1 - i..)y, /(i...x + (1 - >..)y)) . The fact rhat R docs not lie Above R' can he 
expressed by the following inequality: 

f(>..x+ (I -· ).)y) 2: .l.f(x) + (t ->..)f(y) 

This moti1ratcs the following algebraic definition: 

A funCliol\ /(x) = f(x1 ••••• .x.) defined on a c\ln\·cx set Sis conca-ve oo S if 

/(.1.x + (I - J..) y):: ).../(x) ·I- (1 - i.)f(y) (1) 

for all x and yin Sand all >.. in [O, I). 

A fonctioo f(x) is com-ex if (1) hold:; with ?. replaced by :£. J 
·--... ·--··-----.. ---··- --- ----

Note that ( I) holds with C<JUality for J. = 0 :ind A = I. U we have strict inequality in (l) 
whenever x :f y and J. E (0, 1), then .f is sb"iclly concave. The function whose graph is 
drawn in Fig. I is, therefore, ~trictly concave. 

Note that a function f is couvcx on S if and ooly if -· f is concave. Furthermore, f is 
strictly convex if and only if - f is strictly concave. 

It is u.;ual\y impr11e1ical to apply the definition directly to show that ~ fuoc1ion is concav" 
or cnnvM in a cert:iin set. We shall later develop a number of thcore1n~ that often help us 
lo <ltcidc with ea,e. wbcther a function i~ concave or convex. Even so, here is one e.xamp)e 
'-'"here we 1L,e the definition dire.:lly. 

/.lf'l l 
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Use <lcti..uirfon (l) to show that the function f dcfulcd for all (xi, xi ) by 

(.~o x i docs oot appear in the formula for f) 

is concave. ls it srricr!y.concave? 

Solution: Let (x, , x2) and (.1•1, Yz) be arbitrary points in the plane. We must show that for 
alH in [O, 11, 

Usiug the Jeti.nitio11 of f , we ~ee that (i) i~ equivalent to I - [),x1 + (I - ;..)y1f ?. 
).(1 - xf) + (1 - 1..)(l - yf). Expanding and t:otlecting all 1£rll1S on the left-hand side yields 

(ii) 

This inequality is obviously satisfied for all;, in [O. 1). Thus f(x , y) is concave. 
When .t1 = Yl, we have equality in (ii), and thu~ t:quality in (i) for all ,-a.lues of x2 and 

Y2, e\'en wben x2 f= )"2· So f ,:an not be. strictly cone.ave. I 

NOTE 1 Toe one-vmiablt function g (x1) "' 1 - xf is concave. Example l showed that it is 
also cone.we considt-.cd a.s a function of two variables, :r1 and xz. In general, it follows dir­
ectly from tbedef10itions that if gt..r 1, •• . , x,,) isconcave(convel<) in (x i, ... , x,.), then for 
n > JI, f(x1 , .. . , Xp, Xp+1 · ... . x.) = g(.%1, ... , Xµ) i$ concave. (conve.x) in (xi , .. . , .x0 ). 

Figure 3 ~hows a ponion of the graph of a fuoction of the form f (xl, xz) = h(.t1), Here 
Ji is concave, a1ld therefore so i.s f. 'Through each {)Oiut on the graph there is a straight lioe 
parallel lo the .x 2-axis that Jic.s in the graph. 'This show~ that J cannot be strictly concave, 
even lbough Ii i~. 

Figure 3 h is strictly <.:011cave: .f is cou.:ave, 
bul not strictly rnnca~. 

e.., MPLE 2 The linear (llftiJJe) function f (x) = a · x ..,. b = t11.r1 + · · · + an,"tn + b, wl"k:l"C a = 
(11 1, . .. , an) and h arc consrnnrs, is hoth concave aml couve~ .. This foll ows immediately 
from the definition. The graph is a hyperpl.Mein R". All poi.lits on the line segment between 
two poinrs ill the hyperplane lie in the hyperplane. I 
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THEOR M 

Concavity/Convexity for C2 Functions 
Checking the sign ofm.es= d derivative is often a quick waytt,d<-"Cide where a C1 function 
of one variable is conca.ve or convex. For functions of rwo l'ariahles there is a corresponding 
te~t which is <.lften used (it is 11 special case o'f Theorem.~ 2.3.2 flnu 2.3.3 below). 

3 1 ··-·---·-·-·-- -

U ,t z ,.., f (..r. y ) be a C2 function defined on an open conve;,:. sc.t S i.n the plane. 
Then (all inequali ties must hold tlu'oughoot S): 

(n) f is convex ~ f :'1 ~ O, Iii ~ o. and fi'iln - u;;J1 ~ 0. 

(b) f is concave ~ !;1 ~ o. P/2 ~ o. and J{;f!/J. - u;;>2 ~ 0. 

(c) 1;; > o and !{VJ'i - <!12>2 > o ~ f is strictly convex. 

(d) /{~ < 0 and J{;J;~ - Uf~)2 > 0 = f i~ s1rictly concave. 

NOTE 2 The implic~tjo.os in part.s (c) >1nd (d) cannot be rever.sed. Forexainple, f(x . y) = 
x4 ·f-y4 is strictly convex in the whole plane, even 1hough J[; (0, 0) = 0. (See Problem '.!.4.6.) 

NOTE 3 From the two inequalities specified in part (c), it follows that ff2(x, y) > 0 as 
well. (ln fact, f.he sec,md ineqmdity implies t:i f.fz >- u;;)2 ?: 0. TilUs if Jfi > o. then 
r;; > 0 as well.) 111 a simillll' way. the two inequalities in part (d) imply that J; <. 0. 

EXAM PLE .t. Let f(x,y ) =2x -y -- x2 +2x,v -y2 forall (x, y}. Is f concave/couvcx? 

SOiution: .f:', = -2. t:2 = f:lj = 2, and f~ = - 2. Hence f 1~ff:i - U;,f ,:: 0. Thus 
the conditions in l11eorem 2.3. l (b) are satisfied, so f is concave for all (x , y) . I 

EXAMPLE" 4 find the fargcst domain S on which f (x , y) = x2 - yz - xy - x 1 is concave. 

Solution: f{'i = 2 - 6.t , 1:-,, = /21 = -1, and In = - 2. Hence / {j ~ 0 iff X :: 1/3. 
M<m:over, / j;J1; - ([12)2 = l2x - 5 ~ 0 iff x ~ 5/12. Since 5/ 12 > 1/3, we l'Oncludc 
thnt the. set S consists of all (x. y) wbere x :::: 5/12. I 

E)(A 'wl P Ll5 5 0 1eck the coo.:a,•ity/convexity of the Cobb-Douglas function 

f(x, y ) = x•yh 

definedon the~et S ,.,, ((.t,y) :x > (), y > OJ, assumingthata +b :$ l,a?: O,a11db::: 0. 

Solu tion: J{; = a(a - l).,a·2 y'> , .f/2 = abx0 " 1 /'" 1, and /;{,z = b(b - l)x•yh- 2. Since 

a aod b belong to [0.l]. one has J;~ :!. 0 and ff ~ 0. Morcow-, Jj'; f!a -· u:~)2 ;. 

abx~- 2 y21>-i (l - a - b) ?: O in S. Thus the conditions in Theocem 2.3.1 (b) are s3risficd 
a11d f(.t, y) i~ concave in S. Jf a and b are positive and ,1 + b •: J, then f{; < 0 aod 
f j'~ /,.; - ({;;;2 ::, 0. so f is strictly concave according to Theoreru 2.J. l(J). I 

$f.( 1'10N 2.3 I CONCAVE A NO CONVEX FU NCTIONS I 57 

·n1c ri:suJt.,; in ·n1corem 2.3. 1 on concavity/coovexicy of fuJJClions of two variables can be 
geoeralized IO functions of n vatiables. (The proof ti are given at the cod of this seaioo.) 

Suppose th.at z = f(!l) "" .f(x,, ... , Xn) is ,1 C1 function in a ,,pen convex set Sin R". 
Then the symmetric matrix 

r'' (x) = U/J (x) J.,,. 

i.t called the H essian (matru) of f m s , and the n determinancs 

I 1;~<x) /{2(x) J{;(x) I 
I ff,~ (x) f12(X) //' (x) "l.r ! 

r = 1. '2 •. . . ,11 D,(x) '", . 

1:/(x) 1 · l 1:;:(x) J:,.(x) 

a.re the leading principal miMrs off" (x}-sec Sect.ion 1.7. 
Theorem 2.3. l (c) and (d) can then be generali zed as follows: 

T CONVEXIT /CON IT ONS1 ·, 

j 

I 
Suppo$e that /(x) = f (x1 , ••• , x. ) is a C1 function defined ou an open. convex 
SCI Sin R" . Lei D, (x) be defined by (3). Then: 

(a) D,('x) > O for all x in S and all r = I, .. .. n ==;, .f is slrictly convex l 
ouS. 

(b) ( - 1}' D,(x) > 0 for all x in S and all , "" I , ... , n ~ f is stlicrly I 
concave on S . 

(l) 

(3) 

V.'hen n = 2 and x :c. (x.y), lheu D1(x,y} = f{'1(x, y). Since / 12(x, y) = N,(x , y) . 
we have D~(x , y) = !/; (x. y)J{',Jx . y) - U{;(x. y))2. He~ce, the conditions in TI1corem 
2 .3.2(a) and <b) reduce to lhose in Theorem 2 .3.l(c) and (d), r~ ively. 

EXAMPLE 6 Prove that the function f (x,, Xl ,XJ ) = 100 - '2x? - x} - .:lx3 - x1x2 - 1,,,"-. .,+x, , 

defined for all x,, xi, and x3, is strictly concave. 

Solution: The Hessian matrix of / is r'' (x1 •. tz, ..r3) = ( ~ = ~ =~ = :: ::,: ) , 
-e11 -e." -e" 

where u = x , +xi + .t~ . The three lc11ding principal minors arc D1 = f[\ = -4 - c• ,tn<l 

1
-4 - e" 

D3 = . - 1- e-" 
: - (!" 

- I - e" - ,!' ! 

2 " • : 7 • 
- - f! - e. ,· = •• e 
-(" •-e I 

Thus D, < 0, l}z > 0. and D.\ < 0. By Theorem 2.3.2 (h}, f is strictly concave. 
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Theorem 2.3.J(a) and (b) can also be gcnerali1.ed ton vari.11blcs. To do $0, howcvcr, we mu~l 

: .v.. ,, ·· ,i:: . consickr the signs of all the principal minors of the He.,~ian matrix f''(x) = (f/1(x))n,.• · 
. · RccaTI from Section 1.7 thaf a principal minor 6.,(x ) of order r in (" (x) = {f/1(x)},. xn is 

obtained by deleting n - r rows aod the fl - r columns witll the same numbers. 

THEOREM 2 3 3 fCONVE)(ITYICONCAVITY 

Suppose that /(x) = f(x1, ... , x0 ) fa a C1 fooction dctined on an O!XlO, convex 
.~ct S in 1R". Let t.,(x) denote nu arbitrary principal minor of order r in the 
Hessian malJi)l. Then: 

(a} f is convex in S {::::> t:.,(x) ~ 0 for all x in Sand all t.,(:r), r = I, ... , n. 

·----··---~~:!::~.:.:_:_~:::'·~:_::=~ "'-~ •,<,). _j 

· E.x'.AMPl~ 7 

NOTE 4 ff f(x) '= :r'A..,: is a symmetric qua<lnllic form, thco hy differentiating the double 
~um ( l.7 .6) we get f" (:x) = 2A. For any fixed open convex 5el S in R", if we combine the 
statements in Theore?JO.S 2.3.2 and 2.3.3 with Theorem 1.7.J, we get the following results: 

The Hes~iati matrix f"(x) is positive definite in S = f ( ! ) is strictly convex in S. (4) 

The Hessia,, matrix f" (x) is negative definite in S = J (x). is strictly C<)llcave in S. (5) 

/(x) is convex in S ~ the Hessian matrix f"(x) is positi\oe sem.idetl11ite in !i. (6) 

f(x) is c:oncavt> in S ¢:=> the Hessian matrix t" (x) is negative semidefi nite in S. (7) 

Let /(.1<1, xi. x3) = -xf + 6x1 x2 - 9~ - 2.rf Pro\'e that f is concave. 

Solution: The Hessian matrix is 

~) =2(-~ -~ 
- 4 0 0 j) 

Tn Example 1.7.5(b) we saw that the last matrix i1J (,o) is negative semidefinite. But tbe.n so 
is r'' . We conclude from (7) Lh.lt f is concave. I 

Useful Results 

Usiug Theorem~ 2.3.2 and 2.J.3 to decide convc~tyiconcavi ty can he quite hard. although 
t.asier than r~JyiJ1g directly on the JeGnitions. The following. lwo theorems caa sometime.~ 
case llJe iask of establishing concavity/convexity. 

'ff f and g are C2 functions of one variable., they are concave if anc.l only if f"(x) =:: O 
an<l i;"(x) :5 O. Suppose that a an<l b arc:;:: 0. 11ien G(x) = af(.r.) + bg(x) has G"(x) = 
af"(x) + h1t''(x) s 0, so G is also concave. lf f and g are C2 functions of fl variables, 

SfC'TION 2 .3 I (OtJCAVl; AN D C()N\IL X fll l\.(T:O NS: S9 

the same result holds, but a proof bllScd on Titoorem 2.3.3 would be quit.e mc~sy. You 
sbot1ld therefore approoi;11c the extr~Ulc simplicity of tlle pnx,f of the following ,ouch more 
general result: 

·----·1 
I 

I ------------- --·----J 

If ft .. . . , f ,. are fu0<:tions defined ou a convex set S in R", then: 

(a) fi, ... . f .,concaveao<la1 c: 0, . . . ,am ::: 0 =-} a tf1 + · · ·+a,,J,. cooc::avc. 

(b) /1, .. .. Im com•e<.t and a1 2: 0, ... , am 2:. 0 ~ ,1tf1 + · · · +amfm convex. 

Proof: We prove (a). The proof of (b) is similar. Put G(x) = a, Ji (:X) + · · · + a,. f., (1}. 
For ,. in [O, I] aod x, y in S. the definition (1) of a concave fuuction implies that 

G(J..x + (1 - >..)y) = 11 1f1 (J..x + (l - .i.)y) + · · · + a.,J,.fAx + (1- >..J y) 

:;: a,(>.ft(X) + (1 - >.)/1(y)} + · · · +am [J.f .. (x) + (I - ),,)f.,(y)] 

= >..(atf,(x) + · · · + a., f,,.(x)] + (1 - i.)[aJft(Y) + · · · + +a,,J,.(y)] 
' = .i.G(x) + (1 - )..}0(.y) 

Using definition (I) again, this shows that G is concave. • 
Toe composition of two conca,,e functions is oot necessarily c.oncavc . lf, for example, 
f(x) = -x2 an<l F(u) = - e•, then f and F are botll(so·ictly) concave, but the composite 
function F(f (x)) -= -e-·'

2 
is actually convex in an interval about lhc origin. But if w~. also 

rcquiie the exterior function 10 be increasing, then lhc compo.site fuuction i.~ concave. In 
gcncr-.il we have the following important result: 

THEOREM 2 3 51-·-----_!-- - -------------·---··-· - - 1 
l Suppose that f (x) is dcfi.ucd for all x iu a convex set Sin R" aod that Fis defined 

over an intcMll in IR that contains /(x) for all x iJ:1 S. Theo: 

(a) f(x) concave, f.'(u) concave and increasing "?- U (x) = F(f(x)) concave. 

(b} f<x) convex., F(u) convex and im.-rcasing ~ U(x} = F (/(x)) convex. I 
(d) /(x) convex. F (ll ) concave and decreasing =} U(x) = F (/(x)) concave. I 

! 

(c} f(x) concave. F (u) convex. and decreasing ~ U(x) = F(f(x}) e-0nvcx. 

--- --·---~-·-·--------- ---- -·--·-----··- - --- ---_./ 
Proof: (a) Let x, y € S and let ).. € [0. 1 ]. The11 

uo. :r + (I - ).)y) = F(/(AX + (1 - ).)y)) ,:: F (i . .f{,i) .:. (1 - >.)f(y)) 

~ 'AF(f(x)) +(I·- )..) F(f(:y)) = W(x) + ( l - ),,) LJ (y) 

1nc lirst inr~ualicy uses the concavity of f and the fact that F is i.ncr=ing. Th~~ .= ond 
iu1.'(fuality is due to lhc concavity of F. 

The ~tateuient in (b) is shown in lhl: same way. We then obtain (c} an<l (d) frooo (a) and 
(b) by re:pla~ing F with - F. • 
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NOT£ 5 Suppose tl)e ftlll(>tions f and F in (a) 11re C2 fu11ctio11s of one variable. and 
rhat U(x) = F(f(x )). Then U'(x) = F'(f(x))f'(x) wid U"(x ) == Fh(/(x))(/'(x)f + 
//'(f(.r))J"(x ). Bcc~use Fis concavo and increa:sing and f is concave, F'" s 0. F' ::'.. 0, 
and f" ~ 0. It follow$ immediately that U"(:t) s. O. TI1is ''calculus" proof of (a) fa valid 

for C2 functions of one variable. 
If J is a C1 f-vn~·tion of n variables, it is possible co prove {a) partly relying vu ~,rem 

2.3.3(b), but such a proof would be rather complicated. Aft« auempting it, however, you 
miiht come t.o appreciate hener tbe easy proof :1bove, which nc«ls no <liffe~ent.iabiliry 

~$sumptions at all. 
If we drop the requirement in (u) I.hat f' be concave, then U(x) is oot necessaJ·ily couc.we. 

For example. i f /(x) = .,fr and F (u) = "l, then f isconcave forx ::: 0 an<l 1' is iocreasing, 
but U (x) = F(j(x)) = x 3l2 is convex rather the.o concave. 

NOTE 6 The result.~ in Theorem 2.3.5 can easily be generali1.t.d to the case U (x) 
F(f1(x), ... , f.., (x)), where the functions ft(X) , . . . , fm(X) are all concave (convex) and 
F(u 1, • • • , u.,) is concave (convex) and moreover. increasing in each variable. 

If j (x) = a. . x + t,. so that f is an a/line function of x, then in (a) and (b), the assumption 
that P is increasing can be dropped. Ill.deed, in the proof of (a). the lirst inequality used the 
concavity of f and the fact that Fis increasing. When f is affine, this inequalily becomes 
an equality, and I.bi;: rcs1 of the argument is as before. llius: 

A concave (convex) function of an affine function is coocnvc (convexj. (!I) 

EXA ,,: p L £ 8 Examine the con<:avity/convexity of the following func,tions: 

l:Xoi\M LE 9 

(a) f (x, y, z) .,,. ax~+ by2 + cz2 (a, b, and c ure nooncgativt) 

(b) ,r(r, y , ;:) :::: e11>' +1ty~+<:~ (ll, b, and c are nonnegative) 

(c) ht>:1 , .. . , .<n) = ta1.~1 + · · · + a,.x4)2 

Solution: The function f is convex a.~ a sum of convex functions. The function II is also 
convex. In fact, g (x, y, z) "' e" . with u = J (x , y , z) = (IX2 + by2 + cii·. Here the 
trunsfonnation u .... e" i.~ convex 11nd increasing, and u is convex, su by Theorem 2.3.S(bi , 
c is convex. Final1y, h is a convex function (u - u2

) of a linear function, and thus convex 
according to (8). I 

Deline 1he fonction G on S = ((x . y) : x 2 + y2 < a 2J by 

G(x . y) = A.r + By + lnfa1 - (x~ + y2)] 

Show that G is concave in S . (A, B, and a are consraots. TI1e domain of G is S, because. 
Jou is defined only w hen u > 0 .) 

Solution: The function g(x. y) = Ax + By is linear and hcuc.: cc>m:ave hy E;\ample 2. 
Ddine h (x , y) ::: ln[a2 - (x 1 + y2)]. If we pu c f (x, y) = a2 - x 1 

- r and F<u) = 
Jnu, then h(x. y) = F(/(x, y)). A~ a sum of concave funct ions, f(x , y) is concave. 
Moreover, F'(u) :: 1/r, a11d F"(u) = - l / u2, ~o Pis increasing und concave. Acconling 
w Theorem 2.3.5(:i). the function h(,,:, y) is cone.ave , so G(.r. y,l = g(.~. y) + h (x . y ) is 

.-onc,ive as a sum of concave functions. I 

SE<TlON 2 .3 ! CONCAVE AND CONVtX IU NCT!ONS l 61 

We cntl this s~.ction by provi1ig The.oie= 2.3 .3 :ind 2.J.2 . 

Proof of Theorem 2.3.3: l~r us Mat ,how the implication -F in pan {¥). Take rwo poin,s x, y in 
Santi let. ,'" JO, 1). Detine g(t) = f(y + 1(i - y}) = /(11 + (1 - 1)y) . TI1en t,y using fonnula 
(2.1.7). g'(t) = L,wJ .f{(.y +1(x -·y))lx, - y._J. Using 1he,cl1ain nde agaio, we get (foriuorc ,letails 
$~.e (2.6.6}): ·' · 

Ci) 

Bythe a; sumpl!oo in (:1) that t., (y)?.: Ofor ~JJ yin Sando/I r = I, ... , 11 , llll:on:,n 1.7.J(l,) implies 
tluu I.he <lU."h·alic fo1111 in (i) is 2:. {I for I in (0, I}. 11lis ~hows that g is c1JnveX. ln particular, 

g(r) ""g(t · l i· ( 1 - 1) · 0) :s tg(l) + (1 - l),f (O) = r/ (-,;) + ( I - 1)/(y) (ii} 

But this shows that f is con,reJC, since lb~ inequality in (I ) is satisfied wi1b s. 
To prove that ~ is v-Jlid iu case (a), suppose .f is comtex in S. Accx-.rding to Theorem J.7. \(b), 

it suffia,s to show thuc for all x in Sand all h1 , •.•• h0 wo have 

• ft 

Q .. E I:>:;cxih,h_, ,.: o (ii.i) 
1-1 J= l 

Now Si& an.open set, $0 if x 1c S bmlh "' (h, , .. .. h.) is an arbitrary vector. there t'Xi$ls a positiw 
number " such tbat x + lh E S for all r with ltl < a. l..er. I ,,, (-a, a). Dt-llnc the function p on I 
by p(t) = /(:i:+th). According l0 (8), p isconvex in/. Hence p;'(t) 2:. Ofor all t in/ . But . . 

p"(r) = LLf,j(H rh)h,h1 ,.1 , ... J 

!'\ming 1 = 0, we gel incq_u•lity (ill). 
This proves the equivaleoce in part (a) of 1he 1h~.orem. The equivalence in (b) follows from 1,a) if 

we simply repl:i.ce f with - f. • 

Proof of Theorem 2.3.2: Define gas In the proof of11iwrem 2.3.3. 

(a) If 1hc s~i.lied conditions are satisfied. the Hes~ian watrh f'' (x) is po.~ilivc definite arcQrdi.ng 
to Theorem 1.7. lfa). So forx ,fay the sum in (i) is > 0 for .i1 t in (0. II. It follows tlllll 1/ is strictly 
convex. The inequality in ( ii) of the proof above. is theu suict for I in (0. I J. so .f is $trictly convc<. 

(b) T'u llows from (a) hy replacing f wilb - / . • 

PROBLEMS fOR SECTION 2 3 

1. Which of the functions whnse graphs Mc shown in th.: 6gu re hcl1>w nre (presurn:tbly) con­
•~xlCllTICave, strictly col'.ICavdstrictly coavex? 

(a) (b) (C) 
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2. ta) let f be .:lcfioed for all x , y hy f (x, y) ,. , x · • y - xi. Sll<JW chat f is Qlnca11e (i) t>y using 
Theorc,n 2.3.1, (ii) by usi.os Theorem 2.3.4. 

(b) Show fh,ot - ~- f<,;,y) is conuve. 

3. (a) Show th.ii f (.x, y} = ax2 + 2h.,y + c.v2 + px + qy + r j3 ~uictly concave if ,,c - b2 > 0 
and a < 0. whereas il is sr.rk tly co11vex if oc - b" > 0 Md <1 > O. 

(b) Fiml 11eces•ary and suflicieo! conditioos fot j(.x., y) lo he c,>ucave/cllnVtX. 

4. Fu, what val\li!s of the cunstant a i, the following fuoojon cooc.ve/om\-ex? 

j(x. , y) = -6x! + (2" + 4).xy - l + 4<,y 

@ 5. Elt,\111ine the cMvexity/concavily of !he foUo,.,ing function.<: 

(n) z =.x.+y - e•- e>·1•1 (c) w = (.x. + 2y + Jz)2 

@l 6. Suppose y : , /(x} is a production functioo determining outpul y as a functi(>n of tb.e V<ctorx 
of nonn,:.gati\oe foeto< inputs, with / (0) =-= 0. Shuw that: 

(tt) If J is cMcave, U,en f.'i(x) ;::'. 0 (so c.ich marginal product f/(7.) is decre .. ,ing). 

(b) If J is concave, then /0.x)/J.. is decreasing 11S a fanction of J... 

(c) If f is bomoge,ieous of degree I (constant returus to ocalc), then f is not strictly couc,m,. 

,-.-- - --
7. Let f be defined for all x in IR" by J(x) = lllll "" y >:( + · ·, ~-x;. Prove that f is convex. I~ 

.f strictly convex? (Hint: Use 0 :1.39).) 

HARDER PROBLEMS 

® 8. Use Theorem 23.1 10 sbow th;,t lhe CPS function j defined for v, > 0, l>2 :, 0 by 

is concave for p ~ . · 1 and coavf.~ for p :;; - 1, and tb;,t it i5 strictly concave if CJ -:. JL < l and 
p > --1. (See al~o Example 2.5.C..) 

S 9. (a) TheCuhl>-Dougfas function r. = /(x) = x~' A;' .. , x:,, (,,, > O . ... , a. > O)isdefinedfor 
all x, ,. 0, ... . x. > O. Prove that the kth lendiug principal minor of the HessiOJ1 f' (x) is 

l
<l( - [ "' • • . a, I 

a1 .• • " • 1 a1 n1 - 1 . . a2 
f), ... - - - i . . ,.x . .. x,)2 : : . . I 

a,i. a.t a.,~ J 

(b) Pruvc t11at D,. = (-1)'""1([~., "' - l)l -,~ ~) .. (Hint: Add all thc otberrow<!Othe 
.. .t1, · ·Xx. 

tin<! row, exfr.lcl the commo11 facwr I:;. 1 tr1 - 1, and then •ubtract the/irst colurnn ilt the 
new de1ermi,w1t from all the O(})cr colu11111,..) 

(c) Prove that the fun<elion is striclly concuve if a, + · · · + 0 0 ..: L 

·, ... . 
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2.4 Concave and Convex Functions II 
W,:, coutinue our discussion of concave/convex functiorui. Our first result has a geometric 

interpretation. Consider Fig. l. which conccros the case 11 = L 

.> 

.~;::..--·- ' : I(.< J --~ .. __..,---r 
17 : 

-+---1· ___._., - - ·---x 
Figure 1 f is concave. The t.ai1gc-ar is ab<>vc the graph . 

The tangent at any point on the graph wiU lie above the graph. Toe following algebraic 

version of tbi.~ geometric statement is ext!l:roeJy importa11t in oolh static anJ dynamic opti­

mization thl:ory: 

Suppose that /('x) is a C 1 function defined on an open, <eouvcx set Sin Rn. Titen: 

(a) f is concave in S if and o nly if 

• nf (r') 
f(x) - /(x°) :!: 'il /(x°) · (x - r') = L - - {x; - x?) 

i= l ax; 
for all:\'. and x0 in S. 

(b) f is ~trictly concave iff tbe inequality (1) is always strict when x ,p xfJ. 

(c) Thecorrespondingre.<;Ultsfor couvex (strictly conv~x) functions ace obtained 

Proof: (a) Suppose f ;~ concave, aad Jet x0, x E S. Ao.:onli,1g to de6niri1ln (2.3.1). 

/ (x) - f(xo) :5 .f<'xo + >.(x ~ ~.o)) - f(xo) 
,. 

(I ) 

(i) 

for a!U in (0, LJ. Let;. .... o+. The right-hand side of (i) then upp(OOcltes the righ1-lu1nd side in ( l) 
(see the argument f,>r formula (2.1.7)). Because the ..... ~ iuequalicy is preserved when passing 1.0 
the limit, we have shown iueqnality ti) . 

To prove the te\'erse implication let~. 1.0 f; S and J.. E iO, 1 ]. Putz. = .l.x + (I - · i.)x0. Then z 
beloo~s to Sand, :iccordiog to (1) . 

/(1.) - /(z) ~ V / (z) · (x - z) . /(x0} - /(z) ::, v /(1.) . (x0 - z) (ti) 

where we 11.<;ed the gx,ulient notal.iou from Section 2.1. 
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Multiply the first inequality in (ii) by :I. ;, O and the 1<eeond by l - :.. :, I.I. and add the re.suiting 
inequalities. Tltis give~ 

!..(f(x) - f(z)i + (I - ).)(f(x0) - f(z))::: V f(z) · [J..(x- z)+ (l -:l.)Cx0 - 1,)} (iii) 

Herc ).(x -1:) + (I --· ).)(i> - z) = >.x + (1 - i.)x0 - z = 0. &,> the right•band sideof(iii) is 0. Thtn 
rearranging (iii) we sec chal f is concave. 

(b} Suppose that f i~ s1ricrly con~ave in S. Then inequality (i) is ~rict for x # x~. With z ,~ 
i• + .l.(x - Jt0 ), we have 

where we used ine.quali!}' (I). which we have already proved, nnd the fact that z - x0 = J..(x - xo). 
Thix show~ that (I) holds with strict inc.iualiry. 

On the other hand, if (I) holds with ~rricf inequality for x i= x0 • then (ii) and (iii) hold with::: 
rt'.placed by <, and thus f is strictly concave. • 

The next theorem lists several interesting properties of coacave/convex funcrions: 

T EORENI 2.4 ··-------····------
utf(x) = f(xi, ... , .t.) illld g(x) = g(.q, ... ,x.) be defined on a convex set 
Sin R". Then: 

(a) If f is concave, the set P0 "' {x E S : .f(x) ~ a) is convex forev.:ry numbera. 

(b) If f is convc!ll, the set I'" == Ix G S : f (x) :=o. a I is convex forevery number a. 

(c) f is coucavc <==* Mt ""{(x:, y): x ES and y ~ f(x)I is convex. 

, (d) /iscorwcx <=> Ml=((x,y):xe:Sandy~f(x))isconvex. 

I (e) /andgareconcave ==;, h(x) = min(/(x),g(x)) i,Honcave. j L---·---(t) f.andg are convex ===} H(x) =max(f(x),g(i.:)) isconvcx. _J 
Proof: (a) Let x and y be points in I'.. 'l11en x and y belong to S, while /(x) ~ a and· 

f(y) ~ o. If J.. e [0, l], then J..x + (l - .l.)y also belongs to S (since S ls convelt'). Because 
fis concave, j(b +0 - >.)y) ~ i..f(x) + (l -).)J(y) ~ J..a + (I -i<)a,,,. "· Thisshows 
1hat )..x + (I - i.)y E I',,, which conJinns that P0 is convex. (If Pa is empty, P,, is convex 
hy definition.) 

Part (b) is shown in the same way. Parts (c) and (d) follow easily from the definitions. 

(e) The function h maps x to the smaller of the numbers f (x) and g(x). Using the notation 

from part (c), M~ .,., Min Ms. The hypothesis that f and g are concave implies that ,t.'11 
and Mx are convex, by part (c). Since the in1encction of convex sets is ,,onvex, it. follows 

from (c) 1fiat Mh is convex and so h is co11cave. Pan. (1) is shown in the same way. • 

The result in pan (c) h illustrated in Fig. 2, while Fig. 3 illtLstrates part (d. 

y 

! 

' 
,· 
r ,, .. 
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Y=f('J.) 

. ~ 

M?,~ 
; 

: s 
:-1--:-,-'.'""""-------l··· - X 
.. ~ ·, ·'- , .. 

... '·:? :~· 

Fig11re 2 Mj ""{(x. y): x E: S. y ~ f(x)) 

Jensen's Inequality 
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Suppose we put ll' = X1, y == X2, .l.1 = ).. <illtl .l.2 = l - ,. in the definition (2.3.1) of a 
concave func!ion. This leads to the equivalent definition: f is concave on S if and only if 

for all xi illld x2 in Sand for all)..! ~ 0 and )..2 2: 0 with ;.1 + ,\.z = l. 
Jensen's inequality extends tom points this characrerii.ation of a concave function: 

HIEO EM 2.4 

A function f is concave on the convex set Sin IR" if and only if 

/(l>.JX1 + · · · + ..l..,x,.) :::: l.if(x1) + · · · + :....,.J(x,,.) (2) 

holds for all x:1, .... x.. in Sand all )q ~ 0, ... , .l.., ~ O with ).1 + .. , +J..,,, = 1. 

ll1e result for convex functions is ohraincd by l'eversing the ine4uality sign in (Z). 
It is obvious that if (2) holds, then f is concave: with m = 2 and,\ = J..1 = I - :...

2
, 

(2) reduces to the inequality in the definition of a concave fonction. Problem 3 suggests an 
a:rgwoont showing that the inequality (2) hold~ for any concav~ function. 

XAM PU l (Production 1moothing) Ccmsider a manufacruriog firm prodl.tcing a sini,:ic coD1111odity. Toe 
cost of maintaining an ou1put level y per year for a fraction>.. of a year is ;.C(y), wher~ C'(¥) > O 
and C"(y) ~ 0 for ally .::: 0. In fact, the firm's OUlpllt level ca111luctua1e over the year. Show tb3.t, 
giveo the 101.,1 output Y !fiat the firm produce• over the whole year, the firm's mtal Co!.1 per ye~r is 
minimized hy choosing a constant flow of output. 

Solution: S11ppose the Jlnu cb~c, differen! nu1pm levels y1, ... , y., per ycur for fractivJJ~ of 
Ille year i.,, .... J..,., respectively. lbeo the total output is I:;~1 J..,y, "' Y. which i• producc!'d at 

rota! ~osf }:~=I J..,C(y; ). Applying fonscn's ire(!uality ~) 1h<, coovCJr function,; gives the in<:(t1~1Jiry 
[~.1 A;C(y;J.::: C{:[~, 1 ).,y;) = C(Y}. The righr-h.,nd side is me C<.lSt of oia.im.aining the C<>nstant 
ompm kvcl Y over the wbole year, IIJld dlis i3 the minimum cnsl. I 
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To~-re is also a continvoui; ven;irn, of JeusC[l's iut,qualiry tblll involves inccgrals. We cesoicl our 
aiuntion to functior.t~ of or.e real varia.bl.e. A proof of the next lh~.orent is indic><too in Problem ,i. 

fHEOREM 2 4 4 JENSEN s tNEOU~un CONTINUOUS 'v ERSION' -·- - -·--1 
Let x(r) and i.(1) be continuous functious in Ilic iuterv81 [a , bJ, with A(r) ,~ 0 a,1d 1 

/_,, J.{1) dr :r 1. If f is• coocave functioo de6.nod 0 11 die ~ nge of., (r), d,cn I 
, ·• 1(f.~ i.(t)x (l ) dt) >.: [ ' A(t ) /(x(r) ) tft I (3) 

L-·-·-··--- ·-·- - ---- -·- --- -- --··-----·- .. ------ ·-·___J 

EXAM PLE 2 

NOTE 1 Jensen's inequality is important in statistics. One application is this: If [ is C<Jncave in 
an interval I und if X is a raodom variabl.e with vnJues in I whose expectalion E(X) is finite, then 
/(E(X)) ~ E (J (X )). 

(Cousumptionsmaothing in ~ontinuous time) Suppose 1baL a consumer expects to live from 
uow (timer = 0) until time T . Let c(t) denote consumption expenditure !low at timer, ~nd ytl) lhe 
given jacon,e flow. Le! u::0 be wealth :u ti.we O. A!<Surue lbM tile consumer would like to d1oose c(r) 
~o as to max irnize die lifetime intertcm poral utility function 

(j) 

where a > 0 is the ro~ f'J impatience urof laility discount, ..nd 1t(c) is II suictly inacasu1g coocave 
utility functi(>n (such a& hi c vr -c"1) . Suppose thut r is the instlll)laneous ralc of i.nteR'.st oo savings. 
llJld lhaL tht1 consumer i& Dot allowed to pass lime T ill debt. The initial weal(b. 1.ugelber wilh the 
prescot cliS4lOUnted value (POV) of future income is WT = ""' + J;'; c_,., y(r) dt. The inu rtempora.l 
hudger co,r.srrain1 impoSC$ the reqoiiem,;nt thal th• PDV of COJ1$W1,ption caono< exceed wr: 

Lr e-"'c{t)dt:;: w1 (foralla<lmfasiblec(rl) liiJ 

Finding an ()J)tirual time path of ccn.<umption fur a problem lit:e this gen<,rally involves techniques 
from optimal coJltrol the<>ry. (See Ex,unplc 9.4.2.j In CM special cast wbe11 r = a, however, an 
optimal tin,c path can ea.1ily be founc.l by means of Jco.seo'8 inequality. Let l: be the (wnstant) level 
of consumption that sarislits the equalioD 

( r e -" c d t = wr "" w0 + f
1 

e-"y \ t ) dr (iii) 
lo /.) 

Notc how c = j intl1c specialcascwhcn wu = Oand y(1) "" y fornllt. Oru claim is that ao QpLirnm 
(Xllh is to cbQOSC c(I ) = c for all 1, whicb we eall "'C\JflSUtl'.lflliOD S1\l(1ot.h.ing" because all fi11C1uarions 
w income are smoothed ,~uc through ~avwg and b<11TOwing io a way that lca,·t~ consumplion con~tlnt 

To establish this clailu, dcl:ine the coostant ix .. J.{ ,-rr d1. Then (iii) inlplies f ,,, wr jii.. N<,w 
apply Jensen'& inequality to the concave func!ion II with weigh•~ >.(r) = (I /i':t. )e .,, . This yields 

u (iT (l/ a)I!_,, c(f} ctr) ~ L r ( I / it}~- " u(c(t )) dt ca ( I / ii) for e"" u(c(t)} d t (iv) 

Inequalities ~iv) 3J'1<l tii), together with the fa~t that c = wr /a Mtl lhc definitioo of ex, imply that 

1 \ -" u(c(t )) dr :5 ciu(} fo\ -"c(t)d,) !:' au.(u; ) "'i'iu(c. ) = L r ~-" .,(c) d t M 
This prove, tllac uo otber con$t11nption plan satisfying budgel.constraiJlt (ii) can yidd a higher ,11lue 
of lifetime utility, given by (i). than does the "sr~c.ousumpticm" path with d t ) = i: for all :. I 

. ···.,. 
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NOTE 2 Cousumprion smoollling is ncrually quit<! an impor-.aut topic in ecoo1m1ics. John R. Hick., 
ckfined "inn 1tnc" as d1e lew.1 of consumption 1ha1 <'llll l>e s11$taincd witl,_,u, change. Milton F1ied.ill&'l 
~ailed a simllar measure "pcrtnan~-n~incornr.", il.nd .:rmnciafed the "'pe, man.cnt incnme h;'J)Othesis'' 
lll;('ording 10 wbicb a me:isure of "pcnnwx-ut consumption" equals Jl"'Ttl:ln~u ilK'=-

Supergradients 
e ven if the c1mcave function f in T~orem 2.4.1 is nuc oecess.iri ly (.'1• we still hav<.:: 

Let f be concave on a conve1. set S ~ Rn, and let x0 l>e an interior point in S. Tbe.n there 
em u a vec1or p in R" 8ueh chat 

f ("J. ) - / (r>} =: p · (x - x"} for all x in S (4) 

A >CCtOr p that satisfic.~ \4) is called a supugradicot fo, / at r>. SymmelricalJy, if f is con,·cx. 
there cxi~l~ a vector q in R• such lbat (4) i~ valid with ;<,: repl~ccd by :::. and p by q. Such a vccl()r i~ 
called a sub171radien1 for f. 

Proot Ltt 11f1 = l (X. y) : x E S aod y ~ / (:r)). Acconlin~ to Theorem 2.4.2(c), M1 is convc;c. 
The pointzn = (x0 , / (x6)) E M1 isabouodary pointof M1,since (x0 • / (r>) +y) ,;: M1 <orall y > 0. 
By cl,c supporting byperpllwe theorem (Theorem 13.6.2) !here ex.Ms a vector qO :, (po. r) ,;I, (0. 0), 
with p'1 E R• and r E R ~uch that 

( • ) 

Given any v :,. 0, one ha~ :t = (r'. / (x0 ) - v) € Mt , so p'l · x0 + r/(x'') - rv ~po. :.O + rf(:,co) 
by(• ). Hence -rv !i O for all,.:, 0. 11 follows thac r ::: 0. 

We want 10 prove that r ;! 0. To thiR end, note UW foe all x in S. one h:l,q 2"' {X, f (x)) e Mi. 
So (+) implieij Ola! (p0, , ) · (x. f(x)) !i (p0, r) · {X0 • / (il)). Truuis, 

r>° · x + rf (x ) ;:; p9 
· x" + r/(x0 J fo, all x i.u S 

Suppose hy way of contradiction that r = 0. 1l1~n p0 f, 0. fly (O ) one ha• p?. x::; p0 . xo for all x 
in S. Bue po · (x0 + ~p0) > p0 · x0 {or all F- > 0, ~t\ :,c0 + F.p0 i S for all F. ::, o. lbis would imply 
that ti is a boundary point, contradicting the hypolhesis that it. i~ • n interior point. Hence r > O. If 
we de.fine p = - p? / r, :ind divide (-.•) by r, we get inequality (4). • 

NOTE 3 Suppose f is defined on n ~ct ~ ~ R" , I\Dd that 11° is au inlcricJr poiut in S al wh.icb J 
h difforcntiable. Then, if p is a supccgradirnr for f at 11°, i.e. a vector that satisfies (4}. one bas 
p = I;,' / (r'). This resulc follows bcc,ull;e \O(X) "" f (s.) - / (:rO) - p . (;r - tl) bas a maximum 
at x0

, so 'lyitJ<.0) = 0. Hcace. if a cmu:ave function J is difft rentiah/.e, its grodir.nt is rhe on l_v 
$"{)'-'J/TlldiMI, 

"ROB EM FOP 

1. Use TIIN rem 2.4.1 to prove lh:11 / (x , y) = l - x~ - y2 dr.fuied in R2 is ccmcave. 
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2.5 

2. Apply JellSeo·s incqualiry (2) ro /(.,:) ""bu, with .l.1 = · · · = !... = l/11 u, pro>e thar. 

fot .I'.! > o .... , x. > 0 

(The geometric mean is less than or equal to tbe. arithmetic mean.) 

HARDER PROBLEMS 

w,Jl 3. Prove Jemen's inequality (2) form = 3. (Hi11r: If m = 3 and .l.3 = l, the inequaliry in (2) i~ 
trivial. If .l.j f, 1, then .l., + .l.2 ;I, 0, and 

( !..; A2 ·) j().1x, +)..2x2+.l.lXj) = f \(Ar +.l.2)(),.
1 

+i..z x, + J..i +;.
2

112)+i..JJ<3 ( .. ) 

Show how (2) can now be dt!-rived from the result form "'· 2. Toe geoeral proof of (2) is based 
on mathematical induction.) 

4. Prove JCJ='s inequalicy (3) for the ca.o;e in wbicb f i.~ .c1 by 11.<ing Che following idea: by 
(I), concavity off implies that f (x(r)) - f(z) ~ j'(zf(x('.) ··• z). Multiply botluides of !his 
in~uatity by i.(t) and integ1.,11e w.r.r. t. n,en let z = f. A(tJx(t)dt. 

©al 5. Suppose Sis a oo,wex sub><cl of R" and rllal the function /: S -... R" has a supergrooient at 
· every point of S. Prove Wit f is concave. 

8 6. With reference to NO!e 2.3.2 prove that f(x, y) = .x4 .+ y• is ~trictJy convex. (Husr: Use 
Theorem 2.4.l.) ·· 

Quasiconcave and Quasiconvex Functions 
Let /(x) be a function defined over a convex set Sin R". For each real number a, define 

the subset P0 of S by 

P. = /x E S: J(x) ::: a) (I) 

Then Pa is called an upper level set for f. II consists of those points in S that give values 

off that are great.er than or equal to a. Fig. I shows the graph of a 4uasiconcave function 
of two variables and Fig. 2 shows one of its upper level set5. 

t 

"' 
I 
! 

' 

Figure 1 A qua.,iconcave function 
of two v,riables. 

Figure 2 An upper ~vel set 
for the function in Fig. I. 

SECTION 2.5 I QUASJCONCAVE AND OUASlCONVEX FUNCTIONS 

We say that l is quasi1"0nvex if - f is quasiconcave. So f is quasiconvex if the 
lower level sel p• =.ix: f(x) ~ it) is conv~ forC:'.i.ch number a. 
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(2) 

Show that /(.t, y) = e-,'-y' (which is proportional to the hivariate normal di<tribntion 
function in stalistics) is quasiconcave. (IL~ graph is often called "bell.-$hape<l".) 

Solution: Note that f (x, y) :5 I for all (x, y) and that f (0, 0) =- I. For each number a. 
let PP"' ((x, y): e-xz-y, :::, a}. Jf a> I, P0 is empty, and thus coove.t. If a""' I, the set 

P. consi<c.s only of the point (0, 0), which is convex. If a ~ 0, P
0 

is the whole xy-plane, 
which again is convex. Suppose a e (0, J). Then e···•'->'1 

.:::_ a iff -x2 - y2 ~ In a iff 
x

2 + y2 
::: -Ina. The point~ (x. y) satisfying the last inequality are those on or'inside the 

circle centred a, the origin with radius J- Jn a. (Since a e (0, l ), - In a is positive.) This 

is a convex set, so all upper level sets of J life convex. and thus f is quasiconcave. (In 
Example 3 we give a much simpler argument.) I 

Let .Y = f (x) be any function of one variable that is either increa.~rng or decreasing 011 

an interval. Explain why f is qua.,iconcave as well as quasiconvex. (In particular. it follows 
that a quasiconcave function is not necessarily "bell-8haped".) 

Solution: The level sees are either in1ervals or empty. Figure 3 shows a 1ypical case. 

y t 

I / 
. :' ' "r-·- --··-·· r-·-----i 

J
~, ---?74---·-·--·i 

' ' . . . ' . : 

-~-.___j_________,__;.__ 
! "'' •, d 

Figure 4 lllus1ra1ion of (4) and (5). 

The function in Pig. I is nol concave. For c'l:ample, the line segment joining points P and Q 

on the graph lies ab()ve !he graph off, not below. On the other hand, according to Theorem 

2.4.2 (a). a concave function has convex upper level set~. Likewise., a conve:,: function ha~ 
convex lower level sets. Thus: 

If /(x) i~ concave, 11lcn /(x} is <1ua.siconcave. 

If /(x) is convex. then f(x) is qua.siconvex. 
(3) 

Theorem 23.4 implie.~ that a sum of concave functions is agai11 concave. Th~ corresponding 
re~ul1 is not valid for quasiconcave fllnctions (st:e Problem 6}: 
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. WAR.NtNif'-- ·---"---.. - ------......,·-- ----- --, 

; · A sum of qua.~icuocave functions need not be qllili1.-on~ · 

·--·-.,.--.--..... ··-----·------- ·----· 

i 
I 
I 
I 

Some useful properties of quasiconca,·e funcrio11s, illusttat.e<l in Fig. 4, are tbcse: 

Let f be a function of n variables deflned on a convex set S in R". Then f 
is qua.1koneave if and only if eitlJer of the following equivalent conditions is 

satisfied for all x and yin Sand all>.. in (0, I): 

L ------------
f(>.x + (1 ->..)y) ~ min !J(x}. / (y)) 

J(x) ~ /(y) ~ f(h + (1 - .\.)y) c=: J'S) 

(4) 

(5) 

Proof: Suppose that f is qua.~iconcave. l.el x, y e S, i. E [O, l]. and define a 

min(/(x), /(v}).1'he.n xandy bothbelong to thesetP0 :c {u e S : f(u.) ~ a} . Since P, 
is con,-ex, I.be vector ).x + (1 - i. )y is also in P •. meaning that / (.ll' + (1 - .\.)y) ~ a. So 
(4) is satisfied. 

Suppose on the other band that ( 4) is valid and )eta be an arbitrary uumber. We .must show 
that Pa is c.:onveJ(. If P0 is empty or consists only of one point, Pa is evidently convex. lf Pa 
contains more than one poinl, talce two arbi!Tary {lOiDtS x and y ill P0 . Then f(x ) :: a and 
f (y) ,:: a. Al~o. for all). in (0. IJ . (4) implies t.hat/ (.1.x+(l - .\.)y) e: cniJAlf(x).J(y)) :': a, 
i.e. i..x + (1 - J..)y lies in Pa, Heucc Pa is convex. 

FinaUy, it is easy to prove that (4) holds for all x and yin Sand all .\. i.o lO. ll iff {5) holds 
for all sueb x. y, .I,.. • 

The followli1g result is useful iJl utility theory because it shows thul quasiconca\'ity (or 
quasiconvMity) is preserved by any increa~ing transformation F: 

~: f~~~ -~:~==·~:~~:n:~:~:·:~-~-=~:~ F he~;:ion =~:::ariab~~-·1 
whose domain includes / (S). 

(a) If f (x) is quasiconcave (q=icoovex) and Fis increasing, then F(f(x)) is 
quasicuncave (qua~icoovex). 

(b) If f (x) is quasiconcave (quasiconvell) and Fis decreasing, then f' (/(x)) i~ 
qua.siconvcx. (quasiconcave). 

--- ····--·-·--·---·-------------·------ -·- ------- · 
Proof: (a) Soppo9e that /IX) is quasiconcave and F i~ i..ucreasing. U F(ftx.)) is nor 
quasiconcave, then by (4) i.o 1lieorem 2.5.l ih«e must exist pointsu and v in Sand a point 

X MPl:l: 4 
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w =::: .\.u + ( l - .\.)v on tJ1c line segment betwc.cn them rnch that .,_.(f(w)) ~; F(f(u)) 
and F(/(w) < F(f(v)). Since f is increa~ing, this would imply tllft.t f(w) <; j (u) and 
f (w) < j (vi. By l 'heon:tll 25. J again, lh~t is impo.ssiblc if f is qua:;iconcave. It follows 
lliat F (f(x}) is qua.~ icoocuvc. 

The quasi convex ciise i~ ~.ated i.o similar manner, and linally the proof of (b) is ru1alogous 
Lo U!e proof of (a). • 

In Example 1 we showed Iha.I. /(x, y) ~, e _ _,,,.,, is qua.,iconcave. Because of The­
orem 2.5.2 we can give a simple.r argument. The fwiction - x2 - y2 is concave, and therefore 
qoasironcave. Tbefunction u M e" is increasing, so f(x, y) is qua.~iconcuve. I 

f,.conomJsts usually think of an individual's utility function as representing preferences, 
ratha than a.~ a numerical measlll'emeot of"happiness" associated wi1h a certain commodity 
bw1dle. So economists are more conc.crned with the level secs of the utility function than 
with the nu01erical values taken by the function. Given a utility function, any iocreasing 
transformation of that function represents the same level sets, although the numerical values 
assigned 10 lbc level curves are dilferent. Nole that, accon.lwg to Theorem 2.5.2. the property 
of yoasicon~avity is pre-.served by an arbitrary incrc.ising ttansformation. (This is not the 
case for concavity. The furu:tion f in Example 3 is not concave.) I 

A set K in R" is called a ~ .. ,ne if tx e K whenever x E K and t > O. A function f defined 
0 11 a cone K is homogeneous of degree q if f (tx) = 11 f (x) for all x in K and all t ~~ 0. 

1 ~----- -----·-··--· -·-·---~--- - ·- ··- ------ - - - ·--1 
Let /("JI:) be a funelio11 defined on a convex cone K in R". SupJ)(lse that f is 
quasi concave and homogeneous of degree q, where O < q ::s 1, !hat f (0) "" 0, 
and tha1 /(x) > 0 for all x # 0 in K. Tiien f ls concave. 

i 

I 
i 

_ _____ .,.. .. - ... ~ ......... .------·-·-·-·-........ - - ,.,;--.·--- ·--·--·---··- ·-···-...! 

Proof: Suppose q = 1. We need to show !hat if :r and y a.re points in K and.;. E [0, I J. lhcn 

f(>.x + (I - >.)y):: Aj(x)+ (I - >.)f(.v) (") 

lfx = 0,tbeo /(:r) = 0,and (*) is satisfied wilh ~uality for ally since / is bomogeocousofdegred . 
Tbe.,acneis1rue forall1i f y = 0. SQpp<)senexubatx 1' Oandy ,c O. Then / (:r) > Oand f /:J) > 0, 
by hypolhesis. Given any J.. 1, (0, I], pul a = f (x)//(J), p "'a).+ (l - J..), µ. = ai..//J. and let 
x' = (jJ/a)x,y' = fiy. Note tbatµ. <:: (0, 1]. Also . .ux'+(l-µ)y' = i.x+(Jl - aJ..)y = i.x+ (l-.!.)y. 
Moreom, /~') = (;J/a)/(x) = P/(y) = /(y '). Siuce f is 4u:..1iconcave, 

JO..x + ( J - J..}yJ '° .f(µ.,! + (I - tt}y'} ~ fix'}= .f <:l) = µ/(x'H· (I - µ}J(y') 

"' (p,tl/a)f(x) + (p - /Jµ.)J(y) ••• ).f(x) + (1 - ',..J .f(y) 

Thi., proves rite theorem in <be ca,;e when q = I. 
Finally, ~uppose that q ,; (0, I]. aml define a new function g by g(x) = (!(x))11·I for all x in K. 

Then g is qUA~k,·,n~ave aou homo11-eneous of degree I. ,u,d .~(X) > 0 for x ;6 0. According: 10 the 
:,rguroent aoove, g is conc~vc. The.oreru 2.3.5(a) ,hows thai f = g• i, also conc3vc. • 
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EXAMPLE 6 

The C-Obb-DouglllS function is defined for all .r, > 0, ... , Xn ~~ 0 by 

t = Axt ,-ci' · · · x:" (llJ, a2, . .. , a0 , M u ti are positive con~11111ts) 

Taking the mmi.ral logari thm of each side yields ln z "" In A + a1 1n x1 + · · · + a.111 x •. A~ 
a sum of cooca\<e functions of (.~, •...• x,.), ln .i: is coneave, and hence qW1siconcave. Now, 

.:. = e1"'·. sod the func tion" o-+ e." i!I increas"ing. By Theorem 2.5.2(a), z is qua.~iconcave. 

Lct a "" <11 + · · · + a •. For(/ < I, the Cobb-.Oougla." function is snictly c,m~ve. (See 

Problem 2 .3.9.) For 11 :,. I, it is not concave. (A long the ray x1 = · · · := x0 = x, one h:IS 
z = Ax". which is strictly convex for a > I.) 

If a S. 1, Theorr.m 2.5.3 :;hows Lhat the function is concave. The following displa.y sr t, 

out some of the mos!. important properties of the Cobb--DouglllS function . I 

TI1e Cobb-Douglas function z = Axf' · · · x!" , defined for x1 > 0, ... , Xn :• 0, 
with A nnd a 1, • .. , a, positive, is homogeneous of degree a = a 1 .,_ · •. + a, , 
and: 

(a ) q uasiconc3ye for all a1 •.. . , a0 ; 

(bl cone&ve for a ::: I; 

(c) strictly concave for a < l. 
______ _J 

Th.., i;enernlized CES function is defined for x , > 0, x2 ·., 0, . . . , x,. > O hy 

(6) 

: = A(S1.t~" +Six;P + .. · + s.x;")-;,Jp, ,\ ;. 0. µ > 0, pf 0, ii, ~- 0, i ..:: I, ... , n 

We have z = Au-PI/J where u ::: oi,x~·p + i52x2P + · · + 6.x;". If p ~ - 1, then u i~ 
quasiconvex (in fact convex ~s a sum of convex functions) and u o-+ 11u-1•/1> is increasing, 

so z is qua,iconve~. accor ding to Theorem 2.5.2(8). ff fl E f-1, 0), then u is quasicon­
('.av~ (in fact concave) a11rt r, ....+ Au-"'" is incceasing, so z is quasiconcavc according w 
Theorem 2..5.2(a). If p .> 0, then u is quasiconvex (in fact convex) aud II o-+ A,,-1,i• js 

tlecreasing, so z is quasiconcave according lo Theoicm 2.5 .2(b). 

It is ea~y co see lhal z is homo~..: neous of d1:gree /•· Ir follows from Theorem 2.5.3 tha1 
if O < µ. S 1 and p ?.: -1, then z i~ concave. Pan (c) o f the display below follows from 
Problem 1 I. I 

PROPFltTt€S OF THE GE'l.E.RA IZED CE~ FlltVTIO'I 

Th~ CES func.tion, :::: A(S1x~"' + Six2P + ... + !J.x;t) - 11/P, A > O. '" > O, 
p f. 0. '51 ;, 0. i = l, . .. , n is homogeneous of Jegree J1 •• and: 

(a) qua.siconve:<. for fl :5 - l, 4uasiconcave for fl ~ -l; 

(b) concavcforO <µSc I, p?: -I; · 

i (c) stric tly concave for O < 11. < !, p ;.- -·I.. J! 
i. _ ___ ,, ____ ___ ----·----- - ---- ---------- ---
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Quasiconcave C1 Functions 

Theorem 2.4.1 u:nplies that the graph of a cone.we ci function lies below its tangent hyper­
plane. We now consider a somtwhat s imilar characterization of qua.sic()OCHve C 1 funt'tion.s. 

The geometric idea is,,uggested in Fig. 5, where the upper levcl set Pu = {x: f{x) :::: al 
is convex. Here x = (xi, x2) and f(x0) = a. The gradient 'v J (x0) of f at xO i~ or­

thogonal to the level surface f (x} :.e a at 1<0 (the ltvel curve in rbc twci-dimeosional 

case), and poinL~ in the direc tio n of ma~ imal increase of /. (See Theorem 2.1 .1.) Points 

i: 1h01 satisfy VJ (x0) · (z - x'') = 0 are on ihe tangent hyperpl:u>e to me lc~el curve 
at x0. If we chot,se, an x in P., then f ('X) ~ a = f(x0), and it se..>,ms that lhe il.llgle 

a be1Ween the vectors x - ,,!J and 'iJ f (x0) is always acute (:!:: 90°), in tbe s"'1JSe that 

'v/(x0) ·(I -: x0) = fl'vf(x0)tl ll x - ¥0 Ucos a :!. 0. (See ( l.1.4-0).) To ns, the poi.uts x 
in Pa all lie "above" the tangent hyperplane to the level turf:ice. In that sense, the 1angent 

hyperplane "supports" the upper level set Ou the other hand, in Fig. 6 the level ~ec Pu is 
not convex, and the ta.ngenl hyperplane at x0 doe~ not support the level se t. 

.>:2 

f 

I 
-1--- f (x)=a/ --.. --·--- x, 

Figun! 5 P,, is conve.~ and 
V /(Xo) · <• - Xo) ?: 0. 

x. 

Figure 6 f',, is not co11ve,1. and 
°" / (Xo) · lX - Xo) -.: 0. 

FHEO~rM is' 41 ·-- -· --·---·---·-, 

L 
Ler f be a C1 fonction of n variables defined o n an open convex set S in Rn. I 
- 1 ,, ,,~-~~" .rn..., ,,,, "'" ., ••• ,. ,, s I 

/(x) c:: / (x'1} =* 'v /(x0). (x - :,co)= t ~~~o) (x; .. x?> ~ O l (8) 

;~1 ./ J 
-·- ---· - - ---~--- --- - - --- . 

Proof: Wt:. prove th~f if f is quasiconcav-c. Chea (8) is valid. (Th.c reverse implication is 

also true, but !Cl;.~ u.'leful.) L.:t ,c, x0 E S and dc:fine the function 8 on [O, 1.J by g(1) = 
f(x0 + 1(x - :t°)). Then g '(r) '·" v / (x0 + 1(,r: - x~)) · (x - x0). (See th.e argum.:nt for 
(2 .1.7).) Sup()(>Se / (x) :C: / (x0). Then by (S) in Thoorem 2.5.1, g (1) ~ g(O) for all t in 
(0, l] . Thi~ iniplic~ that g'('()) = 'ii /(xQ) . ~X' ... xo) ~ O. • 
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A ~tronger propclty th:\i) quasicon..:3vity is strict quasiconcavity: 

···o (FI NfTIOt- OF .STRKT QijASICONCAVITY/QUASl(ONVf:iX 't ···---- ·- ·- -·1 

i 

I for all x and y in S with x ;e y a11d all >. in (0 , l }. The function f is strictly l 
···- --··- - -~-.--- quasknnvexif - / is stricrly qua~iconcave. ·-··-··----·---·------- J 

A function f defined on a convex ~ct. S ,;; R" is called strictly qW1Siconcave if 

/(Ax + ti - ).}y) > min(/(x). f ()'}f (9) 

I ! is easy to 1•erify that any strictly concave (<.:ouvcx) fun ction is strictly quasiconca,·e 
(quasiconvex).2 

It follows from Theo1em 2.5.1(4) thal a stricrly quasiconcave funclion is qua.\iconcavc. 
(lt suffices 10 check what happens if JC == y .) We &ee from the definition th&t a strictly 
increasing (or decn:asiilg) funClioo of one v-.uiable is always saictly quasiconc.we. 

,\n. impon ant fm: I ubo1Jt srrictly quasiconcave functions is that th,ry cWlTUlt /,ave mon: 

tlum one global maximum point : if x; and y arc t.wo different points with f(x) = f (y), lhcu 
f (1.) > f (x) for every z on the OJ>en tine segmenl (x, y). 

A Determinant Cr iterion for Quasiconcavity 
For C~ functions one ,:,m1 check quasiooncavity by examining lhe signs of cerutin dctenni­
nMts, called borde11:d Hessians. The ordiiiary He.ssians used in Seclion 2.3 to examine 
tbe concavity of a function arc "bordered" by 1u1 extra row and colullln ctmsis1i11g of the 
first-order partial derivatives of Ilic function . For the <:as.> of two variabks Ilic CC$Ult is the 
following (see also Problem 9): 

THEO RE M 2 5 6 ·---· · ··-·····"--··--···· ·······- ·--··· -····- ·······-·--·--··,-······-·-·········-- ---1 

Let f (x , y) bca C2 function dd ined in an open, convex Se( S in I.he plane. Define 
the horde.red H,~ssian de termi nant 

Then: 

! 0 

Bz(x. y) = II /{(x, y) 

/7.(~ . .I') 

f{(x, y) 

f{1(x. y) 

Hx,y) I 
f[;(x, y>\ 
/':ZJt, y ) i 

I 
I 

(a) A necessary condition for f lo be tJuasiconcuve in Sis chat B,. (x . yJ ,:: 0 for 1· 

all (x,y) in S. 

[ _______ "' :;·:,~:;;-:':: ;-;; {~,~,;.~'."' _,_'""'" s • ""' ,;c,. ,, #J 

(10) 

i Somc-:Uthors use a w~_.k;~lefinition of ~rrict quasiconcavity and only rcqllire (9) lo hohl whe.n 
f lX) fa f (_v). llul u1e1, j is 001 necc.s.<arily qua~koncave. Sec Prohlem 6. 
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,E AM F.1:£ 7. We alre.ady lcnow from Exa111plc 5 th.at the C obb-Douglas fuuction clefine<l for all xi > 0, 
... , x. ;.,. 0 by ? -= Ax~' x? · · · x~· (with A :wd " ' • .... an all posith-e) is always quasicon­
cav~. We can u.,e Thcorem 2.5.5 to confirm this result for n = 2 . The first- a(ld sccond-orde.r 
partial derivatives can be expres,cJ I\S z;,,.. a; r.(~ •• z;; = a;(a, -1)1./1--;, .. ;1 "'uiUJZ/ .t;xi 

(for i p j). Conside.i: .thecasen = 2. 'Then the determinant !12 = B1(x ,. x2) i:; 

(I 
(IJ " 2 - z: - z: 
Xt X2 

~: (1 1 t"1 -· I) a1a1 :o i 
Hi,,,. - -,--z - -:r a,a2 ; 

1 

<l ) -- l "· I Xj Xj X tX2 "" (x ix:J2;; ~: 
~ a 2 a~a1 02(0 1 - 1) az a2 - l 

;~ z - - z: - -;lj- Z 
XzX1 2 

wher:t we have systeUllltically removed all the cornmoo factors from each row and column. 
In the last dctermimmt, subtract the firs! column from each of the others, and then add the last 
two rows to the fus t Then we sec lhat B,. = a 1u2(<11 +a2)z.3 / (x1x2)l . Because A . a 1, and 
a, are all positive, one has B2 > 0. Moreover, i. f: 0. We conclude froru Theorem 2.5.5(b) 
that 1he Cobb-Douglas function z = A.~;• x;' is strictly quasiconcave. (Ibis atgument can 
easily he extended to be valid for a general value of rt by using the neJl.t theorem.) I 

We go on to consider lhc gene.rs! ca, e. Define 

I /1~x} 
Dr(x) "' . . 

j J;~x) r:i<x) 

t :(x) ' 

f{~(x) 
, r = l . . . . . n 

-_--···--·- ···- ··-~---··-·- ·-·---····"·-··-- -····- ··- -·-- 1 
Lei f be a C' function define<.! in an open, convex set S in ~ ·. Define tbe bordered ! 

Hessian deterolin~u~ B, (x:), by (l J). Then: i 
(a) A ne<;essary condition for f to be quasiconcavc is that (-1}' B,(x} .,: 0 for ! 

allx:i11 Sand 11ilr= l . .... n. ! 
(b) A sufficient condition fo1 f to be strictlyquaskoncaveis lhat (- 1)' 8,(x) > 0 I 

for aU x in S and all r = I, . .. , n. 

------ - - --·--·- ··--·---··---' 

(11) 

Proof: We prove only (b). lTbe, pro,Jf use~ some re~ull~ fr.om Ch,.ptcr 3.} Let x" fx. ,u, arbifriry 
poirtt in S and consi<L:t the problem 

Ler J;(x) = /(x) - ).'v J(x0) , (x - x0 ) = f ix) - J,,[f {(x~)(.x, - x?) + · · · + f~ (x0}(.x. - .x~)J. 
n,~n .t..'(x) = <:/ f (x) -- .t VI f(":sh , and, in particulor, .C'(~0

) = 0 for A= I, ~o for this '"tue of A the 
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firs(-Qrder <'Ondition• for a lc>c~l maiciroum •l , 0 3re sarisfi~.d. Mc,roovcr, c;(ifl) "' /1(x0) for all i 
and .c;/xo)"' /,'J(xr;) forall i :u1d j. Thus lhe condition in (b) evidently implies th.it tile sulTJcien1 
conditions for a Gtri<"I local m3ximwn in problem (•) aie sati~fied at ,!l (see 'fhcort,rn 3.6.4). 'fben 
fc>r:t f, xo with x close tori. one b~s f (x) < f1x0) when V.f(x") · (x ·- x") .:::· 0. Bquivaleiuly. 

f,ir x ,;. 1 ° cJo,,e to x~, /(x):::: /(x0 ) =~ V /(x0) · (x - ..JJ) > 0 (n ) 

Let x' 'f' .:" t>elous to S ~ml ns~uiue that f (x'' ) ::.a J'(x' ). Deline h(r) " ,.x' ·Hl " 1)-r" fort in (0, 11. 
Con.sidc-r the pmblcm 

,~
1
/(b (t)) 

A mlrtimum point. r' must exi~l, •n(! ii Cllll be assumed to belong'" [0, J) bemuse .f(x") ~ f(x'). 
F<ir t ' :,. O and t d ose tor', we have /(h(t)) ~ J (h(t')). nnd ~o from (u), 

V /(h(r ')) · (h(1) -- b(r')) = (r - r')V /(b (1')) · (,;' - ~") 

= (r - r'}[(d/dt)/(h(l))J,..,,• > 0 if /(h(r)) :: j (b(r')) 

So lheic can be no interiOl' minimum polot 1', and che only ~ihility is /{li(t }) > j(x-·1 for all r in 
(0, l), and by deftniti<m f is strictly quasiconcave. • 

1. Use (6) and (7) to cla~~i fy .., (quasi)~oucave en: (quasi)~ouVCJ<.eacb of the functions:. = F(J! . y) 
Jcfined for all .x: ,, 0. y > 0 by: 

(a) , = JOOx 'll yll4 

(d) z = ,/,(l + y 2 

(b) : = .t2y} 

(e) ~ "'(x'n + ylll ) J 

@;!> 2. Determine if the following functions m·e quasiconcave: 

fr) z = 250x1.ir. y<t4t$ 

(f) z e (,T - l/4 + y-1/4) -Jf< 

fo) J(., ) = 3;: + 4 

(c) f(.x. . yl = -x1/ 

(b) J(x ,y)=yex. y>O 

id) f(:x.)=x1 + x1 +1ifx< O, /(xj = lifx ::0 

3. (11) If f (x) is Cl\m::ave, for what values of the coostanls a and b c.,u one be $11re that a/(x) + b 
is conca\'e? 

(b) ff flxl is concave ond poru1ive ,·alued, determine if the fun<:tions g(x) = In f(x) and 
h(x) = ~!(•; are concavelquJ1siconcavc . 

4. Consid.:r the function f(x} = - x2 /(1 + x1) . Sketch the graph c,f .f and pr<,v• that f is 
quasiconcave by U$ing the definili(,n. Does Th~orcm 2.5.6 giw I.he same rcs1llt'I 

5 . Wliat doe$ Th~rem 2.5.o(b) say about C1 l'un,tion~ of vne varjabl¢7 

® 6 . Show thal, ~lrhough tJ\e. two funct!oas f (x} = - x aild .~(.r) ~, x3 ace both qUA.<ic@a.ve and 
qua.~CllJl\'ex, their sttm is oeid!eT. 

~ 7. Sny that the function f : IP. -,. P. is sin.gle·peok-.d if th= ,:xists an .t' in 8~ such that { is strictly 
lll~TCl!.sini; for .r ::;: .r • and Sltictly Jcereasiug for .r ~ .t ' . 

{a) Show that s,1ch a fuoction i~ slric1ly q1.1asiconcavc. 

{h) Suppose f is also co,1eave. Musi it be. stricrly con<:ave? 

SECION 2 .6 TAYLOR'S fORMVLA 77 

HARDER PROBLEMS 

8. Let f : R -,. R be defined by J<.o> "' 0 and /(;,;) , .. ,. J if x ;= 0. Verify th~t f saiiMrc,:; 
ine.1ualiry (9) for all). in (0, I) ai1d all .t and y with /(x) /. f(y) . .But sh,.1w <hat f i$ srill OOl 

quasfooncave. 

9 . Suppose F(x, yl is a C2 function w;,h r2(x, y) > 0. l.ct y "" q,('.,) be dcftned imptici<ly by 
the e.quation f"(x, }') = C . Prove that q>(x) is convex i( ,md 011[) if H2(X, y ) ~ 0 (s~ (]())). 
(Convexity of 9'(.r) is e.quivalcnt 10 F being qnasico11cavc:1 (Hi111: You might use lb<: fo1mu!a 
for y* given i.o Problc,m 2.1.9, b,11 an Jlwmative argum"nt is simpl<:r.) 

10. l<:t ft , . .. , J., be concave fo ncrion~ d~.ti.ned on ~ convex ~ct S in R' and let F (u1 •.. . , u.,} 
be qu.-isicoaave ,ntl increasing in eacl\ v-driablc. Prove that R(X') = F (/1(x) , .. , , J.,(x}) is 
quasioonc-ave. 

@ 11. Modify lhe pcoof ofTne-0re1u '.!5.3 to show tb~t if f is S1tictly quasiconcave and bom<>gel)eous 
(1f (!egcee q E (0. l ), then f is slrictly concave. Use this re&ult to prove pan lC) of tbc properties 
of the i:enwtli.zed CBS function in display (7) above. 

2.6 Taylor's Formula 
When snidying the l>ehaviour of a complica1eJ funcrion f near a partfonlar poin1 of it~ 

domain, it is often useful to appmx.im:,tc f by a much simpler lilnction. ror functions of 
one \'ariable you have probably seen the approximation:1 

f' (a) f"(a) , f 1•>(a) 
f(x ) ::s /(a)+--(x - a)+ --(x-a)"+· .. + - - -(x - a)" (.t d ose to a) ( I) 

. I I 2! n! 

The function f and rhe polynon1ial on the righ1-haod side have the same value and the 

$&me fir.st n derivatives at a. Thu, they have such a high degree of C(lnlact at x = a thar 
we can expeci the appi·oximation in (I) to l:le good over some (possibly small) interval 
cemred at x = a. (See e.g. EMEA. Section 7.5 for details.) Nevertheless, the usefulness of 
such polynomial approximations is wiclear unless somethii\g is knov..11 about the error that 
rC1>ulL~. Taylor's formula hcl.ps remedy thi~ deficiency (see e.g. EMEA. Section 7.6): 

'fftfORH.1 2 6 1 A YLOR'S I ORMU - --···------------·--, 

I (2) 

II f i.s n + I cimes differentiable in an inten•al that contain., 11 at!d x, then 

f' (a) J"''(a) j(n+11(,') n ' 
/(,t ) = f(a)+--(.i - u)+ · ··+-- - (:< -aY' + - .- - t.~ - a) +, 

1! 11 1 <.n + I)! 

' j 
l (or ~ome number c betwc.:cn a al!d x. 

I ......__ _ _ _____ ,_ ,..I 

3 Re..:aU that if II is a natural numb<!r. n ! (react ~$"n facrorial"l is defined 1,. "' ,,. 1 · 2 .3 . .. . · (n -1) ., ,. 
By c0rtvcntio11, O! = 1. 
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NOTE 1 The r<!tn(Jin.Je.r term at the end of (2} r..:.~emble.\ the preceding lmns in the sum. 
The only difference is that in the fommla for th.: i:emainder, j<•+tl is evaluated at a point 
c:. whcrt~,: is some unspecified number ~tween a audx, whereas in al.I tb.e oth~.r terrus, the 

derivatives ilieevaluak.d ala. TI1e nmnberc depends, in general, on x. a. andrr, as well as 

the function f. 
Putting n = l, a= 0 in formula (2) gives 

f(x) = f(O) + J'(O)x + }f''(c:)x1 for some c between O ,tntl x (3) 

This fonnula tells us that !f"(c)x2 is tile error that results ifwe replace f (x) with it., linear 

approrjmation at x =- 0. 

Taylor's Formula for Functions of Two Variables 

Let z = f(x, y) be defined ina neighbourhood of (x0 , y0) an<l let (h, k) be a given pairof 

numbers. With r a~ a real number, define the function g by g(1) = /(xo + 1h, y~ + tk). 
The function g records how f (.x, y) behaves along the straight line through (xt), y11) in the 

direction determined by the vector (h, k). 
Wes~. that g(1) == /(xo + h. Yo+ k) a.ndg(O) = /(.ro, Jo)- Acconling to fonn\lla (2). 

there. exists a number c in (0, t) such that 

g(t) = g(O) + ..!_g'(O) + ... + ~g(•l(O)+ _l_g<n•·ll(c) 
I! n! (n+l)! 

If we find g' (0), g'' (0), etc .. and insert the results into ( * ). we obtain the genern.l Tay !or 

formula in cwo variable,;. 
Toe formula is particularly useful for the case n == 1, when ( *) reduces 10 

g<l) = g(O) + g'(O) + !g"(c) (u) 

Using the chain rule we find that g'(1) = f{(xo + ih, l'O + tk)h + J2(xo +th, Yo+ 1k)k and 

g"(t) = f{i(xo+lh, Yo+tk)h1 + 2f{;(.r-t)+th, yo+tk)hk+ J2;(xo+rh, Yo+ rk)k.2 . Thus 
g'(O) == f{(x,., Yo)h + {2(xo, yo)kaud g"(c) = f 1~ (i, ji)h2 + 2f{z(i, ji)hk + f22(.i. y)k2, 
where i "'xo + ch, ji =Yo+ ck. Inserting these e.xpressions into(*) givt:S: 

If f is C2 inside .. circular disk arou11d (:xo, Yo) !hat contains (xo+h. Yo +k). then 

f(xo + h, Yo +k) ""J(.ro. Yo)+ f{(.,;o, yo)h + .f:;(.ro, }\1)k 

+ Hf Mt, y)h2 + 21;2<-i, yJhk+ 1Mx, JJk2J 

where .i '·"· xl, + ch. y = Yo + ck for some number r. in (0. I). 

.-..., .. .._-... _______ ....... ----------------------·-·-

,. 
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In formula ( *), Ice us put n = 2, ..to ::: )II = 0, an<l h "" x, k '" y. Disregarding the 
ternainder, this gives the following quadratic: approximation to f (x, y) around (U, U): 

f(x. y) ""/(0,0)+ J{(O. O)x + /1(0. O)y 

+ Hf'i\ (0, 0).r2 + 2/{2(0, O)xy + /22(0. O)y2) 
(4) 

('1XAMl'CF- I find the quadratic approximation around (0. 0) for f(x, y):: e' ln(l + y). 

Solution: We fiud that / 1(x. y) =- e' In( I + y), / 2(_t, y) ::: tr i(l + y) . . Moreover, 

f{'?(-~.y) = e'ln(l +y), t{;(x,y} = e'/ll +.v), aud _t:22 (.t,y) = -e'/(1 +yf. It 
follows that /(0, 0) -= 0, J{(O, 0) = 0, / 2(0. 0) = l, J11 (0, 0) == 0, J{;<O. 0) :::: l, and 

{~2(0,0) = -1. From(4)weget 

e'In(l +y) ~y+xy-!y2 

Taylor's Formula with n Variables 
We briefly ~plain how lo derive Taylor's formula for a function of many variables. 

Suppose we want to approximate z = /(x) = f(.r1, ••.. x.) near x0 = (x?, .... x:!). 
Leth= (h1, ... , hn) and define the function g by g(I) = f(xr + 1h1, ... , x~ +iii.)= 
f (x0 + rb). We use fonnula (*"')once again. To do so. note how (2. L 7) implies th~! 

n 

g'(t)::: Lf:(x0 +1h) ·h; = / 1(x0 + rh) -h1 + · .. + J:(x0
+rh) ·hn (5) 

i=] 

Diffcrenti.ttingw.r.u andusing(2.l.7)oncemorc, weobtaing"(1)::: I:7=1 f,J/(x0+th)h;. 

Hefe, for each i = l, 2, ... , n, usiog summation notation, 

It follows that n n 

g"(t) = r: r: 1:;cx0 + th)h;hj (6) 

i~I j~.J 

Now use the formula g(l)"" g(O) + g'(O) + !g''(c) with O < c < l. and insert t ""0 into 
the expression (5) for g'(r) and r == r.inlo the expression (6) for g"(t). The result is: 

T (ORIM 1 6 3 (TA lOR'S FORMULA FOR FUNCTIOtlS Of N VARIABl. S I ··-1 
I 
I 

Supp<>se f is C2 in an open set r.:ontaining th1, 1iJ1e .segment [,c0. x0 + bJ. Then i 

. . . I! 

L 
/(x0 + b) "'f(x0) + L !/ (x0)hi + ! LL f(/s.0 + <'h}h;hj 

;~, ;-, j~1 

1
, 

for some ,: in (0, I). 

---- ·----------·-------·--· i 

(7) 
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2.7 

If we let '!4° == (.cf ..... .x~) :: (0, ... , 0) lllld b "'· (hr , .. . , h.} ,.. (.xi, .. . , .t,) , we o t>rnin 

th<: formula 

f (x) = f(O) + tf/{O).t1 +} t t Ji1(0)x;XJ + R3 
t- 1 ' i:~l Jul 

The rernairltler R~ eatJ be expresse.d a~ a triple ~um involving third-order derivatives. 

@ 1. llintl tbe quadratic appro, imalions at (0, 0) for 

(a) f(.x, y) "" e' ' (b) f(x, y} = e:'
2

- ,
1 

'<c) f(x, .v) = In(!+ r + 2y) 

2. f'ind the quadratic appro,imatioos at (0, 0) for 

(a) f(x. )') = e>+Y(.<)' - 1) (b) f(A, )') = .~·' (c) f(x, Yi = ln(I + .:t2 + y1} 

3. Write out formula (8) for U ():1, ...• Xni ,.,. e-·'• + · · · + e .... , • . 

S 4. t is dc1ined implicitly a~ ~ function of x and y around (0. 0) by Lh.c e(Juation 

!Jli=1?y -xt+)' 

Find th« Taylor polynomial for i ,,f order 2 at (0, 0). 

Implicit and Inverse Function Theorems 

(fi) 

In cco,iomks one oft.en considers problems of the following kind: if a system of equations 

defines some endogenous variables as functions of the remaining exogeoous variables, what 
are the partial derivatives of these functions? This section addresRes the question whether 

t11ese functions i;x.ist and, if they do ,:;x.ist, whether they are differentiable. 
Cunsider fi~t the simplest c.ise, with one equation of the form 

j(x, y) = 0 

(Note that the equation of any Level curve F(x , y) = C can be written as (ll<) by putting 

f(.x , y) = F(x, y) - C .) Assmning thut f is C 1 and that(..-) defines y as a dilforentiable 

function of x, implicit diffcrentialioo yields J;(x, y) + J2(x, y)y' ~ 0. Tf J,-(x, y) 7' 0, 

!hen/ = - f{ (.x,y)!/i(x, y) . 
(leometli.cally, (-t.) represents a curve in die .x y plane, which could be the curve ill11sttut.e-0 

in Fig. 1. Studying the curve we observe that for x > x, there L\ oo y sn,'-11 that (.r, y) 
satisfies the equation. lf x1 < x < x , , !here :ire. two values of y for which (x. y) sati.,fies 
the equation. ('lbe curve has x ,,, x2 as a vertical a,ymprotc.) Fioally, for x ~ xi, there i5 

,)nly one corn:-~ponding y . Note that the equation defines y as a function of x in any i11rerval 
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contained in (-oo, .x2J. Consider on the other hand an iuterval contained in (.x~ • . ci ) . The 
range of variation of y must be restrtcted in order for the equation to define y as a func1ion 

of x in that interval. Now, c-0usider the point (xo, YO), If the rectangle R is as in Fig. l, 
the equation does define y as a function of x in !his rectangle. The graph of this fullcticm 

is given in Fig. 2. The'si.ze of rhe rect.a.agle R is comtrained by the requirement chat each 
straight line through R paralld to tbe y-axis must inters.:cc the curve in o nly one point.. 

j\ 
f(x, _y) •·• 0 

/ 

Figure 1 The graph of /(x, y) = 0 

~ i 
I 

+ ·· ·········· ···&-· 
I ·-- -:~------; 
Figure 2 j(x . yj = 0 dcflnes y as a 
function of x in ~ rcclangk R. 

Similar rectllDgles and corresponding solutions of rhe equation can t>e constructed for all 

other points on the curve, excep[ the exlremc right point (x1, y1). Regatdles.~ of tile si7.e of 

the chosen rectangle around (xi , }'1) (with (.x1 , Yi ) as an interior point), t'or tho~c x clo5e to 

x1 on the left there will be two values of y satisfying the equation. For those x to the right 
of x 1, there is no suitable y at all Hence, the equa tion does not define y as a funt:tion of x 
in a neighbourhood of the point tx1, ,J11 ). Note that / 2(x1, Y1 ) = 0. (fhe curve f(.i. y) == 0 
i~ a level curve for z = /(.r, y), and at <Jach poi.ot on the curve, the gnwient of f, i.e. the 

vet.-tor (!{, f!;), is orlhogooal to the level curve. Al (.t1, )'1), che gradicot is ckarly parallel 
to the x·axis, and thus its y-coroponent J; is equal Ul 0.) 

This example ill\1$trutes how the crucial condition for f (.x , y) = 0 to define .l' as a 
funcrfon of x around (X<i. Yo) is !hat fj (xo, YO) -/= 0. fn gene!".i.l, there are implicit function 

theorems which state when an equation or a syste,n of equations defines some of rhe vari· 
ables as functions of the remaining variables. For equation (*), sufficient conditions for 

f(x, y) = 0 to defi ne y as a func tion of x are bTietly indi cated in the follo,..,-ing: 

1 

If / (X-O, Yo} = 0 and J{(xo. }'o) -I 0, then the equation f(x , y) = 0 defines y l 
us an "implicit" fun ,:tion y = q,(x) of x near xo. with )'o = ~(:,o). and with its 1· 

derivative given by _y'"" - f{(x, y)/fi(.~ . y). 

----- - - -------- -------·- --' 
For a proof of !he following tbr.orem see MaNden and Hotfoum <l 99::n 1)1' Munkre$ (1991): 
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Su~ f(x, y). L~ C1 in an open~ A ~1ntftining (xo. Yo), with / (X-O, .l'o) "" 0 
and /2(xr,, Yo) "f 0. Then there exist an mrerval Ii "' (xo - 8, xo + .S) and au j 
interval 11 = (yo - F.I, yr,+ c) (with /l > 0 and e > 0) such that l; x 11. ~ A and: I 

E)(AMPLE 1 

(a) for ev,·ry x in Ji tbc equation j(x , y j =- 0 has a uniquL' solution in h whi(:h 
defines y as a function y = ,p(x j in It; 

(b) ~Ji$ C 1 in 11 "' (xo - S, xo + 8), witll derivative 

,p'(x) "" _ f:(x , ll'~2!, 
f2(x, ,p(x)) 

Show that the equation 
x 2eJ - 2y + x = 0 

I 
I 

(l ) 

defines y as a function of x in on interval around die point (- 1, 0) . Fi.od the dcc.ivati~-e of 
this functi<m atx = - 1. (Ohserve rhat the equation cannot be solved explicitly for y.} 

Solution: Pot f (x, y) = x2eY - ·2y +x. TheD f{(x • . v} "" 2xe1 + l. fi(x, y) "" x 2eY - 2, 
and f is C 1 everywhere. Furlhcsmorc, f{- l. 0) =< 0 and J;(- 1, 0) = - l f, 0. According 

to Toeorem2.7. I. the equation therefore defines y as a C 1 funclio.o of x inao interval around 
(-1, 0). Because f{ ( - 1, 0) c., - 1. equation (2) implioo Uiat y' = - 1 at x = - 1. I 

Tueocem 2.7.1 giv«s su.lfkient conditiollS for f (:t, y) = 0 to define y as a fu11ct..ion of x in a 
neighbourhood of (xo, yo). Tiie crut:ial condition is that J; (.ro, Yo) :fo 0. The next example 
shows that this condition is not necessary. 

Consider the equation f(x., y) = y3 - x = O. With (.ro . Yo) = (0.0), the con<litioos in 
Theorem 2.7.l are not satisfied because .f2(.T, y) = 3y2, so that _r;(O. 0) = 0. 'flowever, the 
equation is equiv:tlc.nt to y 3 = x. or y = ,lfx, and thi~ fu0ction is defined for all .t . Note 
that it has no derivative at x. = 0. I 

To get an idea why Theorem 2. 7 .1 is lJile, oon.~idcr Fig. 3, whit-h shows the graph of 
i = f(:c . y.) over n rectangle around (xo. ) 'O) , TI1e graph intersects thexy-plane at the point 
(xo. :v(I) , because f (.ro , Yu) = O. Part (a) of the theorem implies that lhc surface cots the xy• 
plane in a curve which is the graph of a function y = rp(.x) in a neighbourhood of (xo, Yo). 
The figure illustrates the case wl1t11 f~(xo, yo) > 0. Bccausef;{x, y) iscoutinuous, J;(x . y) 
is then positive in ao open recrangle (a, b) x (r. , d) ar.ound (xo. Yo). and so f (xo , y) bt.cumes 
a strictly incre.ising fun.;:fiou of y. Hence, /(.xo. cj < /(.xo, Jo} = 0 < j(xo. ,I). Since f 
is continuous, we ca.11 aho :,,;sumc /(x, c) < 0 < f(;<. , d) for all x in tile inte.val (a , b) 

(just make sure lhnt a and h are suflicicutly close to x11). According to the intermediate 
value thC()rem, for eocn such .t there exist~ a nnJllher y in (c, d) with f t.x, y) = 0. Because 
f(.t. y) is strictly increa.sing w.r.t. y in the rectangle (a, IJJ x (c, ti) , the solur.iun is 1u1iquc. 
'J'he. solmion .¥ is a function ,,c(x) of x and pwt (b) of th<: theorem claims that ~ is C 1 • 

S ECTION 2 .7 !M PLiC:T AN O INVr.R~t: f\lNC::ON :'HEO iH·M !, 83 

/ 

figure 3 Part of Lhc graph of z = ftx , y) over a ncii::h.l>ou1·hooJ of (.to,}',)). 

The General Case 

Theo<em 2.7.1 c.~n he generalized tn highcr-ord.::r sy.stems of equations of the form 

/1 (,r1. x,, ... , x,,, Yi, }'2, .. . , y,,,) == 0 

ur, in vector notation, f(x, y) = 0 (2) 

/,.{X1 , X1,. ,., X,., )'j, .1'2 , ... , y,,.) "" 0 

with f = (fi, .. . , J;.,)', x :: (x1, ... , x,) , and y = (yi, ... , Ymi, Here there arc 11 + m 
variables and m equations. Lci: (rl, yO) = (xr, ... , x~. yf . .. . , y~) be an "equilibrium" 
i.olution of (2). If xi, . .. , Xn arc the e.xogellous variab les and .v1, .. . , }'mare the 1mdo1;cnous 

vAriable~. then the pcoblem is: under what conditions will (2) define the endogenous vari­
ables as C1 functions of the exogenous variables in a netghbourhood of (xo , y0) . aod what 
happens to the endogenous variables when the exogenous variable,; are slightly changed? 
More specilkally, what are the derivatives of y 1, .. . , Ym with respect to xi, ... , x.? Or, w. 
Y\lcror fonn, what is y~ (or oy /Jx)'! 

If we auume that (2} delioe.~ y1, • .. , y., as C 1 functioru; of x1, . . . . x,.. then for each 
j = 1. 2, ... 11, implici t <lifferemiation of (2) w.r.t. xi yields them equations 

8f1 (x, y) . 8/1 (x, y) ilY1 /)fi (x, y) ilym 
- .- - + - ·- --+ ... + - - - -- = 0 

nx1 ily; ,Jxi ily,. ih:.1 

(3) 

fl f,,.(x , y) , ilf,., (x, y)Jy1 8/m{X, y):ly., 
- -- . - ··- - +··· +-- - - - 0 ox, ilY1 axi ii)•.,. .Jx1 

Ji we movo;. the first term in each e.quation to the right-hand skk, all these ml'I equations can 
be written in the followin& matrix fc,rro: 
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! 
I 

I
I 

it)'t 3,r,. /1.t , i>Xir ~ ax. 

( 

;J/1(x, rt .. . 8/,('t,Y)) ( :ly, 

. . . . . . 

:Jy, ) ( J/, ( X, Y) 

u;., ~·,- at .. /.:. 1) 

. . 0/,(1,y)) 
. (4) 

11(., (1, ,!l 

By, 

FJ/,.(x, y) ;Jy. 
- a;.:-·-· ax, iJ-:r. -~ 

d/.,(XJl 
ax. 

This cao be Wl'ittcn even more c~>mpactly as r;.(x, y)y~ = - ~<:r., y), wile.re r;<x. y) aml 
r;(x, y) arc them x m and ,n x II Jacobian m11trlc:es of f (,c, y) with respect lo y and x. 
respectively. From (4) we cmt obviously lin<l the pa.r.tials of y 1, • . • , y,,. with respect to Xt, 

. . . , x. {ll'OVid<!d r,cr. y) is invertible. 
·me mauix ~(x, y) is square. Its detem1inant is called the Jarobian dete.cminant of 

f(x, y) w.r.t. y and is commonly deooted by iJ(/i ' · · · • f,,.) . 
o(y1, · · ·, Ym) 

In the argument leadi ng to (4) we assumed that (2} defines y1, ••. , y., as differenti· 
able fllnctions of x1, .. .• x •. The following theorem, one of I.be most llllp<lrtant result.~ in 
mathematical analys is , gives suffic ient conditioos for this to be the case: 

THfOREl,1 2 7.2 11HE lt,'Plt(IT FUN(TIOtl THfOR~M ~I\IERAt \lf!I SIOI\I 

Suppose f = (f1, . , . , [m) is a C1 function of (x, y) in an open ser A in P." x R"' , 
and consider the m·dintensional vec tor equation f (x, y) = 0. Le, (x0 • yo) t,e an 
interior point of A s.11isfying f (x, y) = O. Suppose that tile facohian dctenni Mnr 

of f w.r.t. y is different from Oat (x 0• :v°), i.e. 

Ir
'. )I <l(/1, .. .. /,,.) _,. . o o 
ylX,Y = ~· ) 'O at (it,YJ= (x , y) 

dlY!, .. . , ym 

Tilen there exist open balls H1 in R" and Bi in R"' Hround r' and y", resl)t',ctively, 
with D, x B~ <;;; A, such that 1r;(x, y)I ¥, 0 in f/1 >< B2, and such that for c-ach 
:t in B1 there is a unique y in B2 with f(x, y) = 0. In this way y is dofined 
''i.tnplicitly" on B, a.~ a C1 function g(x) oh:. The )acobian matrix f. = g' (x) = 
(itg; (X}/ihj) is 

(.5) 

g'(x) = - (r;cx, y)r\cx, y) 

L-------·-~------·--------------.J 
(6) 

NOT£ 1 Suppose / 1, .... fm are C' fu11ctioos of (x. y j . Then the elements of the matrices 
in (6) are 111! c-1 functions, and it follows that g = (g1 •••• , g.,) is C'. 

Transformations and Their Inverses 

Many economic applications involve functions that map points (vectors) in IR" ro point.~ 
(vecto~) in IP!"'. Such functions are often c:allc.d transformations or mappings. For (~ll· 

ample, we are often imcre;ted io how an rn-\'CCIOr y of e1Jdogenous variables depend5 oo 
an n-vector x of eJtogenous variables, 11.i in I.be implicit function theorem. 

Conxider 3 transformation r : A -> B where .4 ~ R" and n s;: R"'. SuppMe the range 
of r is the whole of EJ. Then we say that f maps A onto B. Recall that r is one-uH.111c if 

l 
I 

I-

EXAMP f 3 
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x , f:. xi ~ ! ix, ) p f (x 2). In this case, for each pointy in B there is exactly one point x 

io A such tllat f (x) = y, and I.he inverse off is the transformation r - t : B -> A (uore the 
order!) that maps eueh y in B (o precisely that point x in A for which f (x) = y. 

When doe., a transformation f have an inverse? By dc.finition, it has un inverse if and 
0 11)}' if r i~ ooe-to-one; but this is o~.n difficult co check directly. 1be problem is then t(• 
tin<l useful conditions on f which ensure that the inverse e:tists. 

Theorem 2. 7 .3 below gives a local solution to this prohlem for traMformation.s from Bl" 
into R". Global solutions are much harder co come by. See Section 2. IO for some results in 
this direction . 

Consider a tranSfonnation f = (/1 • . . .• /,.) from A ~ R" inro R" and assume 

that f is c• (k :::; 1) in an open ,et contaiuiog :1:0 = (xf, . .. • x~). Fwthermore, 

suppose that the Jllcobian determinant 

1r' (x)I = a(/i, · · · ' J~) # 0 at x = x0 

il (Xt , . ,. ,x.) 

Let y0 = f(x0) . Then !here exisrs an open sec U around ,II such that f maps 
U one-ro-one l)nto an open set V (JIOund yO, an<l chere is an inverse mapping 
, = 1 1 : V - 1- '{J which is aLm C'. Moreover. for all y in V , we have 

g'(y) = (f'(:t)r1
, where X,;.: g(y) E U 

Proofa can be found in e.g. Milrliden and Hoffman (1993) or Munk.res (1991). Because f, in 
gcuerul, is one-to-one only in a (possibly small) neighbourhood of :t', we say that Theorem 
2.7.3 gives suffidcnl conditions for the existence of a local inverse. Briefly formulated: 

A C' rraosfonru,tion f from lff' into R" with nonuro Jacobian determinant at '."o 
has a local inverse transformfttion W'Ound f(x11). and Ibis inverse is also c•. {7) 

One implication of the theorem is lha1 jf r is ct in an open set arouod x'' and !f' (xO°)I 'F o, 
then f is on~l'o-one in an open ball around r'. If the Jacobian detemUJ>~nl is d.iffereoc from 
0 for all x in a set A, will t 1heo be one-to-one in the whole of A? If 11 = 1 and A is M 

interval io R. thi~ i~ tn1e, but in general the answer i~ no, llS shown by the oext e:i.ample. 

Deline the tru.nsformation t frmn A= {(x1, x2): x} + x? ~ I} s R2 into R2 by 

(a) Compute t!te Jacobian determinant lf'I off and .5how that it is / 0 in the whole of A. 

(h) What doed do to the points (1.J) and (- 1. -1)? 

(c) Comment on the re.suit~ in (a) an<l (h). 
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Solution: 

I .Jytfo:q 
(a} lf'(x1, xi)I = 

, iJy·d'clx1 
in A. 

iJy1/iJ.t2 ; = I 2x' 
1Jy,_/Jx2 I xi 

(b) Both (xt , x2) "" (l, 1) and (x, , x2) = (-1, - l) are mappec! to (Yi, y2) = (0. 1 ). 

(c) Even though If '( # 0 in all of ,1., f is not oac-t<rooe in all of A. 

A More General Case 

The lbooretn on inverse functions deals with 1ran.sfom1ations from a subset of R" i.oto R". 
Now, consider a more general sinmrion, in which r is a C1 tran.sforwation from a subset of 

IR' into R'" with m :::: n, and let U be a ncighbourhooo of a point x0 in R". Then U will 
contain a ball 8 centred at x0 with a positive radius r. The set f ( U) = {f (x:) : x E U} 

will contain f (x0} = yo. Is y0 an interior point of f ( /J)? Not necessarily. For cun1ple, if 
f : R3 -+ IR2 i~ defined by f(x , y. l) = (x + y + z . . ~ + y + ;:), then f maps R3 into astraight 
line th.rough f' = (0. 0), which certainl y dnt:S not cootain a neighbourhood of y'>. Thus the 

mapping collapses It' into a set of lower dimension than the target set IR2 ( che image f (IR3) 

is a straight line i.n this case). The final theorem of this section tells 11s that such a collapse 

is impossible if the Jacobian matrix off h,1s ma~imal rank at x0. (Note that the Jacobian of 

f (x, y) = (x + y + ;:. x + y +;:) is the matrix ( ; : ~), which has rank I.) 

THEOREM 2 7 4 

I Suppose f is a uaosformation from an open suhset A of R" into R"', and m ~ 11. 

! If r is C 1 in a neighboud1ood ofa poinn° in A, and the Jacobillll matrix f'(x) ha.$ I rank mat x0 , tbcn f(x0) is an interior poinc off(U) for any open nciglioourhood 

L. ________ 0 of x

0

. ---------·--- -- - ----- ·--· -~-----J 
A proof can be found in e.g. Mar1"den and Hoffoi;m (1993) or Muokres (1991) . In foe.I. this 
tl1eorem and the implicit function <hcorem (Theorem 2.7.2) are intimalcly related. Once 

either of them is proved, the od1cr follows quite ea.~ily. 

linear transformations 

Linear transfortMtions CQmtitule a simple but very important class of transfooJ1ations. 
A transformation f : R" --. Rm is called linear if 

(8) 

for all XJ an<l X2 in~· and all scitlar. u. A well-known rc~ult from linear alg(sbrn slates that 
for ,.,,.,,y linear transformation C : R0 -> nm !here is a unique m x 11 matrix A such that. 
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f (J() = Ax for alb: in Rn. Indeed, the J lh column a1 = (a,1, ... , u.,1)' of A mu,t be f (oej), 
whei-e ~; = (0, . .. , I • . .. , O)' is lhc j ib. standard unis vector in R", that is, the 11 -v~-clor 
with l in the jtl1 c()mponc1lt and O e l$ewbere. 

Conversely, it is clear that for auy m x n mall'.ix A, the mapping x 1-.. Ax is a linear 

transfonnation IR" -+ R"'. Inde~d .. the rules for matri1t multiplication show that 

(9), 

This demonstrates u one-to-one correspond(,-oce bet,.,.ecn linear trnnsfotmalions Of' ·-> R"' 

and m x n matrkt:s. (When vectors are considered as mat,ices, they are usually taken ro be 
CQlunu1 vectorn-lbat is, macrices with a single column. The matrix product Ax then makes 
sense, and yields a colwnn vector.) 

PROBLEMS fOR SECT ON 2 

1. Show that the follo"'it•g equation~ define y implicitly as a function of ~ io .m inter\'al around 
.xo. Find y' when x = x,1. 

(a) f(x,y) "' yl + y-x1 =0. x0 = 0 (b) f(x .y) :,x2 + y +~in(xy) =0. ~n = 0 

®I> 2. Check if the folk>wing equationscan be ,cpreseoted in the form z = :;(x. y) in a neighlx>urhood 
of the given poin1 (~. Yn, to). C<Jmpule gi (xu, ~) and si{xt1, ~). 
(a) F(x, y, z) = x 1 + y 3 + z1 

- ., y~ - I = 0, (x~ . Y•J• zo) "' (0. 0, i) 

(h) F(:x,y, t) "" e.' - ~2 -x2 -y2.,. o. (.ru,)11,::o) = il,O,O) 

@3. Tue poim p = (.t. y , ;:, u, v, u:) = {l. l , O. - 1, 0, I) 1-llisfies all !he equations 

y2 -~+u -1• - u? =-1 

-2.x + y - z2 + u + i - w = -3 

.,i + z - u - "+ 11'3 = 3 

'These equacloos define u, v, was C1 fuoctioos of ..r, y, z arouod P. finJ u~. if,, ar><! rd, nt P. 

~ 4. Suppose the functions f and g are (lcl\ncd i1l ~1 hy /(u, v) ~ •" cos ti, g(u, v) = c• sin t,. 
Show that the Jncobiao determinant IJ(f, ir)/8(u, v) of this trnnsronnation i8 different fm,n 0 
n,~rywhe.,... How many solution8 arc there to tht fellowing two systems of equations? 

e"coou ,a O 

(a) e." $in u = 0 

.r' C06 t•,= I 

(I>) t." ~in 1J ,c: I 

5. S• ppose (Xt•, YI•· u0 • <'o) satisfies the two e,i11ation, 

F(x . y , u, c) = ..,i - i/ + "" - ,,: + 3 ·= 0 

G(x, y, r, ,u) =X +l + u1+,.ll ·· 2= 0 

Sri,lc ccndi1i,m~ thot are suJTicient for lhis ~)'St.em to be rcpreseme,l by two e<iuations 
u .· f(x.y). u = g(..r, y). where .f UJ1d g are Ci, in• ncighbo1uh,~.><I uf lhls point. Show that 
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such a ,.,present>ltion i• possible wbco (XQ, )'O, un, 1>0) "" (2, l, - 1, 2), ond <'<>mpuce J:.(2. l.l, 
f;(2. I), g~(2, I), aud g~(2. I). 

Compute the Jacohiaro determinanc of this <1:1<nsfonnation. and !ind <he inverse (where ir exi~ts) 
by "(11,ring the ~ystem <of equation• in (• ) for x1 and x,. fanminc whal tile lraosfonn•lion doe~ 
10 the rc.:wngle dclennlned by J :!: x, ::=: Z, 1/2 .5 x2 ~ 2/3. Oraw a figure! 

7. Consioerlhelinearaan,,fonuation T: (x, )I)~ (u, v) fwmR1 m R2 detenninedbyu = ax+by, 
u = er+ tfy , where a, I,, c, and dare cons1ants, not all equal ll) 0. Suw<>se the Jacobillll 
detcrmi.nru,1 of T is O. Then, ~how tba1 T Th'lj)S the wh.ole. of R2 onto a sttaigbt line through lhe 
orig.in ,:,f the i,v,plane. 

@ 8. Consider tJ,c 1rnnsfonoatioo T ; R2 .... R2 denned by T tr, 9) = tr cos 9, r sin O). 

(a) Compute the Jacobian deteflJllD&llt J of T. 

(b) Let A I>< tlie domain in <he (r , 8) plane determined by J ~ r :o: 2 and B £ [0, k J. where 
Ir> 2,r . Show lhnt J '! 0 in the whole of .1, yel T is ne>t one-lv--011e in A. 

9. Give suf!l<:ient coo<litions on f and Kt<, ensure 1hat the equations 

U = /(r.,_y), V = g{X , )I) 

can be ~o)ved Cur x NJd >·locally. Show that if the solutions are x = F (u, u}, y ~ G(u, v), and 
if f. g, F , andG arc:. C 1, then 

where J denote~ the Jacobian determinant of f and g w.r.l « and ti. 

1fill 10. (a) Consider the system of c11uation~ 

I + (,l +.v)u -· (2+ u) l'- ,-,,() 

2u - (l + x:,).-•<•- H .. 0 

U:;e Theorem 2. 7 .2 to show 11\at the system definel u aDd v as functions of .T lllld y in ao 
open h:ill around (x, y, u , v) ""(1, l. l. 0). Find the va.loes of the partial <lerintives of the 
two functions w.t.L x wber, .< = 1, y = I. u = I,"= 0. 

cb_) Let ,7 and b be athitrary numbers in 1hc: in(erval [0, lJ. U><e the, intermediate vulue 1he1)rcm 
(soc e.g. EMEA, Section 7. I 0) to show that the equ,irion 

u - aell"lb"-•> = O 

ha, n solution in Ille interval (0. l]. I~ the solution unique'! 

(c) Show by using (b) !ML for any point (x, y). ~ ., [O. I J, y E': (0, 11, there exist gotuti<.'ll.<" 
:,nd v of the syst.em. Are u and u uniquely determined? 

S(C TION 2.8 1 DE GREE$ OF F~(rnoM ANO FUNCTIONAL DEPENDFNCf 

2.8 Degrees of Freedom and Functional 
Dependence 

89 

A system of equations with more variables than equations wiU in general h.wc many solu­
tion~. Usually, the largq che difference between the number of variable~ o.nd the mimher of 
e.11iations, the larger.the set of solutions. In general, a sys/cm of eqi,a1ions inn varit,/>les is 
said to have k degrees of freedom if then, is a serof k w1rlt1b/es that can befreefy chosen. 

while rhe remaining n - k \l<lriablts an uniquely determined onr.e tlie k free 11c1riahle.1· 
lurve be«n cissigned specific values. Thus, the system must define n - k of the variables ~s 
functions of lhe remaining k free vari:ibles. Tf the n variables are re.sttlcced to vary ill a set 
A in Rn, we say that the system has k degrees of freedom in A. 

for I\D equation system to have k degrees of freedom, it suffices that there e:cisr k variables 
that can he freely chosen. We do not require that a,ry set of k variahles cnn be chosen freely. 

A rough ruJe can be used fora preliminary estimate of the number of degrees of freedom 
for a system of equation. This is called the ' 'counting rule'': 

ROUGH C UNT JJG RUte"L-~-------- ---·----- -···-

numberof v:uilibfes,n,andthenumberof''independent'' equations,m. Tf11 > m, (1) ::·· L ___ ,_'o_li_n_d_,h_e number of degrees of freedom for a $y~tem of e.quations, count the. 

there are n - m degre.:s of freedom in the system. 

• ·---- - ---- - ~-- ,- --·--- - .. ------···-·* 
This rule lies behind the follo\\ing economic proposition: 'Toe number of independent tar­
gets that a government cso pursue cannot possibly exceed the number of available policy 
instruments." For example, assuming that the targets of price $tability, low uuemployment, 
and stable exchttnge rat.e.s are independent, a government suking to lllt!c! all throo .~imul­
tanoously needs at least three indepen<lent policy instruments. 

Jt is easy to give examples where the counting rule fails, and it is obvious that the word 
"independent" cannot he dropped from the statement of the counting rule. For instllllce, if 
we just add one equation whi.ch repeal~ one that ha~ appeaiw hcfore, !he numb& of de~s 
of fre,,dom will ceruiinly uo1 be reduced. 

NOTE 1 If we have a linear system Ax= b of m equations inn unknowns, then acconling 
<oTheorem 1.4. 1, the system has a solution iff the raokof lhecoefficient matrix A i~ equal to 
the rank of the augmc111ed matrix Ab. In tllis ca,i:, the counting rule h>ive~ the corre<:t re,,;ult 
iff the m row vectors in A are linearly independent. because then both A aod Ab have rank 
m . (See Theorem l.4.2(b).) So for the counting rule to apply in the cac;e of linear systems, 
rhe row vectors of the c0cfficien1 matrix must be linearly in<leperidcm. 

'Jbc implicit funcrion theorem gives us a precise local counting rule for the sy~tem 

ft(Xt, ... , Xn )-"= 0 

or, in vector nolation f(x) = 0 (2) 

f;,,(x,, ... ,x,,) "'' 0 
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in the case " > m. Supposro tbat Ji .... , f,. are C I functions in a neighbourhood of a 

~olution x0, and ~upposc iliat the Jacobian matrix f'(x) ha.'I r.lllk m at x11• This implies that 

for soruc selection of m of the variahles Xi, which we <lenote hy r i,, x;,, . ... x;M, che Jacohian 
determin:int 

i.l(f:, f?.. •. · ·, fm) 

ii(r;1, Xt1 , •• • , Xi~ ) 

is not O :1t x0
• Then an easy modification of Theorem 2.7.2 shows that there exists a ball 

B around x11 in which system (1 ) defines x;, . x1,, •.• , x;ffl as functions of the other n - m 
vt1riab!es. Then systelll(I) bas, by definition, n - m degrees of freedo m in H. Thus we have 

!he following result: 

(ORRl:C'T COUNTlt.G RULE 1 
' t If x0 is :i solution of sy~tem (2) aod the Jacobian matrix f'(x) has rank m at x0, 

:,· ---···---- ~ -t11ere exists a ball B around xO such that the system has n - m degrees of 
_ ~m in B. lo this ca,;e the counting rule yields tbc correct I<".SUIL _j 

(3) 

Functional Dependence 

In formulatiog lhe couming rule we assumed that the eqoalioi:is were indcpende,nt. Consider 
Lhc system of equations (2) and suppose there exist~ a funuiou G soch that f,,.(x) ~ 

G(f1(x), ... , / ,,._ , (x)). Then!,.(>.) i.sfunctionaUy depe111Jc1J1 on / 1, . . . , f .. -1. More 
sy rom¢trical ly, for the functions .f1, ... , J.., to be fun.;tional.ly dependent in a set A·, it is 

reqwrcd th~t there exis t.~ a function F of m variable.s such that 

F(/1 (x), ... .fm (X)) = 0 for all J: in A (4) 

If F = 0, then (4) is satisfied regardless of the functions Ji, .. . , f,,., so some additional 
requirements on Fare needed. The following definition is the standard one: 

DE FINtTWN OF FUNCT ONAL DEPENOE~ 

! The functions ft, ... , fm are functionally depend~t iD A if there e!.is ts a C 1 
f (5) 
1 function Fon R'" that ~atisfies (4) and. for some j, has F1 ,f= 0 evt:rywhere. 
L_ ____ . 

With these cooditiuns imposed on F , it is always pos~ible (al lc.1St kx:al!y) 10 solv<! the 

equation F (n , ... , y.,j "" 0 for Yi aud get y1 as a furn.1.ion of tl-.e other variable.~ y;, i.e. 

/j(X) can be expressed as a funcriou of the 01hcr f;(x) for x E A. 

The coocc.pt of functional dependence helps determine wtien there itrc superOuo us equa­
tion;. Suppose F is a C 1 function and that /i, .. . , f., nnd F rogcthe.r satisfy (4) wirh 

Tl:JE 
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A = R" . Suppose. in addition, tha t F(O, . . . , 0) ""' 0 and F; f O ,.werywl1cre. Then thi; 
equation f (O, . .. , 0 , Jj(.x), 0, .. . . 0) = 0 implies that / 1 (x) = 0, i.e . . f: (x) "" 0 for all 

i f, j i.tn~llies thar /j(x) "" 0 also holds. In other words: if x satisfies all lhe equations 
exr.:epl. the jili, then x automatical.ly also sati~fies the Jth equation, rn this ca~e. the jth 
equation is superfiooU:?;. Hence: 

Suppose th~- cquariou ~ystem (2) has solutions and that / 1 (x), ... , j,..c.x) a.re func­
tionally dependent Then the .rys1rm r.or.tains ar lt·ast mu: rnperfluo11s equarim~ 

NOTE 2 Cousider system (2) au<l suppose cbc C 1 functions J1, •.• , J,,. are functionally 
d~l)Clident in R" according to the <kfJ.nirioo (5). Because there is a superfluous equation, the 
counting rule foils. Then, according to (3), the Jacobian matrix f ' (x) canuot have rank m 
at any solu1io n point. By differentiating (4) w.r.t. x it follows from the chain rule lo matrix 
form that v F (f (x))f '(s ) = 0. Becllu~e 'v F (r{x)) ,j 0, the rows in them x m Jacobian 
matrix f ' (x) are linearly dependent, so the rank off'(x) mu~t be less than m. 

MPLE l Showthat /(x .y) = c>"(l+xZ) nndg(x,y) = ln(l+x1)+y ai:e fun~tionallydepen<lent 
inR1 . 

Solution: Put F(y,, )'2) = lny1 - Y2, TI1cn F(f(x. y) , g(x , y)) = y + ln{I +x2) - ln(l + 
x2) - y = 0 for all x. y. Moreover. Pi0·i, }'2) = --1 ,f. O. so f and g ari; functionally 
dependent [ 

Local Functional Dependence 

A property implied by 1\1nc.tional <.lcpcnden.:e is local functional dependence. defined as 
follows: 

·1 
T~c functions f;, .... f., are locally functionally dependent io an open set .A I 
if for ea.::h Xo i11 A lhcrc exists an open hall B(xo; e} ~ ,t such char j, , .. . . f,. I (6) 

II.Ce functionally dependent in El(Xt1; e ). J 

With this concept of local functioual dependence we record the following two theorems, 

whose proofs are given on the book's websirc. 

- ·---·-... ----··-- ·, 
u:, f = (11 •. .. , f ,,.) be a C 1 transformation defined in an open set A in R". Jf 
the Jacobian wattix r'(x) has constant rank r < m ill A, lhcu ii, .. . , f,,, are 1 

___ ___ 1_oc_a_1_1y_f_u_nc-· t-io_n_al_ly--depe--o-<lc_n_t_. ---- - - - ---- -----·-J 



92 CH'APTER-2 ·'/ MlJLilVA RI AS U. ·cALCtJlUS 

THEOREM , ~ 2 (THE RAN_K TH-~OR™1 ·-- ·· • · ' · ·--·-·- · · •···-----;;-i 
·· Suppos~"tbat the m. functfo,is /1 • .. , f ,. ate defined an<l C ' in l\ll 0~11 S~l A in 

' R". Assume that the Jacobian n111tru of these fun~hon.s has con~1a111 rank r < m I 
· in A. and let x0 be a point in A. Then the{¢ eust an open ball B(x.0 : i·) £ A 
tllgether with r functions f;,. ... . /,, selected from Ji, . ... fm, lll\d m ·- r 

fut1ctlons H;, j 1/, (i1 ••. • i, ), whicbare>all_C ' ~n a su_itnhk sub.~e~ofR'
0
_such I 

!hat [j(x) "' 111(/1,(i ) , .. . , /i,(x)) forall J ¢ {11, ... 1,J and alt x 1ll B (l J ) . 

. ···-· ... .... .. ., .. _,_ ,,, ... ., ..... -·"·- ·- ..... , .... ___ ,. ..... , ____________ , __ .., __ .,._ .._. ___ _ 
PROBLlMS FOR SECTION" 2 8 

@ 1. (a) Consider the macw e(;onornic model described by lite sysV;,;n of equDtious 

(i) Y = C + I+ G. (ii) C = J (Y - T), (iii) I = l,(r) , (iv) r = m(M) 

where f, /,, ;md m t1l'C given C 1 functions. Ac~aerdiug to the counting rule, huw many 
degrees of freedon, has this .-y~rem? 

(b) Gi°l'c ~ulticicnl condition$ for the system ro determine Y . C, J, .ind r &.~ functions of die 
c~oge0-0~ policy variables M. , 1", and G in a neighbourhood of an equilibrium paiot 

~ 2. (a) Cousklet the lwt> pairs of fun~tions u = / (.r. y}, ~ ~ g<x. y) given hy 

(ii) 1' = : , V = ?'...=!. 
y y +x 

Show that for e.icb pair t"he Jacobi1111 determinant il(u, v)i~ (x, y) " 0 for all c.x , y) when: 
u and 11 ate defined. 

(b) Find " functional dependcocc between u and II in each case. (Hiflt: Sntve d1t Cl)uation 
tt = f f.t, y) for x an<J put the re~ult i n10 11 = g(x, y).) 

@3. Let .. = f (x. y), u = g (.r., y) and supposct.liat. J (u , ,;)/3(x, y) "" 0 fot aU (x, y) in A. Funher· 
more,.~uppose8f/iJx ¥ Oat(xo, )11)) E A. Show1hat1111dersuiwblccontinui1ycouditions,J and 
g are li>nctlonally dependent in a ball ~round (.rq , y0). (liinr: u = /(.,, _v) yield.< x = ~ \Y. u) 
b=lusc iJf / ~x t, 0 . .fleoce," = g(f(y, u ), y). Show that au/ily = 0, so !hat g('P(J. w), y) i~ 
in<lepeooe,1l of y, and hence 11 = t(~o(y, u). y) = 1ft(u) .) 

4. Suppose lbal u, " · and w are Jcfined as C' !unction$ of.r, y, and~ by the tltree equstions 

u - x +y -~. u =-x- y+ z. ,u= x" +-,2+ / -·2yz 

(a) Show that a(u, u, w)f;l(x. y, 1.) " (J for all (x, y , 1.). 

lb) Show that u, v. and 111 ate functitlflally d~I. 

2.9 

DEFINITION 
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D ifferentiabi I ity 
Recall thal if a one-variable function f i.s iliffere111iable at a poinc a, then the- linear 11pproxi­
matim1 to f around a is givc:n by 

.•. 
/{a +h) R< f(a) + J'(a)h. (for ,-mall values of h) 

1nis approximation is useful because the a11proximarlon l'rmr defined by 

R(h) = mie value - awroximatc value= f (a + h) - f (a) - f'(a)h 

be.comes negligible for sufficiently small h. Of counic, R(h) becomes small in the tcivial 
sense that R(h) -+ 0 a~ h -+ 0. More impo!Tantly. however, R. (h) also becomes -~mall in 

comparison with h- -fhat is. 

Jim R (h) = lim (/(a + Ii) - /(a). - ! '(11)) "" 0 
h-0 h h-0 I, 

ln fact, f i~differeotiable a.ca if and nuly if there exjsts a nu1nber c such th at 

. f (a + h) ·- f (a) - ch 
0 1'~1 h = 

lf such a,; ex ists, it is unique and c = f'(a). 
These one-<lirnensional concept• admit straightforwurd generalizations to many dimen­

sions. In particular. a t.rMsformatioo f is dif!ermtinble at a point a if it adn.tits a lin<'<lf 

approximation around a: 

f OIFF ENTIABILITY AND OEl!IVATIVES ---. ---i 
lf f : A .... Rm is a 1.rllllSformation defined on a suhsct A of R" and a is an interior I 
point of A, then f is said to be differentiable At a if there exists an m x n matrix I 
C such that 

lim llf(a + b) - f (a) - Ch! = 0 
h-,.O 11h 11 Ir 

If socb a mauh C exists, it is called the(t.otal) dern·ativeorr al a. and is denoted 

by f'(a). An alternAtive notation for f'(a) is Df(a). I 
(1) 

If f hm, a derivative, then the derivative is unique (in fact, it must equal the Jacobian matru 
of f at H. sec b<:low), so we are jus6fied in speakin.~ of 1h,i d.mvative. A.~ in the one­
di=o~ional cas.;, if r i~ differentiable at a, then tl1e linear traJ1sformatioll h t-> f ' (a)h is >1 

g(lod appro.timation to h H- f (a + h) - f(a) for ~ufficiently small h, and lht-appro:timatlon 
f (a + bJ ~ f (a) + f '(a )b. or, equivalently, 

f(x) ~ f (a) + C'(a)(x - a) 
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i~ called the llnenr (or first-orde r) approximation to f around a. 
Several questions arise: how cao we tell whether a trnnsformatioo f is differen1iable at 

a point x; how do we find f' (x): and what properties do de,ivatives have'? 
Consider first the special cas<' m = I, so f is III! "ordinary" (one-dimensional) funct.iou 

of n va,:iables. It ruro.s out that if f is differentiable at x, then f has a dcrivntive f~(x) along 
every ve.clor ~. and the8e derivatives are all dc~11nined by lhe derivative f' (x) off at"· 

Proof.· From the definition in S«tion 2..1 , die derivative along a is 

In particular. if ei = (0 •. .. , I, .. . , O)' is the .ith standard unit vector in fr', then J;,<x) = 
.f'(x)ej is the partial derivative fj(x) off with. respect to the jib vaxfoble. On the other 
hand, /'(x)ej is the j th .:omponent of f'(x). Hence, f' (x) i~ the row vector 

/ ' (xj == l/'(x)e1, . .. , J ' (x)e.) = (f[(x), ... . , f~(--s)) 

which we rccoguiz.e us the gradient V f (X} of J at x.• (See Section 2.1.) 

We are-· prepared to tackJe the case of lr.m$fortllalions into ~ .. . 

THE OR M 2 9 2 1 ······-···-·-····· .. -----·······-···--··----·"-····--····-····--·-··-----·-1 
Atrnnsfonnation f = ( /1, . .. , J .. ) fromasubselAofR" into~'° is ,tifferentiable I 
at an interior point x of A if amt ooly if eac.:h component fuoction f; : A ~ IR, 
i = I , ... m, is differentiable at x . Moreover, 

! '(11:) = (. fj~t ) l 
1:..<x) I 

---· ·-···-....... ,.j: them. x n matru. ,whose ith row is J;(x) =. V / ;(x) ... ,_ •. --······-·---·-··--·-.J 
4 1bc e,radicnl. v f(z) of a function is lhus an exception to the rule that vectors (regarded as maltice6) 

:.re uwally cak1<n.l<> be column vectors. 
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Proof.· Lee C be au m x n l!llltli~ and kc R(hi = r (x + hi - f (x) - Ch. For e.icb i = l, 
. . . • m, the/th component of 'R(h) is Ri (h) :c: [i(:t + h) - .f.(x) ·- C1h. when: C, is theith 
row of C. But 

IR; (h)! .s YR(h)II .S ;R1(h)I + .. · + IH,,,(h); 

for each i. It foUows that 

lim ~ (h) II "" o 
b-,.O ~bU 

' fl<,111)1 
WD --· - -..,. o fora\li :... l , ... ,m 
~ ..... o llhU 

Hen..:e. f is differentiable at x if and only if eac.:h f; is differentiable at ;c Also, the ith row 
of the matrix C = f'(x) is the derivative of Ji, that is C; = V Ii (x). • 

We see tha1 if f i.s differentiable at x, then its derivative is lhe matrix 

("' () ~!1 (x) '!'(,,) a ,s: 
X1 il.x2 &xn 

f'(x) = ilf~ ( --s) 
fJfm (x) fJfm (x} 

ilx1 · (b:2 ax. 
We have previously called f '(x) the Jacohiun matrix off al x. Its rows ;u:e tJ1e gl'adicnts 
of the ~-omponent functions off . 

We know that if a funclion J : IR ~ R is differentiable al a point a, tlwn it i~ continuous 
at <1. A similar result holds in rhe multidimensioual case. 

tH:ORFM 2 9 3 ·---------------~----------- -1 
·· L·· · If a transformatioo f from A s; !Rn in10 Olm is differentiable at an interior point a 

of A. then f is continuous at a . l 
. I 

. - - -----·-·-------' 
Proof: Let C = f'(a). Then for small but nonzero b, the triangle inequality yields 

JJUa + b) ·- f (a }JI :s l f (a + b) - f (a} -- Cb JI + i!Chll 

= ilhll (llf (a + h) - f (a) - c~.~) i1Chl1 
. l!h!I + ' ' 

Because C = f' (a), the fraction in tbe parentbescs tends to O as b -+ 0, and the 1crm II Ch U 
aL~o tends ti> O. Hence, f (a + h) ...,.. f (a) a.~ b ..... 0. • 

If l' and g arc tra11sfomiatiol)~ from ,1 S: IR" int.o R'", and if they :Jie both di.ffer.entioble at a 
point x in A, 1he11 the following rules hold (a i~ a co.o.~r~m ~calar): 

(af)' (x) = a f'(x), (f + g)'M :::a f'(x) + g'(x) 

Tiie.re i& also a chairi rule for transformations: 
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1

.,.TH60REM 7 9 4 •lljt, C+4Al 'J R~. 

, · Suppose r : A -,. R"' and g : B -+ RP arc dt:fioed oo A ~ R" and B ~ Rm, with I f(,\) ~ B. Suppose also that f and g nredi fferentiahle ar. x and f(:c), respectively. 
'I TI1en thl}c;ompo~it,;lTlll\,Wlll>llion go ( : A -+ RP defined by (g r,(}cx:) = g(f (~)} 

1 
is differentiable at .&:, and 

l L __ _ (g o f)'(s) = g'(f(x)) f' (x) (2) 

EXAM Pl f 1 

Proof: A heuristic deriv-.dion of fonnula (2) using linc~t appro:omai.i,ms is 

(go f) (x + h) - (g o f)(:c) = g(f (x + b.}) - g(f (x)) 

"" g'(f(¥})[f<s + h ) - ( (x)]"" g'(f(x))((x)h 

To go t,,:yond a heuristic explanation and prove the the()rem rigorou~l:I', one mu.~• show tbal lhe 
error e(h) c (g <> f ) (x + b} - (g o C) (x) ·- g' (f(,r))f{x)b involved in this awoximation saii,lies 
ije(h)II/RhU -. o as h -+ 0. 

De6.De k(h) = f(x + h) -f(s) = <' (x)h +e,(h), wbere Oer(bH/dhH - 0 a.• h -> Ob=lu.~er is 
differeotiableutx . S.imilatly g(f(x +k))- g(f(J)) = i:'(t (x))k +ei (k), wtue:re JJ~(kj lf/llkll ..., 0 as 
k -+ 0. Note that !lk(h)I! :;: llf '(x)hll + ~e,(h)!I ::: Kilb II foralhmalJ h. with K some fixed coMlllllt. 

Observe also that foul( t > 0, lle1 (k) H < 811 1; 1/ for k sonlill, so llei,(k(h))lf < s l[ k(h)I[ ~ sKllhlf 
when h is small. Hence. Ue. lk (h}) U/Uhll -. 0 as b - 0. Then 

e(h) = g(r(:t) + k(h)) - g(r (x)) - g'(f (:t)) f'(x)h 

= g'(r{x)) k (l1J + "&(ll(h)) - g'(f (x)) f'(it)h 

= g'(f (x)) c,111) + e,(k(h)) 

Hence ~e(h)lfffhll 
zero ash -+ 0. 

~ !c'lr(x))er(h>!/Uhn + ffe, (lq h )Jfl/fth ll. The right-hand side con,·ei-ges to 

• 

The Jacobian matrices i:' (((x)), f' (x). and (go r)' (llo) are p x m , m x n , and p x 11 matrices, 
respectively. Note that me chain rule relates composition of foocrions lo multiplication of 

the Jacobian matrices repre~enting their derivative.~. and th\lS to c;omJ)<Jsitions of the J.inenr 

tra11storm11tions given by these tledvatives. 
111c: chain cule (2} is written in a very compact form. The following e1.ample shows that 

it actuall y represents familiar formula.~ from calculus wrine11 in matrix form. 

Suppos~ f : R~ ~ R2 ~nd g : ~2 -,. R2 are defined by 

)'1 :: /1 (x.1, X1, X3) , 

Y2 = /7.(x1, X2, .~3), 

Then h :::: g ., f iti tlefin~d by 

Zt "" 81 (.)'J, .l'2) 

,.~ = g2()'1, )'z) 

Zt "' h 1 (x1 , x2, x3) = 81 (f, (x 1, x 2, x;). h(x,, xi., X3)) 

! i = lr1(x1. x2, x3) = g1.U1 (xi, .t2, X3), J,i(x1. x2, XJ)) 

·s r. CTiON Z. 9 I Drf~ l!i t NT!A OILI TY 97 

According to the chain rule (2), e~: ah, "') ,,, ,,,)C a/1 !le ) UX) ily1 i1x2 

ah, a ( '8> 
ii)".? i/x, /Jx, 0X3 

a1,2 oh2 ag,z ilh oh ilh 
Jx1 ~x2 ax, ay, a;; i/xi ilx2 ax,. 

Evalunting the matrix product on tht: right, we get the- familiar fom1ula 

ah; Ilg; a/1 a~; ah -- :o --+ - -. i =l ,2. i =l,2,3 
rJXj DYt 8x1 0)'1 <JX/ 

(The partial derivatives of g; are evaluated at y = <Yi , Y2) = (Ji("). fi(x)).) 

Wcnowlcnow thaqf thederivativeoff = (/1, .. . , /..,) at :r.exists,itmus1equalthefacobian 
matrix. C'(x), and we know some of the propenies of the derivative. But when does it eJ1:is1? 

ft is not sufficient that all the t:irst-order partial derivatives /Jfi/o)l.j edst. In fact, Problem 1 
shows that f need not be differen tiable at a point even if r bas directional derivatives in 

all d.ircction.s at that poinl Bvt it rums out that if the p<1rtia/ derivativi:s i/fi f /Jx; a,-y: nll 
co11tinuou,· at a point x, then r is differentiable at T. 

Recall that a function f : R ~ R is said lo be of c lass C1 (k = I , 2, ... ) if all o f 

its pnrtial derivative~ of order up to and including k exist and arc continuous. Similarly a 
transformation r = (/1, .. . , /,.) from (a s11bse1 of) R" into R"' is said co be of class C1 if 

each of its compooent functions /J .... , f., i.~ ct. 

H C is a C 1 transformation from an open set A s;; R" into R"', lhen f is di.fferen-1 
tiable al every point x in A. I 
Proof: By Theo~m 2.9 .2, r is difft.rentiable if each compl)I\Cnl Ii is differentiable. He.Dee, in the 
proof we CJlJl assume that f is real-valued, denott.d by f . ,.et 8(1; e) be an ,)pen ball small enough 
so that 8(x; s) £ A. For each h such that x "' h E' B(x: d defioe lhc errone1m by . 

R(h) .. f (x + h) - f(x ) - I: t{(x )h, 
I .-.\ 

and let •i denote the j lh stai1dard unit vector in fl• . Note that 

f(x + h) - f(x)"" t [/ (x + t hi~J) - f (,r + I::1ijej)] = t !((• + 1:h;ej + O,h,ei)h, 
i::. I /•I j:i~t i;,:f i"•l 

with 01 1: (0. I} fori = I. 2 . .... n. where the mean vnlue th~orcm i8 used to ohlllin !he last c.1unlity. 
Heuce 

R(h ) • [ , _, J h · 
7 ·- = L J;(x + Lhiei + (11h,e.,l - 1;(x) 11~,-> 0 as h .... 0 
,lhlf l=I ,~, ' I, 

IJ«4use the derivatives f/(,r) are o$tallned t,) be conrinuou,. • 
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We oex1 derive two useful inequalities. f-irst, lei C be a ct Cw,Clion from R" m1u R"'. 1betl for all 1. 
andy . 

llf(y) - f(x)I! f max l(f'(z)(." - x)I! 
•<l>,11 

(:\) 

where f'(z) is rheJa~vbi.n lllatrix Mr at z. an(! [x. yJ is the closed linc~gme11t from l< toy. 
The inequality in(3)i, obviously truc if f(y) .. f(x). 1:'oprove(:))inthcc•sc wheaf(.v) ¥, f(,r), lct 

b-. Irr,T.: f(xJH (f (J)-f(x)). Then ijb i ... I and 9f (.1') - f(s.}f = b· (f(y)-f(x)) "$<Y)- gtx}, 
where g is the function defined by g(z) = b · f(z). 

An easy calcuwtivo shows tha11ht gr.ulient of g is 'i7g(1.) =· bf' (z), where bi~ ittt(rpre1ed Iii/ 
a I x m matrix. By the me'!n value lbrorem (Theorem 2.1.2), ther;e c:.xi.its a z in [x, yJ sucb. tb.at 
g(y) - g(x) = 'i711(•) · (y - x) = b · lt'(z)ty- 1.)). The Cauchy-Schwaa. illC<{Uality, (1.1.31$). then 
implies ls (y) - g(x) I :5 llhll · ;lf'(z)(y - x)H "' llf'(z)(y - •)II, and (3) follows. 

By applying the inequality (3) 10 the oew function y H f(y) - f' (w)y, with .,. a fixed vector, the 
foll®intt inequality is obtained for all x, y, and w in R": 

Df(.v) - f (1.) -f'(w)(y - x) II !Z ..1:~
1 
ll{f'(:,;) -t'tw))(y - x) II (4) 

xy2 
1. (a) Let f be defined f<>r all (x. y) by f (x. y) "' ,:Z + 'yi and /(0, 0) = 0. Show tha.t J{(x, >') 

and fi.(x, y) e:cis1 t0< aJI (x , y). 

(b) Show that l bas a directional derivative in every direction at every point 

(c) Show \h:it f is no1 continuous al (0. 0). (Hint: Omsitlcrthe bewtviouruf J along the curv~ 
x = y• .) ls f differentiable at (0, 0)? 

2.10 Existence and Uniqueness of Solutions of 
Systems of Equations 

111i.~ section is coocc.n:ied witb the system of 11 eq111,1ious inn w1knowns, of lhe form 

/1 (x 1 • ... ,x.) "'YI , . . . , fn (X1, .,. ,x.) =y. orin vectorform f (x) = y (1) 

For given values of .vr , ... , y. , when will systcro (l) have a sohllio11 x 1 • • • . , x,.? Also, when 
is the solu tion unique? 

The- inverse function theorem (Theorem 2.7.3) tells us that if system (1) has e solution 
y

0 = f (i<0J, and tho Jacobian determin..'l.nt isootO at x0 , then there exist opeu balls 8 1 arou11d 
"" Md .82 .around Yo such that (l) ha~ a unique ~olu1ion x in Br for each y i11 nl. This rcsull. 
tells u.~ about (local) uniquene.1s; it $ays n,,thing about the e..risren.ce of a solution xo of (t) . 
for y ::::y0 . 

General th(..·orems on the. exi~ten..:c nnd uniqueness of sol11tio ns to f (l() = y must involve 
suong restrictions on C. This is clear e-.·en in the case 11 = 1. One can h3J'd.ly claim t.hat. rhe 

:··. 
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equation /(x) = 0 usually has a uuique ~olulion. Thick about !he case where f(x ) is a 

quadratic polyno!llJal, or more generally a polynomial of degree n with II real zcros. 
Suppose .f is a ~ontinnous function from n to R where either /lx) -+ :x> as x ..... ·OO 

and f (x}-+ - ooas x --. -oo, or /(x) --+ - oo as x-+ oo ltlld f(x )-+ oc asx-+ - oo. 
'Then by lhc intenncdi.ate ~Alue theorem, for llny number y the equation f(x ) :::: y h.1s a t 

least one solution. Of course, lhi.s solution will not necessa:iily be Ul•iquc. Howe,·cr, ~uppos..: 
the following condition i~ satisfied: 

n,ere e.xists a positive number y such th.al f' (x) ~- y for all x (2) 

Then/(.~) -+ oo 11s x --+ oo, and f (x ) -+ -oo as x -+ -oo, so lb.ere is n solution, and iu 
addition, /(x) is sirictly increasing. so the solution is unique. 

NOTE 1 Condition (2) 1,ecures that f (x) = y has a solution for any choice of y . It cannot 
be weilio,-d by ussuming that /' (x) > 0 for all .i . For example, lb.e function f (x) = tr 
hM f' (x) > 0 for allx, but e' = - l has no solu tion. 

1lte prohlem of ex.isteocc and 1mique= of solutions to (l) ~comes more complicated 

when n ~ 2. Let us presem some arguments and results that sometimes arc useful. \Ve refer 
to Parthas:imthy (1983) for proofs and more details. 

For 11 = 2, we consider 

(3) 

where /1 and h are C 1 fum;1ions. We seek sufficient conditions for system (3) to be uniquely 
solvable for x, and x1, so that XJ = q,(y1, n) and x2 = lfr(>·, , n>-

Dcfine 

h(x1, - oo) = lim h<x1,x2) 
;r,z- -oc 

where we implicitly assume that the corresponding limit exists or is ± oo. Suppose chat for 

all .xi e ither fz (x1, ± oc) = ± oo or h(x 1, ±oo} = 'fOO. Then for cac!u1 the equatioJl 

has a solution x2 = .i'2(x1, Yi) , with i!i2 (x1 , Y2) / <ix1 = -(rJfz/ iJx1)/(8fz/8x1). Suppose 

that i2(.tt . )'l) is uniquely <lttcnnine<l as a C1 function of x1 and >'2· Insert this value of x2 

into tbe first equation in (3) 10 obtain 

(4) 

Suppose that lim ft(x!,Xz( .. tt ,,Yi)) = f1(±00,i'2(±00,)7)) = ±oo(or;p:x>). Then 
x1-i:oc 

for all (y1, y1) equation (4) has a solution .r1 :-:- r 1(y1, .)']). lf we define x2(.v1, n} 

11(:ci (Yi, Yi), n). 1bcn x(y) = (x1 ()'1. }':lJ, x-2(y1, Y2)) is a solution of f (x) = y. 
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If tb.erc exis ts acon~tant" > 0 such rhat the function H (x , , n) = !, (xi. i 2tx1, .vi)) has 
derivative a H /;J;q :::. c, > 0 everywhere. then H C.±oo, Y2) : ±oo. whicll was a pl"Op('rty 
we used ahove. No w, 

aH Jft(xi, X2(X1 , .>'2 )) fJ/1 (x , , i2 (.l1, n)) iix2(X1, n) - - = + - -- ___;;c.;....-.:....:c.. 
ih 1 ilx1 ci:r2 ax, 

= a1i + "ft (- 8h/itx,) _ 1 I a111a.r1 iJ/ tiilxz 1 
ax1 OX?. iJfi / &x2 ilfziox2 . a1i1ax1 iJfiiaxi 1 

So if there exist pusitive constant~ k and n such lhat O < 8h/<l x~ s k and the determinant 
i~ ::! h, then a fl /ox1 ?: hf k > 0. 1bis is a loose motivation for the next theorem in the 
two-dimensional case. 

I HEORfM 2 10 1 ADAM ARO• 

Let r : R" ~ R" be a C1 functioo, and suppo.se that tbere e.tist numben. h and 
k such chat for all ,c and al l i , j = l, . . . • n, 

Then f has rui inver~e which i.s <letined an<l C I on the whole of R" . 

1 

(5) 

!- - ---- - - --- ----··--- -- ---·- - -·---

i 
I 
i 
! 

The theorem implies that for all y the equation y "" f(x) has a unique solution ,i: = x(y), 
a11d :1' (y) is conti.Jluous. 

ln the two-<limel\~ional case discussed above we postulated that when 1x2! is large, so is 
1/i(x,. x2)J. and h,mce also 11l (x1, x~) fi. Furthermore, we also posrnlated that when Jx1 I is 
large . ,o is If: (.x1 •. c2(x1. Y1)!. and hence llf(x1. i2 (x1, )'2))JI. Provided lf'(x)I fa 0, we do 
gel solutions of the equation f (x) c: y if we require th.at l]f(x) II is large when !Jxll is large. 
(For !he de finition of inf , see Section A.4.) 

Let f : o:t• -+ 11.• be. a c: function and suppose that Jf' (x)J ;c O for all x. Then 
f ( ,c) has an invetse which is cfe6.l)(;d and C1 in all ufR" if and only if 

infll!f(x) II : /lxll ~ n)-> oo as n -+ oo (6) 

._ __ .. _.,, _____ ,,_. ___________________ ,, __________ ,_ 

For prOQfs of tbi.; lim rwo theorems see Ortega and Rheinboldt (1970). 

The re.(u}ts i:eforred to so far deal with the er:istence and uniqueness of solutions 10 
equations. We ,·onclndc with two l't".sulcs 1bat ~.re only concerned wirJ1 uniqueness. 
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THEORErA 2 10 3 ··----·- ···- ----··- ·-----··-----·--- ---······--···---·- ·. 

I· Let { : R" -+ R" be C1 and let Q oo the rectangle n "" tx e a.• : a ~ ll: :f b ), 

L 
whctc a and b are given vc:cton, in R". Then f is ooe-t.0-one in fl if one of the 
following condit100.~ is ~aasfied tor all x. 

QU SI 

(a) f' (x) has only positive principal minors. 

(b) l"(.c) has only negative principal minoo;. 

__ ..... _ .. -.. ·--·--·-'-.-- ...... --. .. -... -~---··~ 

The last theorem in this sccclon gives sufficient conditions for a f\lnction f : R" -+ R" to 

be one-to-one on an arbitr-arily given convex set Qin, R". We need the following detinition: 

--- -·-----·,.,._·--- ·---·-; 

L 
An n x n matrix A (not necessarily symmenic) is called positive quasldefinite 
in Sf R" if x' Ax > 0 for every n-vector x fa O in S . The mauix A is negative 
quasldelinit.e if -A is positive quasidelinite. 

--- ------·-- - ---- ------ - -... --~- ; 

(7) 

NOTE 2 If A is symme.tric, A i.s obviously posi tive quasidefinite if and only if A is posi · 
live semidefinite. A general quadratic matrix is po.~itivc quasidefioite if and only if the 
(symmetric) matrix A + A' is positive semidefinite. 

THEOREM 1 (j A (GALE-NlrAIOOI -··-- - ·· ·- ··--· ··-·-··---··-··-·- -······,- ·-·; 

l
. Let r : r:f' ... H" be a C1 function an<l suppose that the Jacobian matrix f'(x) is 

ei~her positive q°'.1"~idefinite everywhere in a ~O!JVCX set n, or negative quasidef- ! 
rmle everywhere m n. Then f 1s one-to-one m n. , 

! 
---·----··-· ··----- ····--- - ··- __J 

Proof,· Let a -f, b bf. arbitrary point~ofn. Define g(r) = ta + (l.- 1jb, 1 E [0, l]. Let 
h = a - b fa 0, and define w(t ) = h' · f(g(t)) = hif,(g(t)) + · ·· + hnfn(g(t )). Then 
w'(t) = [hd{(_g(t) ) + · · · + hn /~ (g(t)) · g'(t) = [h,/[(g(t)H- · · · + h.f~(g(t))] · h = 
h' , r' (g(t)) · h. lf f'(:r:) is positive qWlsidofinite, then w'(t) = h' · f'(g(r)) · h > 0 for h 1' 0 
and so w(l) :, w(O). On the othe.r hand, ifr'(x) is 11egativequasidefini1e. then w(l) < u•(O) 
In ei1h.:r c&&-e, tht'refore, f (a) ~ f{b), so r is one-ro-c,nc. • 
NOTE 3 l11eorem L.7.Ha) states that when A is symmetric, A is po~irive (quasi)dcfinit.e iff 
the kading principal minors ar.c all positive, Note th.ll I.he Jacobian matrix f' (x) is 1101, in 
gellcrol, symmetric. Nevertheless, Theorem 2. I 0.3 uses sign conditions that. if applied to a 
sy11w1ctric matrix, art equh1tlent to its definiteness. 

NOTE 4 Thcoro:nc: abour. global uniqueness t_univ11lencc) are useful in scvernl e<:ono,nic 
application~. For example. ~uppose that a nation:il economy ha.s n diffrrent industTics em::h 
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producing a positiv~. amount of a single output under cou~taut rctunu to s.:alc, using other 
goods ll.ll<l scarce prim ary factors as iup11ts. Suppose the couutry is small, and faces a llxcd 
price v~-tor p in R~. at which it can import or exp,)rt then goods i t produces. Suppose there 
are n primary factors whose price.~ are given hy fue vector w in~. Equilibrium reqnircs 
that p,. = c;(W) for each i = l , 2., ... , n , where c;(W) is the minimun1 cost a t pric~ w of 

producing 011e unit of goo,t i . 1l1cn the vector equ11tion p = c(w). if it haJ; ,L uuique ~olutio11. 
wi.11 determine lhc factor pri,;e vector w as o function of p. When different countries have 

the same unit co.st fouctions, lhi.~ implies factor price equaUzation-becuusc pis the same 
for all counlri.:s that trade freely, so is the factor price vector w. See Pardiusarntby { 1983), 

Ch3ptcr IX, and tb.e references there. 

PROB,.Et,,.IS FOR SECTION 2 10 

1, Show thntA = ( ~ i) ha., l'(\sjtive leadingpri.ocipal minors, but is notp,,~itivc quasiclefinite. 

2. Supp<.)!l<! the national economy in Note 4 bus lwo i.ndustrie~. whose uni1 ~'()St functions w .. c 
I.he Cobl>-Douglas folDl c,(•~·c, ur,) = YI wjw4"• onrl cz(W1 , w2) = Y?.wf wtt , respcc:lively. 
Sht>w that, provided a -f {3. the vector equation p"' <(w) clclc.nninei. u:1f u,, uniquely as a 
function of p,/ pz, and cornnieut oo the ~olution. 

STATI .C OPT IMIZAf lON 

If. then, Ir. Politicai Economy we i>aw tc de~i wim qv,1ntities <1,1d 

comp/koted rclar/ons of qv.llltltles, we must reason 
mathematicaJ!y; we do not render the sc'enm le~ rrK1thematic,a/ by 
INOiding the !ymbols of a/gebfa . . . 

- /evor1s (18 71) 

M uch of economic analysis relies on static optimization problems. For example, produ­
ce~ seek those input combinations that maximi,e pro1its or minirni,e cos~, whereas 

consume~ seek commodity bundle$ that maximize utility subject to their budget constraints. 

In most st~tic optimization problems there is an objective function f(x, .... , x,.) = f(x), a 

re;il-valued function of n variables whose value is to bo optimized, i.e. maximized or minimized. 
Th1:re is al~o an admissible set (or f easible set) S tlia1 is some subset of R", the n·dimensional 

Euclidean space. ThE<n the problem is to find m.iximum or minimurn point, off in 5: 

max (mill) f (x) subject to x e 5 

whe<e rnax{min} indicdtes th3t we want to ma,cimize or minimize f . 
Depending on the set 5, several different types of optimiZation problem c~n arise. If the 

optimum occurs at an interior point of S, we talk about 1he classical case. In Sections 3. 1 ar1d 

3. 2 some basic facts are reviewed. In particular, Section 3 .1 discuss~s an er1velope theorem fer 
unconstrained maxirn;i, and Section 3.2 deals with second-order conditions for local extrema. 

ti Sis the set of all points x 1hat satisfy a given S)'$tem o1 equations, \\"! have ll'J? Lagrange 

problem of m.i1.imizing (or minimizing) a function subject to equality constrain ts. Such problems 
are discussed in $(:ctions 3.3 and 3.4. In addi tion to the st.ind~rd results for the general Ldgrange 

problem, sensitivity rewlts are di.scussed in some detail. 
The genera'. nonlinear prog ramming problem arises when S com.ists of all points ~ in R" 

thi.lt satisfy a system of inequi.tlity constraints. aound, on available <e~urces typicaily iead to 

$UCh constraints. Section 3.5 p~ sent:. thc- bc1sic facts, a!ong with a proof of ;he noces,,ilry Kuhn­

Tu<.ker conditions assuming that tho value function is differentiable. S.ect1or. 3.6 go()s on 10 

dr;russ sufficient condit>ons, in particular quas,cone3ve prug,amming, of parfculilr :mpor:ance 

to economists. Section 3. 7 deals with comparative ,ta tics for 11onlinear prograrnm:ng problems. 
Many ~conomic optim,VJtion problems have r.ormegativity constraint:. on the vMiablcs. S&· 

!ior, 3.6 show~ how !o hand!e such problems ;n ~" efficient way. 11 also considerr, prcblc,ns with 
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·:.. 

3.1 

·equalilJJ as wen as inequality constraints (mixed <onstraint5). 
Section 3.9 on concave progromming deals with result5 that do not require differentiability. 

Section 3. 1 O gives preci5e 1heorems nn envelope results, and the fir>al Section 3 .11 contains a 
general proof of th<? existence of Logrange multipliers in C:onstrainP.d optimization problems tor 
t>r~ general case of mixed constraints. 

Extreme Points 
We begin hy recalling some basic de.tinitioru and results. l.cc f be a function of n v:u:iuhlu 
x1 , . .. , Xn defiued on a set S in R" . Suppose that the point x' = (x j , . . . , x;.i belongs 10 S 
and that the value of f at x• i~ greater than or equal 10 the values attained hy f at all other 
points ll' = (xi , ... , x.) of S . Thus, in symbols, 

/ (x") ~ J(x) for au l[ ins 

Then x• is called a (global) mawnum point for f in Sand /(x•) is called the mall'imurn 

value. If the inequality in(*) is strict for all x ;I:- x•, then x• i.s a strict maximum point for 
Jin S . We de.fine (strict) minimum point and minimuni value by reYening the int:quaJ.ity 
sigo in( .. ). As collective names, we use extreme poi)!lts and ~xtreme values to indicate 
hoth maxima or minima. 

A stntiouary point of f is a point where all the first-ordc.r paxtial derivnlives are 0. We 
have the following well-known theorem: 

Lei f be defined on a~ S in R" ao<l let x• = (x: , ... , x: > be an interior point 
in S at which f has partial derivatives. A necessary condition for x• to be a 
maximum or minimum point for f is that 11• is a stationary point for / - that is, 
it satisfies the equations 

ff (x.) = 0, i = 1 . . .. ,n (I) 

Jntcrior staciorutry point.~ for concave or COn\'e,; functions aco auto,natically e1trreme poims: 

Suppose that the fuuctioa J (x) is defined in a convex set S in R" and let x• re 
an interior point of S. As.sw:nc. also that f is ct in an open l:lall around x•. 

! (a) If f is concave in S, then x· is a (global) maximum point for f in S if and 
! only i"f x• is a stationary point for J. 
i (b) If f is con~·ex in S, then x• is a (global) minimum point for f in S if and 
! i only if :x• is a s111tiomay poiot for f. [ 

, ... ·-- ···-··---···--'"- ·· - - · ... - · .. - --- -·-- ··"'- - ···-·'"·-•-.,~ ............. -- ···-·-·-- ----- - ·· . -- · .. ·- - ------.J 

XI\Ml'L£ 
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Proof: If f ba., a maximum or minimum a.t x•. then, according io Tbt:0rem '.I.!. I, x• must 
be a statiomlr}' tx>int. Suppose on the oilier hand that x· is a .,natior:iary point for a cnncave 
function f. Apply Theorem 2.4. l with :1<1 s-: x•. Since ff (t') "~ 0 for i :: l, . . . , n, 
inequality(] ) in Theorem 2.4.1 implies that /(x) ~ f (...:" ) for all x i11 S. This mean~ rhat 

x~ is a ma-.im.um point. 

To prove (b), apply (a) to - f. which is concave. • 

This important tlieorem is illustrated for the case of function.~ of cwo vltriahles in fig. I. 

j l UI f(.,.t, x?) 

, ____5,-:- ; -'2 -- ',;.. .. : .......... , 
,r_f_ .... -1 S -.... .. 

~ -,: ... --· -
.r, 

Figure 1· The cr,ncave ru11c1fon f(x,, x2) has a maximum al the stationary point <.x;-. :c;). 
The horizontal tangent plane Ill the correspooding point ? lit s on lop of tbc graph. ' 

Ftnd all (global) extreme poinrs of f(x , y, i) "' x2 + 2/ + 3z1 + 2,;y + 2.x;: . 

Solution: TI1e only stationary point is (0. 0. 0). Thl' Hessian matri~ is 

(
2 2 2) 

t"'(x ,y,z;) = 2 4 0 
2 0 6 

The leading principal minors are D 1 = 2, D2 = 4, and D, == 8. Hence, according to 
Theorem 2.3.2(a) , f is (stri~tly) convex, and we conclude. from TI1eorem 3. l.2(h) that 
(0, O. 0) is a (global) minimum point, and the only one. I 

let x = F (v) = F(vi , .. . , vn) denote a firm's production functiou, which is assumed 
10 be differentiable. Jf the positive price uf output is p and q 1, • • • , q. are the positive prices 

of tbe faclors of production " l , . . . , 110 , then the firm's profit is given by 

Toe fm1-ordef conditions for maximum profit are 

nJf I - = pF,(v ,, ... . v.) - q; ~o. i = l, . ... n 
ilv; 

Suppose that (-...) has a solution .,- ""' (vj, ... , v;) . wirh v j > 0, . . . , u; > 0. lf F is 
concave, tben ;r i.\ also concave a., the sum (If the ooncave function p F ( VJ , .. . , ,:. ) and rile 
liocar, hence ooncave, functiou - Qi vt - · · · - 1r. ,1 •. Ir follow~ from Theorem 3. l.2(a) that 
ux ~wionary poim (ll~ . ... , u~) really d<X"~ rwutimi7.e profit. 
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EXAMPLE- 3 

Suppvsc that. Fis the Cottb--Douglas full<:[ionx = F ( ,11 •... • 11,, )"" Avf' . .. 11~·. where 
A and a1, .... a. 1tre positive, with a = a 1 + · · · + a. < 1. Thi.:n Fi$ ($tiictly) t·ooc~:vc 
(see (2.5.6)). In this case (o) re<luccs to 

pAa1v~ ·· · V~ -
1 

.. ·V:· = q;, i = I , ... ,n ( .... -..) 
Mulriplyingtheith equation in (•o) by v;/ll1 gives px.:: pAvf' ... 11i• = q;v;(t11. Hence, 
1J, = ,1; px /q;. Substitutiog thMe into x = Avt ·· · vi• gives 

.... A("1p.,)"' (a,.,,x)~., ·u(at )"' (a•)"· x - - - · · · -- = A(px) - · · · -
. q1 . q. q, q. 

Solving this equation for ..t gives ..t = A l/(l-o) p0 i( l - <11(a1/ q1)"•lt1- • i . .. (ani q.)''•iCl--a>, 
so we conc lude that 

,. _ ("i) ( ) 1/(l-ai (a' )•1/(I - <>) (ai)"'/(1--a) (."" )u,j(J·-.x) v, - - Ap - - · · · - , 
q; · qi ,q2 qn 

i = 1, ... ,It 

Thi~ is th~ profit ma~imizing choice of input quan tity for cad1 factor of prnductioo. 

Theorem 3.1.2 require~ concaviry for a maximum. or convexity for a minimu111. Recall !bat ma1.­
imiz.ing (minimizing) a fun,:tion /ix) is equivalen1 ro rnaxiruizl.ng (m.inimizin:) F(f(x)J, for any 
given slri~tly increasing fu nction E. ($cc e.g. EMEA. Section 13.6.) If f(x) is 001 concave (cc,n­
vcx), th,.n the transformed function F(l(x)) may tx, concave (cmwexj for a suitably chc.,<acn strictly 
increasing E. Su~h a trru.<formation makes it Po~Sible 10 apply Theorem 3.1.2. 

Sti,>w that the function g defined for all .<, y, and l by 

ha.6 a minimum at (0, 0, o;. 

Solu tion: Theorem 3. 1.2 docs no1 apply log, hec;.1u...c g is no1 coove.x. Neverthele~s. Mle that 
g(x, y, z) ~ ff(x, .Y, t) - 5]3. where f is the convf'.x f11nction stu<Jictl in Example 1. Since g is a 
strictly iucreasing tn,nijformath)n llf f , ii coo bus (0, 0. 0) as it~ unique minimum point. I 

The following theon::m is importMt in optimi r.ation theory (see Section IJ.3) ; 

..,E ORCM 3 I 3 (fXTRE-ME \IA.LUE THEOREM, ~------ ----·------. 

Let .f (x) be a continuous function on a closed, bounded set S . TI1en f has both 
a rru11u.mum point and a minimum point in S. 

1 
I 
i 

i 
' .... --.. ·----·------··------·- ·-·--- -··-·----.... -- ----- ·- --·--···--~ 

NOTE 1 In rnost economic awlicetions the set S r,,~ferrcd to in Themem 3. l .3 is spocificd 
usiog one or more in, qualities. Jf the functions !Jj (JI.). j ,,-., l, .. . , m are all coorilluous and 
b1, .. . . b,. are. given nurubt.'1'S, thcu tbcsetS ::-, [x: 8i{x) :: t,1 , j = l , . . . , m) isclosod. 
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If some (or all) IJf the ioequ.tlitks are replaced by ~ or =, the set fa still clos¢i. The set. S 
is bounded if it b contained in some ball around the origin. (See. Secrion l3.l for ge11eral 
definitions and results on opeu sets. closed sets, a11d related coucepL~.) 

Suppose f(x) is a C 1 •• functiou defined on a set S in R" , l!.ild suppose too that we know 
that f has a maximum point x• in S- bccause of Theorem 3.1.3 or for other reasons . 
If x• is an interior point of S, it must be a ~tatiooary point for /. lf x· is not au inteiior 
point of S, it lllUSI belong to the bouodlll'y of S. (If lhc set iu qlll:stion i~ of the fonn 
S ~ {x : g;{:r ) :: b;, j =I .... , mJ, thc.n an inlerior point will often (but oot always!) be 
one for which all the inequalil.ies arc strict.) The following procedure can therefore be used 
to locate the ma11.imum point; 

(A) Record ill interior statioll.3ry points of S. They arc candidates for maximwn. 

(B) Find all maxillllllll poin~ for f restricted to the boundary of S. They are aboc.tndidatcs. 

(C) Compute the value of f at ea.ch of the points found .in (A) and (B). Those that give f 
its largest vnlue are the. maximum points. 

I! we know that f )la~ a minimum poinl, a completely t111alogous proocdure will give us 
the minimum point or poin!S. In EMEA this procedure was used to find extreme. points for 
function~ of !WO variables. Lnter we shall g.ive n1orc efficient methods for 6.illling e11:treme 
points of such functions. 

Envelope Theorem for Unconstrained Maxima 
The objccth•e function in economic optimization proMem~ u5ually involves parameters like 
prices in a<lili1ioo to choice v1uiables like quantities. Consider an objective function with a 
paramctc:r vcctoc r of the form /(x, r ) = /(x1, .. . , .tn , r1, ... , r1i. v.·hero: E S s;: R" and 
r E [~l. For each fixed r suppose we havl': found the mwumum of f (x, r) wheu x varies i11 
S. 'I11e maximum value of f('1C, .-) usually depend, on r. We denote this value by /"(r) ai1d 
call f' tbe value function. Thus, 

r ( r) = rr::r .r (x. r) (tbe value function) (2) 

Tbe vector x Lhat max.imizcs /(x, r) depends on rand i~ denoted by .1.*(r).1 Then f'(r) = 
f(:r'(r ), r ). 

How does f" (r) vary a,; the j fh parameter r; changes? Provided that f" is diffe,.enliable 
we have Lhc followi ng so-called envelope result: 

i:if'(r) = [ 8/lx, r)J , 
Jrj ar; · -·•· t r ) 

j = l, ... ,k. (3) 

Note that on the right-hand side we differenliale f w.r.l. its (n + j)th argument, wbich is 
,1, and evaluate tl1e derivative at (x•(r). r ). 

When tl1e parameter TJ changes, f' (r ) c.bangcs for two reasons. Fir.st, a cbnngc in 
'J changes x• (r ). Secom), f(x' (r). r } changes directly because the v,tmble ' i changes. 
------ ------
: The~ may bl.'. sev~rat d1oice~ of ,r Ul.at miwmize j('!(, r.) fol' n given parameter ve<.:tor r . Then we 

let ,..~(r) dcnvtc one. of tJ,ese choice,, a;nJ uy 10 select x. for differeuc value:; uf r so thar. x • ir) is a 
diffcrentiabl~ functioa of r . 
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fom1ula (3) claims tha1 the fim effect is zero. To sec wily, a,;sume an interiol' solution and 

that f* i~ dilferei1ti11blc. Then, because x = x'(r) maximizes f (:\, r) w.r.t. x, all the partial 
dcriva.tive.s ilf(x*(r), r)/ih:; must be 0, Hence: 

iJr(ri = ~ (J(x"(r). r)) = t o/(x•(r), r) ij~1(r) + [il/(x, r)J . 
arj or; ,~1 il:c; ilr; OYj •~•·(r) 

[
of(x, r)] 

= a-;;- •~:r:"(r) 

E.X~M L"E 4 TI1e profit function -'1" in Example 2 depends on the input vec1or v and tile parametric 

prices p and q =(qi, .... qn), Specifically. 

,r = 1r(v, p, q) = pF(v) - qi v, - · · · - q.vn 

Let ,r*(p, q) denote the value function in the problem of maximizing 1r w.r.1. v, and lei 

v~ = v"(p. q) be 1he a.s.~ociated v vector. Then according to (3), 

orr•(p, q) , arc(v". p, q_) F .) 
~~~- = = (v , ap ap 

This is intuitively w1derstandable: when the price of ouq>11t increases by l!!.p, the optimal 
profit increa,;es by approximately F(v*)t;,p, since F(v•) is the optimal nwnber of units 
produced. lflhe price of the jth input factor qi increases by l!!.q;, the optimal profi(decrease& 
by aboul vJ t>,q; units, since vj is the amount of factor j used al the optimum. The equations 
in(*) are known as Hotelling's lemma. I 

We next formulate the envelope theorem in a slighlly more precise manner and give an 

alternative proof which is easier lo generaliu to more complicared constrained optimization 
problems. Nore, however, that we sti 11 assume that the value fancrion is ,lijferentiable. In 

Section 3.10 we discuss sufficient conditions for differentiability. 

l 4 ENVHOl>E 

In the problem maii:,Es j(x, r), whe-re S £; IR" and r = (r1 •.... rk), suppose 

that there is a maximum point x"(r) in S for every r in some ball H(f: S), with 
8 > 0. Furthermore, a$sume thar the mappings r,..... f(x•(r). r) (with f fixed) 
and r H- f*(r) (defined in (2)) are both differentiable at r. Then 

aj*(i:) [iJf(x. r)] 
a;:;-= . nr; .. ~ .. ·(f).r=f) 

j= l, ... ,k (4) 

Proof: Deline the function ,p(r) = f(x•(f:), r) - f*(r). Because x*(i') is a maximum 

point of f(x, r) when r = r, one has ,p(f) = 0. Also the delinilion off* implies that 
1p(rl ::: 0 for all r in B(f; //). Hence I{) has a11 iotc:tior m,u.irnum at r = f. The equations 

in (4) follow from rbe fact that r = r must satisfy the first-order condition.~ 'PJ (r) "' 0 for 
j :r. I .... ,k. • 
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A Geometric Illustration of the Envelope Theorem 
Figure 2 illustratc-.s (3) (or (4)) in the case where there is only one parameter r. For eac:h 

fixe-d value of x rhere is a curve K1 in the. r_y-plane, given b:y 1be ~.quation y "" j(x, r). 
TI1e figure shows some of the.~e curve5 together with the _\,'1",rph of f'--that is, fl1c curve 
y-:.:: f'(r). . .• 

y 

t 

·-·1 ---------.. ·----~ r 

Figure 2 The curve y = f"(•.l is the envdop.! of all the c.urves y = f(x, r}. 

For all :t and all r we have /(x. r) ::: max, /(x, r) = f"(r). It follows that none of the 
K 1 -c11rves can ever lie above the curve y = f*(r). On the other hand. for each value of r 

there is at least one value ,i• ofx such that f(x•. r) = f*(1-), namely the choice of x' that" 
solves the maximization problem for the given vttluc of r. The curve K .- will 1benjust touch 

the curve y = f"(r) at the point (x•, f"(r))"" (x*, .f(x'. r)), and so must have exactly the 

same tangent a.s the graph of f • at this point. Moreover, the slope of this common tangent 

must be both df" /dr, the slope of the tangent ro lhe graph off', and iJ/(x', r)/ar. the 
slope of the tangent to the curve K x•, which is the graph of f (,i* ,.r) when x • is tiited. 

As Fig. 2 suggests, the graph of y :.:: f' (r) is the lowest curve with the property that it 
lies on or above all the curves K ,. So its graph is like an envelope that is used to "wrap" all 

these curves; that is why we call the graph off' me envelope of the family of K .-curves. 

1. Show that 
g(x, y} = xl + y3 

- 3., •·· 2y defined for x > 0, y > 0 

is suietly C<>nvcx, oiid tind its (global) mirtlmum value. 

2. A finn produces two output goods, denotoo by A and 8. Toe cost per day is 

C(x, y) = 0.04x2 -0.0lxy + o.oiy2 +4x --1- iy +500 

when :r. units of A and y units of B are produced (x > 0, y :• 0). 11,e firm sells all it produces 
al prit:es 13 per unit of A and 8 per unit of B. Find lhe profitfunction ,r(.:c. y) and lh" valU<!s of 
x and y u,,.t maAimfr.e profit. 

~ 3. (a) Referring ro Ell.ample 2. wive rhe prnblew max p11:/lv~1'2 -· qi v, - q2>~-

(b) ut n•(p, qi, 1/li denote the value function. Verify the equalitic~ in(_..} in faample 4- for 
this case. 
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4. !'ind Ille functiou.s x"(r) and y"(,) such that x '" x'(•) ~nd y: y'(,) solve tl1e problem 

ma ... f(x,y, r) = waxl·-x' - xy- 2y2 + 2r.t + 2ry) 
1,y 1..y 

wht,re r is a par.m1eter. Verify equatioll (3). 

@5. !-'ind the solutions x'(r, s) and y'(r, s) of the problem 

mu;/(x,y,,,$) "'' max(r2x +3s2 y-x2 -8y2) 
"·1 x..y 

where, and., are parameters. Verify equanon (.3). 

@> 6. (a) Suppose the p,oduction function ill Example 2 is 

F(v1 •••• , v0 ) = a1 ln(v1 + 1) +···+a, Jo(v. + 1) 

where a1, ... , "• are positive constant, and p :, q1/a, for i = J, .... n. Find lhe profit 
m:uimil.ing ,·hoice of inpw: quantities. 

(b) Verify the envelope result (3) w.r.t. p, each q1 and each a,. 

3.2 Local Extreme Points 
Sup(!O-~e one is trying to find the maximum of a function that is oot concave, or a minimum 

of a function that is not convex. Then Theorem 3.1.2 cannot be used. ln,;tcad, one possible 
procedure is to identify local eJ1.treme point~. and lhen compare the values of the functiou 

at different local extreme points in the hope of finding a global maximum (or minimum). 
The point x • is a local maximum point off in S if f (x) ~ f (x•) for all x in S sufficiently 

close 10 x•. More precisely, the requirement is that there exist~ a positive number r such that 

f (x) :S f (x*) for all x in S with 11::i: - x· 11 < , (><) 

(Equivalently, if we let B(.x°; r) "" (x E 'R" : Hx- x' ll < r) denote chc open n•ball centred 
at :a:• and with radius r, then ,i• is a local maximum point for f in S if there exists a positive 

nWllbcr r such that f(-,r.):.,. .f(x•) for all x in B(,i*; r) r. S.) If the firs, inequality in(*) is 
strict for x '#- x•, then x• is a strict local maxin111m point for fin S. 

A (.strict) local minimum point is defined in the obvious way, and it should be clear 
what is meant by local maximum and minimum value;s, local 1:xtrcme point'I, and local 

extreme values. Of course, a global extreme point i.~ also a local extreme point, but the 

converse is not always true. 
In &earching for maximum and minimum points, Theorem 3.1. l on necessary first-order 

conditions is very useful. The same result applies lo local extreme points a.~ well: a local 

extreme poin.r in rhe interior of tlv. domain of a differentiable function must be a 5lalio,wry 

point. (Tlris observation follows because the pmof of Theorem 3.1.1 eonsiders the behaviour 

of the function only in a small neighbourhood of the optimal point.) A stationary poinr x• 

Sl:CTION 3.2 I LOCAL EXTREME POINTS 111 

of f that is 11either a local maximum point nor a local minimum point is called a saddle 

point of f. Thus. arbitrarily close to a saddle point, there arc point, with both higher and 
lower values thau U1e function value al the saddle poiut. Figwe I illustrnrcs tbese con~pL~ 

in the ca.~e of a function e>f two variables. 

_l/ -------
-------.. A: 

p 

Figure 1 P ii; a muimwn, Q is a local mwmum, and R is a saddle point. 

We next s.tudy conditions that allow the stationary points of a function of n variables to be 
classified as local maximum points, local minimum points, and saddle points. First recall the 
second-order conditions for local e.x.1reme points for functions of two variables. If f (x, y) 
is a C2 fun;tion with (x*, y•) as a11 interior stationary point, then 

! /1"1 (x• • y*) 
/ 1"1(·x•, y··>· > 0 & ! 

I f2\(x', y") 
f{2<x'' y*) I .,, O = local min. at (x*, y') (1) 
f~2(x', y") ~ 

f," ( ' *) -" O & I J{; (x'' y*) J{;(x'' y*) I > 0 = local m.ix. at {x• y*) (2) 
11 X ' y ~ f21 (x', y•) fiz(.r', y*) ' 

II· • J 12 ' - < O = (x', y*) is a saddle point I!,, (.r' y') ~,, (x• v*) I 
!2;<x·, y*) f!fi.(x', y*) · 

(3) 

Jn order to generalize these results to functions of n variables, we ueed to consider the n 
leading principal minors of the Hessian matrix f"(x) == U!1(x))nxn: 

I J{',<x) /{7.(X) f{~(x) 

I 11,<x) f{i(x) J:;_(x) 
Dk(X) = I : k"" 1, .... n 

I 1;~ ex> ft2(X) f{k(X) 

HEOREM 3 2. 1 L0£AL SEC NO-OAOER ONOI ·-1 
i 

Suppose that f (x) "" f (xi, ... , x.,) is defined on a set S in R" and that ,i• is an i 
interior stationary point. Assume also that f is C2 in a11 open ball around x•. Let 
Ot(x) be dcf1.0.:d by (4). Then: 

(a) Di. (x") > O. k = l, ... , n ===? x• is a local minimum point. 

(b) (-l)'"Dt(.X') > 0, le=!, ... ,11 ===? x' isalocalmaJ1imumpoint. 

(c) l)n(x') # O and neither (a) nor (b) is satisfied ===? ,i• is a saddle point. __________ ...._ ......... ,.-; 

(4) 



112 CHAPHR :l ! STATI C O PTI MIZATI ON 

fX4MPU l 

Proof: . (a) A dc:tennlruiot i! a-C<>n!iruwus fllJlction ( i f its element.<. lf D, (x') > 0 for all k, it is 
postrlble to !ind a ball B(r ; r ) with radius r > 0 so small that Dl lx) > 0 for all x in B(x• ; r) and 
all k = r, . .. , n . lle11<<:, ac.:cordin& L<> Theo-rem 1.7.1(• ). rhequadr-d.tic form E:'~, L7.1 f/1(x)h;hi 
h posilivto definite for all x in so,• : r). 11 follows froru (~.3.4) !ha! f is (stri.:tly) convex iu B(~·; r). 
But rben TI1corem 3.l.2 &hows that cl·11H t~tionlll)' pohu ~· is~ mini.a1um p<>intfor fin H(x' : ,), and 
tliucfc,rc a locnl ru.illituwn point for f io. S. 

(b) 11tis follows frorn(a) by replncing f with - f and usi11g ro le (l.l.20)forC\'llluating determinants. 

(c) A pronf is given in N ote I. • 

Theorem 3 .2.1 i~ often referred 10 a.s the second-derivative test. Check to see that for n ~ 2 
it reduces 10 (1H3). 

An alternative way of formulating (a) and (b) in Theorem 3.2. l is as follows: 

11.wfficient condition for an interu'Jr stationary point x• of / ('11.) w be a lnr.al 
minimum point is rhnr the Hessian matrix f"(x•) is positiw definite. m x•. 

,1 s11fficiefll conditiott f or an interior stationary poi111 x· uf f (r ) w be a local 
maximum rnmr is 1lu1t the He.rsia11 matrix f " (,c") is negative definile al ,c• . 

(5) 

(6) 

By Theorem 3.2 .1, stationary point5 11' for f where Dn(x*) ,j: 0 are now fully c lassified 
as e ither local roa.dmum points, local minimum po ints. or saddle points. If D,. (x*) = 0, a 

closer examination is DCX'\!SSary i r1 order to cla.~~ify rhe stationary point. (Note the analogy 
widl the one-variable cs$e in which "anything can happen" at n $tl\tionary p<>int where 

f"(x') = 0.) 

The following function has stationary point~ (-2, - 2 , - 2) a.nd (0 , 0 . 0): 

f(.x,y. z ) = x3 + 3xy + 3..rz + i +3yz+ z~ 

Classify these points by using Theorem J.2.1. 

C 
jf; 0) (" Solution: The H~ssian matrix is JJ; f"' . n / 23 "' 3 

J;', f" /!i3 3 32 

At (- 1, -2, - 2) the leading principal minors arc: 

6(-2) ;-12, l-12 3 ,, = 135, 
; J - 12 

3 ') 6y 3 . 

3 6z:_ 

3 ; 

3 1· = -1350 
- 12 

According ro Theorem 3.2.l(b), (-2, - 2, - 2) is a local r:naximwu p<riol 

At (0, 0. 0) tb~ leading principal minors are 0, - 9. and :54. Io this case neither the 

conditions in part (a) of the the,.,)J'\."11\ nor the condition~ in part (h) a re sr,lisfied. Mol'(;Over, 
D; (O. 0. 0) = 54 -f. 0. Acoordi.ng to pan (c). (0, 0 , 0) is a ~ad<lle point. I 
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Necessary Second-Order Conditions for Local Extrema 

Suppose :c• = (xj, , .. . x~ ) is an inierior stationary point for a C2 func tion f (IC). Then, 
according to (6), the assumptio11 that the Hessian matrix f" (x·) is negative defuute i~ ~uf­

ficient for x' to he a local maximum point. But the condi tion i.s not necessary. A s tM<lard 

counr.erexl\lllple is f (:x, y) = - ·x4 
- /, which has a tgloba!) maximum at (0, 0). Ye-t 

fo (0 . 0 ) ,., 0 , so f"(x") is not ncwi,tive denoitt:. Howevu . - claim that f " (x') has to tie. 
negauve .~e!llidcfinitc in ordet for x• to he a local mux imum point. 

Consider for ~sch i = I, .. .. n 1hc, functiou g(..i:1) ::a f(xf, ... , x;_ 1 .. i,, x:_ 1 . . . , x;) 
of o ne vari able. It lws a s tatiomuy point ar x;, becau~c sta tionarity off at x• impli~ that 

g'(xt) = //('x") = 0. In order for g (.r;) co have a loca.l maximum at xj , one mu~t n.tl/e 

!('(:ct) = t::cx·) ::5 0. ll f not, g would hal/e a local minimum at x; .) Thus 1:;cx·) :: o. 
... , .t~:, (x*) ~ 0 are necessary for f to have a local maximum at x • in the direction of 

each coordinate axis, W'lcl thus Jlec(!S~ary for x• to he a local maximum point for f . Bui 
the$e conditions do not say much about whelhcr f has a local maximulll or minimum in 
directions through x• other than those parallel to one of tbe coordinate axes. 

To .~tudy the bchsviour of f io an arbitrary direction, deline the function g by 

g(t) = /(x* + th) = f(xt + rlq, ... , .r; + thn) (7) 

wb.:re h = (h 1, • • • , h . ) is ao arbilmry fued vector in R" wirh length l . so Uhh = l . Toe 
function g describes the behaviour of f along the straight line through x• parallel f() the 
vector b , as suggested in Vig. l. 

( -----·=----_. 
~-;---·-·· ·--.. :... :-., ·H· ·,... x• ...... , .... -

Figur& 1 ·,......._,._ 

Suppose tlw X- ii; an io!Cf'ior local maximum point for f . Then if r :• 0 is small enougli, 

the ball B(x ' ; t) s; S. If t E (-r, r ), lhen x• + th E B(x'; r) be.cause ll (x' + 11!) -Jt"H = 
llthll ::a Irr< r . Butthenforallrin (- r, r), wehavex•+ th E Sanclso /(x·+rh) :;; /(x'i, 
or g(r} i g(O). Thu~ the function g hns a.n interior mnximuni at t = 0. From th,~ theory of 

func tion,; of ooe va riable, g' (0) = 0 and;/' (0} ::: 0 are necessary conditions for a mnxi mum 
at t = 0. By (2.6.5) and (2.6.6). 

n n • 

i<r) = I: 1r<x· + rh)h1, g" (r} = L L f.';<x' + th)h;hj (8) 

'"' ,~1 j ~J 
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Putting r = 0, ir. follows that g'(O) = 0 and g"lO) 5 0. The condition g'(O) ,,-. 0 for each h 
with llhil = l affirm& that f u1ust be stationary. The condition g''lO) ~ 0 yields 

" n .L .L }11(:i.)h;hj ~ 0 for all h"" (h1, ... , h.) with ilh!I "'° I (9) 

i=I j=I 

This i.s an equality if h = 0, and if b = (h1, ... , hn) is a vector with length ,f 0. the 

inequality holds for b/l!hll, and so also for h. TI111&, io the terminology of Section l.7, after 

noting that the quadratic form in t9) involve~ the Hessian matrix off, we have: 

,'I necessary i:onditirmfor /(x) to have a local minimwn (maximum} a1 '1.
0 

is 1/uJt rl,e Hessi<ur nw1rix <lj fat"'• is positive (negative) semidefinite. 
(10) 

The. results in (10) ca11 be formulated by using ·Theorem 1.7.1. Recall that the priricipal 
minors of order k of the Hessian matrix. are obtained by deleting n - Ir rows in If" (x) t = 

1u1; (x)).-nl and rhc n - k column~ with I.he same llllUlbers. 

NS fOR' LOCAt E'XTRE'ME POINTS ···--1 
Suppose that J (x) = f (x 1 •... , x.) is defined on a set S in IR", and x• is an 

interior stationary poinc in S. Assume that f is C2 in a ball aro11J1d x•. Lei- li.1 (x) 
denote ao arbitrary principal minor of o~der k of the Hessian matrix. Theu: 

{ 
t.k(x·) ;:: 0 for ull principal minors 

(a) x• is a local minimum poinl =.} 
of orderk = I, ... ,n. 

(b) x~ is a local maximum poillt ~ { (-: I/ ~t(X') ::: 0 for all priucipal 
nunoT8 of order k = l, ... , n. 

NOTE 1 The definiteness of a quadrntic Conn can al&o be detem1iJ1ed from the signs of 
the eigenvalues of the corresponding matrix. Suppose tbal neichcr of the conditions in 
Theorem 3.2.l(a) and (b) are satisfied. Thea the Hes~ian matrix f''(x*) is aoilher positive 
nor negative definite. According to TI1eorem 1.7.2. th.is means that it cannot have only 
positive or only negative eigenvalues. If, in addition, D.(x'j = lf"(x•)i ,!, 0, then O is 
not an eigenvalue of the Hessian matrix f"(x'), so it mtL5t have both positive and negative 
eigenvalues. According 10 Theorem 1.7.2, the mauix f"(x*) cannot !hen he either positive 
or negative semidefinite, so (10) ~hows !hat x· is ncitber a local maximum nor a local 
minimom point. 11w. is. x• must be a saddle point. 1l1is proves the saddle poim result iJ1 

Theorem 3.2.1. 

NOTE 2 Cone IIL~ion~ about local ( ur global) extreme point~ of functions of several variables 
cannot always be based only on what happen~ to the func1io11 along each srraight line through 
a stationary point. For i1Lst:mce, .f(x, yj = (y - x2 )(y - 2x;.) ha• a ~ad<lle point at (0, U) 
even though the flmcrion has a lo.cal minimum along ea.:h straigh! liJ1e through the origin. 
(See Problem 13.3.6 in E~IBA.) 
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@ 1. Toe functi(lrt 
·. f(x,, X2, X3) = .tf +Xi+ 3x{ - .<1.t2 + 2xp:~ -t- J:2X! 

defined on R3 has ollly one s!Jit.ionary poim. Show Iha! ic is a local minimum poim. 

2. (a) Let /hedetiuedforalJ (x. y) by f(x, y) = xj+yl-:.hy. Showtbat\0, 0) and (l, 1) aretbe 
,)nly stationary points, and comput( the quadratic form in (9) for fat lhe stalionmy points. 

(b) Check the definiteness <•f the. quadratic form al the swionllt)' points. 

(c) Classify the srationary points by using (l}-(3). 

@ 3. Classify the stationary point>' of 

(a) f(x.y,z).:ox2 +x2y+y2z+z2 -4z 

(b) J (x1, .<2, xi, x,) ""20x2 + 48xJ + 6;r;4 + 8x,x2 -· 4xf - 12.tJ - xj - 4x? 

HARDER PROBLEMS 

4. Suppose /(x, y) bas ODly one s1ationary p<.'int (.r". y•} which is a loc .. l minimum point fa 
(x', y"} necc~sarily a global minimum point? It may be surpri&ing that rhe answer is no. Prove 
rhls by eumining die function defined for all (x, y)t<y f (.,. y) "" (l .... y)~ x2+ y2. (Hint: Look 
at f(x, -2) as x --.. oc.) 

3.3 Equality Constraints: The Lagrange Problem 
A general optimization problem with equality constraints is of the. form 

{ 

g1(x1, ... , x.) = bi 

max (min) f(x1 . ... , x,.) subject to ............... .. 
i,.(.r1,,,,, ,tr.)= b,,. 

(m < n) (1) 

where the &j are constants. We assume that m < t1 hecause olherwise there arc u&ually no 

degrees of free.dom. 
In vector fonnul.ation, 1he problem is 

ma~ (min.) /(JI.) suhjecl to g1 (x) ==bi, j = l, ... , m (m < n) (2) 

(If we defim: the vector [unction g"' (g1, gi, ... , Cm) .ind let h = (1>1, l,z .... , b,.,.), the 
constr.1iots can be e.\prcs~cd more. ~imply as the vector equality g(x) = b.) 

The standard procedure for solving tbis problem is first 10 define the Lagrange l'uncl.ion, 

or Lagrangian. 

.r.(x) = /(x.) •• J.t(g1(x) -1,:) - · · · - i..,,.(g .. (x) -b,,.) (3) 
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when; J.. 1, ... , Am are called Lai;range multipliers. The n«essary first-order c,mditions 
for optimalily an, then: 

(4) 

Then equations in (4) and them equ11tions in (l) arc to be solved simulrancously for the 

r. + m variahle~ x:, ... , .r" and J,.,:, •.. , ).,. • The resulting solution vectors (.q, ... , Xn) are 
rhen 1hc candidates for optimality. 

NOTE 1 S0mc1imes the Lagrangian is wriflen in the alremative form .C(x) = /(x) - · 

"181 (x) - · · · - i..,g .. (x), without the con&tants bj. lbis makes no diffcn:nct? to the partial 
derivatives fl.C(x)/iJx;, of com:se. 

An illuminating argument for condition (4) can be based on studying the (optimal) value 
function for problem (I). In the ma~imization caseil i~ defined as 

f'(b) = max I f(x): Si(x) =bi, j =I, ... ,m) (m < n) (5) 

If j denotes profit, and h :::: (bt, ... , b.,) denoEes a resource ve.:tor, then j'(b) is the 
Tl111Ximum profit obtainable given the available resource vector b. In the following argullltlnt 
we assume that r (b) is differentiable.. 

Fix a vector b = b, and let i be lhe cor:re~ponding optimal solution. Tiien f (i) = f' (b). 
Obviously, foT all x we have /{x) ==, f"(g(x)). Hence, <y(x) = /(x) - j'(g(x)) has a 
maximum at" x "'"' i. so 

Suppose we define 

(6) 

Then equation (*i reduces to (4). 

NOTE 2 With a mild extra condition on rbe g1 functions, we shall see that the Lagrange 
mulripliers obtained from the recipe are unique. 

The argument for (4) assumes that f'(b) is differentiable, whic.h is not always the ca.st~. To 
obrain ( 4) as a nece~~ary condition for optimality, we need a "consrraim qualificati<Jn" given 
ill the folJowing tht·orem, which also give, sufficient conditions for opt.irn.dity. We highly 
recommend that tht: rt'atlec ~rudjes the illuminating anrt simple proof of suffkiency. 

SECT 10~1 3. 3 I l QU.IIUTY CONS l'RAINTS; THE LAG RANG l I' llOlllEM 

(a) Suppose Iha! the functions f and t:1, ...• g,. arc defined on a set S in R", 
and th:11 x• = txi ..... .(:) is an interior point of S that solves pruhlem (!). 
Suppose furth~r thar f and g1, ... , gm are C 1 in a ball around x•, and that 
them x n matriX'·or partial derivatives of r.hc coru;1raint fu11ctions 

( 

i:lg, ex·) 1.lgi cx·J ) 
OX] ax. 

g'(x*)"'" ; : 

ilgm(X") ngm(ll') 

dX[ OXn 

has rank m 

Tiien there exist uniqne numbers .l..t, ... , J..,,. such that (4) is valid. 

(b) Ifthere exist numbers .i.. 1, ...• .!.m and an 1tdmissible JI"" which together salisf y 

the firs1-ocdcr conditions (4), and if the l.agran:,,<ian .C(x) defined by (3) is 
concave (convex) ln x, and if Sis co11vcx, then x• solves tbe maximii.ation 
(minim.iza1ion) problem (l). 

i 
I 
' 

' ·---------·----............. J 
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(7) 

Proof of Theorem 3.3. 1 (b): S11ppose that 1he Lagrangi;1n .t. (xl is concave, Condition ( 4) means 
1hac 1he Lagrangian is stationary at x•. Then hy Theorem 3.l.2, 

. . 
..t(it*) = f(x") - _I>,j(g;lx") - bj) ~ f(x) - L Aj(gj(X) - b,) = .l.tx) for all x in S (i) 

j=J j~J 

But for all admi,i.~ihle s, we have 8i (x) = bi and, in particular, g1 (x') = b1 for all j. Hence, all 
"<lmissible x satisfy I:;"...1 ),i&i(x) "" I:;., /..i8iC.x"), so (i) implies char f(x*) ~ .f(x). Thus-~· 
solves problem (I). Nute that part (b) of" the theorem docs not require the rank of g'(x') to be m. • 

NOTE 3 The argument used to prove sufficiency actually uses only the fact that ..C(x•) ::::_ 
.C(x) for all ll. So evt1n when Lis nol concave, x• solves (1) if it is a global (unconstrained) 

maximum point for£ that happens 10 satisfy g(x') = b for the given ),,L, ..• , .!.,,.. Bur it is 
a long Jived misconception in the economic literature lruu if x• solves problem (J), then x• 
necessarily maximizes the La1,'Yangjan. Such ma.ximi7Jttion is sufficient. but by no means 
necessary. (See EMEA. Problcm 14.4.1 for a c.ounter-example.) 

NOTE 4 A standard proof of Theorem 3.3.1 appeab to the implicit function thc:orem, using 
rhe raol: condition to ··~olve" the constraint form of the variables as functions of rhe n - m 
re-maiuing variables. ln~erting these m 'Vluiahles into thi: criterion function, the problem is 
reduced to seeking first-order conditions for an unconstrained maximum of the new objective 
Ji1nctio11 of 11 - m variables. A full proof along rbese lines is given on the website for the 
hook. (The case n = 2, m = 1 is discussed in EMEA. Section 14.4.) 

Theorem 3.3.1 is actually a special ca~e of Theorem 3.8.3. It is still valid if xis (also) 
restricted to some open set A, provided tlic ,ufficicnl condition of part (b) is strellgthcncd 
by adding !he requirement thal A is convc:x. 
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NOTE S The c,>11di1ion on ther:uik: of g'(x•) is called a constraint qualiji,:arilm. Using the 

gradient concept from Section 2.1, condilJOU (4) can be expr~scd as: 

v f(x').,.. ).1 Vg1(x*) + · · · + J..., v11.,.(x") (8) 

The gradieot< vg1 (x*), ... , v'g., (x*) are the mw vector• of g'(x*). The constraint qualifi­
cation is therefore equivalent to the cun<lition tllat !he gradients 'vg, (x*), ... , 'v em(x') are 

linearly independent. (See Section 1.2.) 

We now offer one possible i nte1pretation of (8) in the problem 

max f(x, y, z) subject lo g, (x. y, z) = b1, g2(x. y, 7.) = b2 (*), 

assuming that f (x, y, z) measures the tempera1ure at the poi11t (x, y, z) in space. Each 
cons1raint repre..o;ents (in general) a surface in 3-space, and the admissible set is, therefore, 
typically, a curve Kin 3-space, the intersection of the two surface~. Se., Fig. I. 

Flgur~ 1 Al P, v / is a linear c;ombination of v g I and V /?l · 

At each point (x, y, z) on K, J(x, y, z) records the temperature at that point. Problem(*) 

is therefore to f1nd the hottest poiTJt P "" (x', y•, z•) on the curve K. The two gradients 
V 81 and v' g2 are normals to their respective surfaces, and therefore bolh are normals to K 
at P. lfthe muirnumlemperatureis r• at P. then the level surface f(x, y. z) = 7'* must 
be 1angcnt to 1be curve K at P. If Lhis wcce nol the case., the curve K would cut through 

the level surface of j and presumably would interne<::t level surfa~s of f that corre-spond 

to high.er as well a.s lower tcmpcrall.lres than r. Thus the gradient V f mu~t be a nonnal 

to K at P. Therefore, lhc three vectors v f, V g1, and V g2 all lie in tbe (two-dimensionall 
plane of normals to Kat P. Provided that vg1 and vg2 arelioearly independent, V.f can be 
expressed as a linear combination 'v f "").1 'ilg, + J..2'vg2 of vg1 and vg2, for appropriate 

numbers >..1 and J..~. 1bis is e;,.actly what (8) stares. 

Use Theorem 3.3. I to solve the problem 

max f(:x, y, ~) = x + 2r subject 10 {

g1(x,y,z)=x. +y +z=I 
g2(X, y. ,) =XL+ i + Z "'- 7 i4 

(Hint: Elimina1e the l..agrange 1nultipliers from lhc firsr.-o~der conditions to show thlll 01\e 

g,~ts y = 2.t - 1/2.) 
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Solution: Hea·e.C~x. y. :.) ,, x + 2i - J..1(.~ + y +: - I) - ;.2(x2 ·t- y1 ~ z - 7/4), so the 

first-order conditions are. 

(i) £'1 :::: I •· A1 - 2J..ix = 0 (ii) C~ "" -.:...1 - 2io.,y = 0 (iii) .t~ = 2 - ;_I - J..i :~ 0 

From equation (iii) w/gc.t.).2 = 2- J..;, which insert,xl into (ii) gives -,.1 -4y + 2.i.1y ""0, 

or .\.1(2y - l)-= 4y. This equation implies that y-/= 1/2, so J..1 ::a 4y((2y -- 1). Inserting 

this into (i) with J..:i :.:: 2->.1 eventually yields y = 2x- l/2. Thecon~naims then reduce to 

3x + z = 3 i2 and 5x 2 - 2x + z = 3 /2. 1l1e fust of these equations yields ;: = - 3x + 3 /2, 
which insc-rtcd irito the second gives 5x(x ... 1) = 0. Hence, x = 0 or x-= l. For x -= O, 
we have y = -1 i2 and?. "" 3/2. For .t = I, we have y = 3/2 and z -= -3/2. Inserting 

these into tbe maximand shows lha1 f(O, -l/2, 3/2) = 3 aud /(I. 3/2, -3/2) = ·-2. We 
conclude that the o.llly possible $Olurion candidate is (0, -· l /2, 3 /2). The associau.:d values 

of ll.tc multipliers are l.1 = ).2 = 1. 
When .i.1 = .l.2 = I the Lagrangian is -x2 - y 2 - y + 11/4, which is a coucave function 

of (x, y, z). We conclude that (0, -1/2, 3/2) is a maximum point. I 

Interpreting the Lagrange Multipliers 

l:quarion (6) can be written as 

Jf'(b) =). (b) 
obi 1 ' 

j = 1, ... ,m (9) 

This 1ells us that the Lagrange multiplier ).j = Aj(b) for the Jih ,:mistrnint is the ra/e at 

wl,ich 1/ie oprimal value. of rite objccrive fU11crion changes w.r.t. changes in 1he corisram bi. 
Suppose, for in&tance, that f*(b) is the maximwn profit that a fim1 can obi.tin from a 

production proces~ when b1, .... b,. are tbe available quantities of 111 different resources. 

TI1en iJ f' (b) / iJb; is ll.te marginal profit that the firm can earn per extra unit of resource j. 
which is therefore !he firm'~ marginal willingness lo pay for this resource. Equation (9) 
lells us chat this marginal willingness to pay is equal to the Lagrange multiplier J..i for the 

corresponding resource constraint whose right-hand side in (1) i& b;. If the fum could buy 
more of this resource at a price below J..i per unit. it could earn more profit by doing so; but 

if the ~uice e.xceeds >..i, the firm could increase its overall profit by ~lling a small enough 

quantity of the resource at this llrice because the revenue from lhc sale would exceed !.he 

profit from production that i~ sacrificoo by giving up the resource. 
1n economics, the number ).;(b) is referred to a shadow price (or dcma.11d price) of the:) 

resource. j. It is a shadow rather than an actual price because it need not co1Te,pond lo a 

market price. Indeed, the resource may be somdhing unique like a particular entrepreneur's 
time for which there is not even a mMkct lhat could determine its actual price. 

Note that lhe Lagrange multipliers for problem (I) may well be negative, so thal an 

increase in b; ca.11 lead to a decrease in the value function. 
If Jb1, .... db., arc small in ah~olute value, then, according to \ht) line.ar approx.iu1'1tion 

formula f"(b+db)- j'(h) "'(3f'(b)//Jb1) dbt + · ·+(Jf*(b)/3bm) db., and, using (9), 

J"(b + db) - f*(b) ~ l1(b) db:+ .. ·+ l,.(b) db,,. (IO) 



120 ( ,t,PT(R 3 I HATIC O!'T!MIZA TION 

This formula makes it possible to estimate the change in the value iunction when one or 

more compont'nts of the resource vector are slightly changed. 

Co11sider Ex ample I an<l suppose we change- the first coristraint to .t + y +· z .,..., 0. 98 
and lhe second constrahit to x 2 + y2 + : = 1.80. Estimate the corresponding change in 
the value fonc1ion by using (10). Then solve 1bcc.01L~tnrined optimi7.ation problem with tho? 

new right-hand sides, and !ind the co,responding (cxa(:1) value of the value function. 

Solution: lisiog the notation inlrOduced above and the n>.sults in Example l, we have 

bi = l, bi = 1.75, db1 = -0.02, ,tb-i_ = 0.05, >.1 (l., 1.75) = l.2(1, 1.75) = l, and 

F<bt, b1) = ro. 1.75} ""o+ 2(3/2) = 3. Theo (lO)yields /*(l -0.02, l.75+0.05)­
f"(l, l.75) :::s,>,1(l. l.?S)db1 +;i..2(1, l.75)db2 = 1- (-0.02)+ l ·(0.05) = 0.03. Thus, 

f"(0.98, l.!!O) = j*(I -O.Q2, 1.75 +0.05) ""3 + 0.03 = 3.03. 
In the new optitniiat.ion problem with the right-hand sides adjusted, equation (iv) in 

Example. I can be derived exactly as before. Thus, we end up wilh the three equatio11s 

x + y + z = 0.98, x2 + y2 + z"" 1.8, and y = 2x -0.5. llie solmioll8 are (x1, Yi, ~1}"" 

(-0.0138, -0.5276, l .~214) and (x2, y1, z2) ""(1.0138. l.5276, -1.5614). The first solu­
tion is optimal and 1i1c ,;alne function is 3.029. So usin1(theapproximatio11 in (10) gives a 
very good e.stimate of the c.hang~ in the value function. I 

An economy consists of two con&mners wilh labels i == l, 2. They e.tchange two goods, 
labelled j = I, :!. Suppose there is a fixed total endowment e; of each good to be dislributed 

between lhe two consumers. Let c; denore i's consumption of good j. Suppose tl)at each 
consumer i has preferences represented by the utility function 

where the parameters a1 are positive, and independent of i, with a 1 + CKz ~ I. Suppose the 

goods are to be distributed in order to m.'U!.imize socitJ/ wdfare in the form of the weighted 

snrn W = /31 U 1 + f3i. U2
• where the weights ,8; are po~itive, and tl t + th = 1. 

(a) Fonnulate the welfare rnaxirni?.ation ptohlcm with one equality constoiint for each of 
the goods. 

(b} Write down the Lagrangian, wht·-rt: Aj denotes lhe Lagrange multiplier associated with 
the conslr1lint for good j. Find the welfare ma.ximi1.ing distribution of the goods. 

(c) V~rify !hat i.i =aw• /nei, where W' <.lenotes the ma:,;iruum value of W. 

Solution: (a) TI1e problem is to find consumer l's consumption of the r.wo goods, cl and 

cI, a, well :ts consume,· 2's consumprioo of the two goods, c; and c.~, which together solve 
the problem: 

fb) The Lagrangian is 

5~(TlON 3.3 I fQUALITY CON$1RAINT5: TliE t.AGRANGf. PROBl.r.M 

The first-order conditions take the fc,rm 

a,e;ac! == a1Ptfc/ - AJ ==- 0. 

U/acf ..,. __ a1frifcf - AJ ''" 0, 

il,l/,k~ =a1,,'li/c.J - l.2::: 0 

:u.Jac.5 = a2fh/ci - ),2 ""(I .. 
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The first equalities in(*) :1nd (-u) imply respectively c/ = a1f/i/A1 and cf= cqfhP-t· 
From the !i~t constraint, e1 = c/ + r.? = <1.1,81 /t1 + a1f1?./l.! = a 1 (/Ji+ /1:;_)/l.1 = at/iq. 
becau,ie ,81 + fiz"" I. So .l.1 = a1/e1. This implies in turn that c/ = aifJ1e 1/a1 = P1c; 
and ,f = a 1 {',,it. :I a1 = {he,. In the same way, we lfod c{ = ,81 ez and Ci = fhei. 

Thus. each individual i re,:ei,;e& a share /h of the ~otal endowment of each gc/od, which 
is equal 10 the weight given to i's utiUty in the welfare sum W = P1U 1 + fh.U2• 

( c) The .max.imum value of W is 

So aw• ii:le1 = .81a1 (l/.81ed.81+fha10/ /J:e1)fi-l = (a1/e1 )(/11 + /Ji) == 0:1 /c1 "".l.1. In 
the same way we see that aw• ;'dei = >.2. I 

An Economic Interpretation 

Coasider a firm producing some final product by using II different intennediatc goods. Those 
intennediate goods are rhemselves produced using 11s input& m di1Ierent re~ources whose. 

total supplies are bi •... , b.,. Given !he quantities .xi • ••. , x., of the intenncdiate goods, let 

f (x) .-.. /(xi, ... , x.) dmote the numrer of units of the final oul"put, and let g;(x) be the 
corresponding numher ot" units of resou.-ce number j re<Juired, j = I, ... , m. Problem (1) 
can then be fonmllated as follows: 

Find rite amou,,ts xi, .... Xn of the intennediate goods that give the largest 

possible output of the final good, while making fell use of all the resources. 

Suppo~e the price of output is l, and let P; denote the price per uni! of resour.;c j, j = I, 
. .. , m. Then the net pro6.t al these price.~ is 

"' 
P(x) = f(x) - L p;gj(X) ( 11) 

i~J 

Suppme that P(li) is com:ave. A sufficient condition for P to have a maximum point with 
X1 > 0, ... , Xn > 0. is lhat 

a:s~ = il~(X) _ t P; il~j(X) ""O, i = l, ... ·" 
a:c, o.t1 i=t ox; 

(12) 

For each resource price vector p "" (pt, ... , p,,, ), this systen1 c,f equations detcrmi.nt:s 
optimal values of x 1, •..• -tn, and, in turn. the quantitic.s g, (x), ...• g.,(x) of them re­
sources needed. 

Depending on the price.< vector p, the quantity of resource j used al" the optimum will be 
less than, equal to, or largerdiau che srock bi availahle ofthat resource. ls ii possible to choose 
price• forrhercsouras ~o !hat rhe 4uantitie.~ actually used at the optimum are precisely <:.:1ual 

to the available resoul'ces'/ Since (12) gives I.he tirst-ordcrconditions for problem (I), we 
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sec that the :m.swer i.s· yes: make each re.source price equal to the coi:re.~ponding Lagrange 

mul1iplicr obraino;d from the first-order conditions for problem t 1): 

So, w/le.11 tire L,zgrunge mulri1,liers are a.sed as resource price.,, 111aximizi11g 
the net profit;,. (11) le,uls 10 rite avaiuible stock of etJcli resource biting ,,s,,,J 
ill full. The resulting quantilies x 1 , ... , x,. are tlto.re that maximize productwn 
.,ubject w the re.rource co11.rtraints. 

Assume now that the nnn has solved it.s internal production problem. Then the value function 
f*(b} is detennined. if the finn were to buy the amountsb; atpriccsX;, the11 iL would want 
to maxitni7.c 

,n 

:r(b) = /"ib)- I:iA 
j=) 

Here Jo.; are the Lagrnng~ multipliers asso..:iated with a given resource ,•eclOr b = b. The 

first-order condition~ for maximum profit al b are 

iJj'(b)//Jb; =Jo.;, j ==-1, ... ,m 

lbis equality accords with (9). If n-(b) is concave, rheu Jl'(b) doos have a maltimum ax. b. 

Envelope Result 

Consider tbe following version of the geueral lagraoge problem U): 

m:X f(x, r) su~ject to gj(X, r) = 0, j = I, ... , m (13) 

where x ::::: (x1. - .. , .x,.) and r = (r1, ... , r 1) is a vector of para.rneters. Note that we can 
absorb each constant bi in (1) by incluJing it as a componenl of the parameter ,•cclor r an<l 

hy including a teem -bi in thecorrespondingfunctiong_;(lt, r). Jfweputg = (,111, ... • g.,,), 
them constraints can then be written a..s a vector equality, g(x, r) = 0. Note that in pmhlem 
( 13) we ma.ximiz.e w.r.t. x, with r held constant. 

The value function for problem (U) is 

j'(r) = m:x{ f(x, i:) : g(x, r} = 0} 

Let the Lagrangian be defined as 

.l(x,r) == /(x,r) - L).1gj(X,r) 
;,:) 

(14) 

We wanuo find ancxpressionforiJf'(r};,1r1 at a given point r, assunung lhere isa unique 

oprimal choice x'(r) for x. Let i1, ... , 1,.., be the associat~.d Lagrange multipliers. Under 
certain conditions (see Theorem 3 .10.4 ), we also have. the following relation~hip: 

iJf."(i') "" ( cl.C(:x, r)) • ii , i,.,-1. ... ,k 
rt ur, , t'!.:.x.•1:n j 

(15} 

-····---··----··-··-------··----·-·-----·-- ·-·· -···-···· -·· .. ··-.. ··-·-...... --···-----··-··--·-··---· J 
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Theexprei.sion on thcrigllt-bandsidcis obtained by differentiating £(x, r) w.r.t. its (rt +i)th 

argument, which is r;, and then evaluar.i.ng the derivative. at x"(r). Thu. re.suit generafo.es 
the envelope rc.~u)l, from Section 3.1. For a proof l>ascd on (9), see Problem 10. The result 

i~ a special ca~e of Theorem 3.10.4. For a more standard proof of the latter, a,suming 

<l.ifferentfability, see the website. 

Consider lhe standard utility maximization problem (sec Example 2.2.2): 

max U(x) Nubjcct to p · x = m, ";?, 0, p » 0 (16) 

The maximum value of U willdependontheprice vectorpand i.ucomem: U* = u•(p. m), 

which is called the indirect utility function. Find expressions for iW' /iJm and iJU* /8p;. 

Solution: 11ie Lagrangian i.s .C(x, m) = U(x) -J..(p · 11:- m) and, since.J.l/om = >... (15) 

gives ~u· 
-=/,. 
am 

(17) 

ln this case ). measures the limiting im,·reasc in maximal utility per unit inc.oc.ase in income. 

Therefore, }.. is often called the .marginal udlity of income. Moreover. equation (15) gives 

au· u . -- = -= ->.x;, i = l, ... ,n 
ap; op; 

(Roy's ideotity) (18) 

This formula has a nice inte111n:tation: the margiual disutility of a price increase is tbe 
marginal utility of income(}..) multiplied by the quantity demanded (xn. Intuitively, this 

is be.cause, for a small price change, rhe loss of real incorne is approximately equal to the 

change in price multiplied by the quantity demanded. I 

1. (a) Solve the prnblem ma~ 100 - x2 - y2 - ~2 subjec1 to x + 2y + z = a. 

(b) Co111pute the optimal value function j'"(11) and verify lhat (9) holJs. 

@ 2. (a) Solve the prohlezu 

ma.x..:+4y+~ ~ubjectto x 2 +y2 +z2 =2lti and x+2y+Jz=0 

(b) Change rh~ fir.st couscraint t<t xl + y' + z2 = 215 and the second to x + ::!y + 3z = 0.1 . 
Eslimal~ 1he corresponding change in lhe maximum value hy using (] 0). 

{ 
x+v+z=I 

3. (a) Solve tbc r,roblem ma~ e' + y + r subject to 
.t2 + y2 + l~ :~ 1 

!.h) Replace the coosmunrs by x + y + 1, = 1.02 and x'· + .v2 + :1 
"'· O.'IH. Whal is 1be 

•pproxi.mate change in optim~I value of the otij"cr.ivc function'? 

@l 4. ta) Solve che utility 1naximji.ing problem (•~~uming m :::. 4) 

max U (x1 , .t2) = ! ln(I ..,_ xi) -~ } ln( I + x,) subjec1 to 2:< 1 + J.r2 = Ill 

(b) With u•(m.) :is the iudirect 111jlity fuuction, show tbatdW /dm ~. ; .. 
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5. (a) Solve the problem ma\ I - r .r2 - / suhject co , + y :"· 1>1, 'l\>iCh r :, 0. 

(b) Hnd lhc v;rlm, function f*(r, m), C(m,putc ar /ilr ~n<I iJJ" iam and verify (1.S). 

~ 6. (a) Solve the problem 

(b) Suripo~c we change the ti~t consrruinc to x2 + y1 + 4z2 = J .05 and 1be sec.ond c,)ns!raint. 
to x + 3y + 2.z . .,, 0.05. Estimate the com.:sponding cbnnge in the \'~Jue. function. 

7. {a) In £)(ample 4 let U(x) ,~ LJ=J ai ln(x; - .-,1). where a,, a;, p1 , and m ~re all positive. 
constants with :t;=l o:1 .-. 1, aiid with "' > L;=I p;a1• Show ih& if J• solves problem 
( 16). then the expenditure on good j is the following linear function of prices and income 

p;.tj ,.. a;m + p;a; - a; L p,a,. j" 1, 2, ... , n 
tf.:I 

This i8 called 1he linear e-.:pentlltun, sy•fem. 

{b) Let U'(p, m) ~ U("") dcnore 1hc indicect miliry function. Verify Roy's idemiry. 

HARDER PROBLEMS 

8. (a) Find the solution of th<> following problem by wiving the conslrninls for .x and y: 

minimize x2 .~ (y -· 1)2 + .:! subjec1 to x ·+ y ~, ../2 and x2 + y~ = l. 

(h) Nole that there are three variables and two constrJints (z does not appe:.r in lhe constraint~). 

9. lei 

Show tha1 the c<>odiuons in Theorem J.3.l are not satisfied. and lh:it 1bere are no Lagr,,ngc 
multipliers for which che Lagrangian is ~1ation.1ry ;1t the solution point. 

. . 
Q(t1, ..... <.) = L L<l;;x,x;, S = ((x1, ... , x.): x? + · · · -t-x}. = II 

r:-::1 j..,,I 

Assume 1hac the coefficient matrix A = (a;;} of the quadratic form Q is symn1elrio and prove 
tbm Q anains rnaxiimim and minimum values over die set S which are ClJUal to the largest and 
smallcsL eigenvalues of A. (lfinr: Consider first the""''" n = 2. Write Q(x) a~ Q(x) = x' Ax. 
The first-or.le~ condition~ give Ax = /,:x.) 

@ 10. Considerthe prolllcm 

wu f(x, r) suhjec1 co ' . { 
g.(x, r) -.: 0, j ~ I, ... , m 

t.r rr=hM+l• z=l, .... k 

when:. j anr.l r;, .... g,. are given functions and h,0 ~ 1, .•. , hm ... 1 are fixed parameters. (We 
m.·1ximi:re f W:!;l. both x = (x:, ... , x,) and r ·, (r1, ...• r.). bot with r1, ... , r, completely 
thed.) Ddinc h = (0, .... 0, t>.,+1o .•. , b .. ...-) (d1crc are m zeros). Prove {1.5) by using (9) 
for i = m +I. ... , m .;. It. and those first-order conditions tor prohlcm (•) that refeJ' to the 
variables ri. 
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3.4 Local Second-Order Conditions 
This section dcaili wirb local second-ortler conditions for tllc general oplimi:.:ation ptohlem 
(3.3.1) with r.quality constl11ims. We begin by con.sidcring briefly the case with only one 
~·onstraint. since rb.is in.,lhe one rhat occurs most commonly in t.>conomics: 

localmax(mi11)/i'J1.)~.· f(x1, ••. ,x.) sul~je,et to g(x)=g(x1 , •.• ,.r.)e:b (l) 

l11c L1grnngian is .t. ~, /(x) - ).(g(:i:) -· h}. Suppose x• s11fafies the first-ord,:r conditions 
in Toeol'em 3.3.1, so there exists a).. such that the l..agrangi.ut is stationary at x•. (The 

constminr gualificatio11 is thal. the gn,dient of g at x• is not 0.) For each r = 2, ...• 11, cletine 
the bordered Hessian determinant1 

0 g; (x·) g~(x*) I g, (x*) .t~, (x") L'[,(-.:·) I 
B,(1t") = 

£~.~x') I 
(2) 

g~(x") L;1(X') 

Then we have the following result~: 

B,(x') < 0 for r = 2, .... n ~ x• solves the local min. problem in (l). (3) 

(-IY B,.(x") > 0 for r ""2, ... , n = ii' solves the local max. problem in (l.}. (-i} 

Con~i,for next the general optimization problem with several equality constraints, 

local max(1ni1l) f(x) subject 10 g;(X) = b;, j = I, ... , m (m < n) (5) 

The Lagrangian is . ..C(x) = J (x) ·- I::;~, Aj(gj(X)- bi). The geoeral result, that exr.cnd (3) 
and (4) use the following determinants, for r = m + I, ... , n: 

() 0 
ilg1 (x*) ag,(x') 1 ---, 

/Ix, ih, i 

0 0 
3gm (x•) dl/m(X') 

B,(x") = ilx1 Jx, (6) /lg1(x') Jg.,(x') 
.l11 (x·) .C~,(x') ! ax, iJx, . I 

I og, <x·) i:lgm(X") .c;I (x') L" ~x•) I I ax,- ax, "' 

NOTE 1 In orde1· to apply lhc following theorem you may have to renumber the va.-iables 
in order to make rhe.firsl m columns in the matrix (<!g;(x•)t!lx;) lintarly independent. (The 

2 It is called the oordcrt:li He.$Sian bc<:ause it is the de1.erminant of che Hcssi;m m.1trix of .t. wir.h au 
extra row and colamn added a.< ''bord ... -rs". 
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constrainr qunlif\cation in Theorem 33 .1 implies tiJat thfa matrix must bave rank 111. So by 
Theorem 1.3. 1 suet, a.renumbering is pos-!tible.) 

Suppose the functions f Md g, , ... , g,,, arc defined on a set S in R" , an<l let x• 
be an interior point in S ~atisfyi ng lhe ncc.:i;s:try condirions in Theorem 3 .3. 1. 
Suppose lhal f and C1, ... , Ism arc c'- in a ball arouod x'. De.line !he <leterminanl 
B,(x') by (6). Then: 

(a) ff (-Ir B,(x•) > 0 forr :: m + I , .... n, lhea x• solves the local miu.i­
miz.1tioo problem in (5). 

(b) If(-1)' l/, (x') > Ofor, = m + l, ... , n. then :i:' solvo:s the lo.;al maxi ­
mi2.a1ion f)l'Oblem in (5). 

L-·-···------- - -----···-·----- ---- ----- ------.J 
Cbeck to ~e that' if m "" 1, the cooditioos in (a) and (b) reduce to those in (J) and (4). 

Note that !he sign factor ( - ))"' is the same for all r in (a), while die sign factor in (h) 
varies "'1th r . The conditions (a) a11d (b) on the signs of the determinants a.re referred 10 

ns the (local) second-order conditions. Note lbat th= dctertnioants are the last n - m 
le-Jding principal .minors of the ''full~ determinant JI. (x· ) that we get in (6) when r = n . 
~otc too that n - m is lbe number of degrees of free<lom remaioing when m independent 
coostraint, are impoml on n vruiables. 

EXAMPLE I lt is easy lO see that the only point that satisfies the first-order conditions for the problem 

locl11 ma.t(mio) J(x,)·,z) = x2 +y2+ z2 s.t. ·{81(x, y,z) :x +2y+ z = 30 
g2(x,y,1.) = 2x •• y - 3.:: = JO 

is P = (10, 10, 0). What hasTileoreur 3.4. I to say about lhis point? 

Solution: With m = 2 and n = '.l . the condi tions in (a) re<luce to ( - J )' B,.(P ) ;, O for 
r = 3, i.e. 8 3(P) > 0. On the o tber baod, (h) reduces to (- 1)' Br(P) > O for r = 3, 

i.e. Bl(/') < 0. Tbus, only !be .~ign of B1( P ) must be checked. Tilis determinant is 

0 0 og1/iJx :Jg i,'ay iJg1 /&;. 

0 0 /J ,;zi'iJx :Jg2/<J)' 
10 0 2 l 

ofJ2J?J:. 10 0 2 - l - 3 
83(P) = ilg1/;Jx ag1/ox .c;,. £." £i, =i l 

.., 
2 0 0 ., ,. 

ogsfay iJg1fih J;" L;, J:" 12 - I 0 2 0 , .. J! iJ. -3 (l 0 2 
8g1 /&z 3152//Jz .e." '-' J.,~y .£.~'{ 

This detcrm.i.11ant is equal to 150, $0 P is a local w i.nimum point 
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Motivation and Proof of Theorem 3.4.1 

1o give some e.\planatioo for the conditions in the th<:ore.m above, sup1~ -for the moment 
lh:11. x' ts a lorn! cxtre1ne poinl for the Lagr.mge fuuction .C itself. If in addition x• satisfic$ 
the m etJUality construi~ts, tben x• obviously solves problem (5). Hem;~ . ifx' is a swtionary 

p,,int for the Lagrangiiin, then 

n a 

L L .t.;'/ x'}h1hi i.s ncgmlve (positive.) dcfinire 
i n t j~l 

is a ~ufficicm condition for L to have a local m:,xiroum (minimum) at x·. Therefore, whcu 

(*) holw. and x• is a staciouary poin t that satisfies the consrraiots iu (5), then x• solvts lbe 

problem. Note that !he sufficient condition (*) is "unnecessarily strong" in !he sense that it 
cons iders every vector h = (h I· .. • • hn) ,fo 0, while ii is enough that the quadratic form is 
negative (positive) only for variations in b that (roughly speaking) 8atisfy tbe restric tions 
imposed by the constraint~. Tt turns out that it suffices to consider vari.'.ltions in ht , .. . , h,, 
that cause r + h to vary within the io1crsection of the tangent planes o f ~ graphs of 11 1, 

.. . . lm at x•.-

!ENT CONDITIONS- FOi\ IOCAL OPTIMAl1TY - ······----·----- - ·· ·~ 

Suppose thar x' i~ a s tationary point of the Lagrangian which satiilfies the con­

stroJ.iots, and that tbe quadratic fonn io (*) is negative (positi ve) for all the 
(h 1, .•. • h.) ;I= (0, .. .• 0) !hat satisfy the m linearly independent equations 

} 

I 
! 

ai:u(x*) ilg ·(x') 
- -- h, + ... -I· ~ h. = o. ax, ax. j = 1, 2, ... , nr l 

Then x• is a solutio n to problem (5) . ! 
i ·--------~--' 

(7) 

Proof of Theorem 3.4.1: To prove part (a) we mu<1 show that / (x" + b) - /(x");::. 0 for all 
vectocs t' + h that nre sufficiently el= 10 x• and satisfy g, ( ,c' + b) "' b;, i = J , .• . , m . 

We begin by expaa<ling the Lagrangian .C about x• using Thylor's formula (as in Theorem 2.6.8). 
~nd including terms up to the second order. With h = (h, , . ..• h.). we gel 

It l n It 

.C(x" + h ) '"'.t.(x· ) + }:.c;~ · )h; + 2 L L .C~/x' + chi l1,h1• c E (0. l) {i) 
i ::= ; i :=i /x1 

Becau~c x• satisfies all the constraint~ • .J:(x") = f(x") . Moreover, L. is stotionary at x•. so (i) can 
be wcirren a>' 

,:, 1 I'! n 

f (x· + LI) - /(JI'} ~- I:.1.,1sA(1-:" + h) - bt) + 2 LL.1.;;,x· + ch /lt;hi (ii) 
,t--.--.i ,=t j :.l 

·n,e, ti.cst sum ,>ll the rii;ht,.h;wd side i~ 0 wbeu x• + h sati.st)cs lhc con~traims. Th<:refutc. i r 1h.: double 
sum in (iiJ is positive for All such x• + h ;I= x• suffideutly clo&e 10 x•. 1her1 ll• is a local minimum 
poiJlt for pn>blcm (J). 
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whe(ewebaveu~ thefoctthat 11t(~) =bl, t = l , ... . m. 
Now con.sider tlte (m + ll) x (m + n} bordered He:ssian malrix 

S( o , "') - · ( 0 G (x l . .. .. :f"')) 
X • X ' .. . . J( _,, G(x1 . ... . x'"}' L''(:r0) ' 

whereG(:i:1 , . ... x"') "" (llg;(X1)/IJ.t1 ) ~,, for atbitrJJ)' vector,,,,:' . .. . , x" io oome open ball aro\lnd 

x•. and.i"(x0
) is theHessi.in matrix of L evalu.ated at ,cO . Porr = m+ l. .. . ,n, let ii,(llo, l'. 1, .. • , r") 

be the (m + r ) x (m + r) leading princip3\ minor of this wanix.. Toe dl'lt:nnmants 81 • ... , B. are ­
continuoos !tmctioM of the collection of vectors (:r0, xi •... , x"' ). viewed a.<i a point of R•"'+ll• . 
Moreover, .tl,(:r•, x' .... , x•) = B, (x'). So, under the hypotbe~is that (- 1)"' B,(:r•) > O for r = 
m+ 1, ..• ,n, tbereis anq,en ball U 111 A' withitscentre at1''lrucbthat(- l )"' ii, (x'l, x' . .... r") > O 
for r = m +I, . . . . 11 whenever lhe rn + l vector., ,I>, x1, .. .. x"' all belong to U . Now, if ,c• + h 
belongs to U, then so do all the vectors r' + ch and 1• + c1h, i; = J, .. . , m. By Tht,C)(em l .8.1, if 
t b O is sufficieotly small, then wiUi r = (r 1, •.• , r.), 

~~ ,, , • 8g1(x·+ c,h) ·. 
L, ,L, L;; (x +,·h)r1rj-::. 0 for •II r l" 0 S\Jch. tbat L · · r1 "'0, k = 1, .. . , m (iv). 
,·. 1 i•tl J•1 J fJxi . 

Suppo.<:t now iliac YI' + h is a point of U thac sai; sfies all Che coosuaints. Theo., 3CCOn:ling to (iii). 
LJ~i<~gt (ll• + c1h)i3,:;)h; = 0, fork = J, ... . nr. JI we put ri = hi , j = l , .. . , 11, ir follows 
from (iv) that the double snm in (ii)'is > 0. 

Pan (b) is ijhowo in & similar way. reversing appropria1t inequalities, especially rhe o.oe in (iv). •·. 

l'ROBL MS FOR SECTION 3 <I ----
1. (a) Find the four points that sati~fy the fust-<,\'der co,1di1ions fol' I.he problem 

mnx (olin) x1 + y2 su bject 10 4.r2 + 2/ = 4 

(b) Compu.r.c !12(.r, y) in (2) at !he four point~ found in (a). What t an you conclucle'I 

(c) Cao you give a ge.ometric: interpretation of the problem? 

2. Compute B: and B3 in (2) for the pr<,blem 

max (rnin) x1 + y 2 + t 2 subject to r+ y+: = 1 

Show thal the s,:cood-order conditions for a lo.:al minimum are ~ati$fied. 

@ 3. Use Theorem 3.4.J ro classify tile c:1ndi<la1es for optimality in the pwblem 

k,e..J max (min) .< + y + r. suhjci;·t ro A'
1 + y2 +i1 = l and,: - y- z = J 

'1: · 3.5 

.:·, 
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Inequality Constraints: Nonlinear Programming 
A more general fonn of constrained opti.mi.2.ation probkin nrises when we replace the equal­
ity constraints in the Lagrange problem (3.3. l) with inequality constraints. The result is the 

following nonlinear pi»grammlng problem, which we will call the standard problem : 

{ 

81(.t1, . .. ,_x,,):: b1 
max [(.r, , ... , .x,) su\ljc.:t to ..... .. ... .... .. . 

KmlXt, .. ,, Xn) !i. b.,. 

(1) 

where bi, .. . , b.,. arc all constants . A vectou: = (x1, ... , x,.) that satis1les al l theconsttuints 

is called admissible (oc feasible). The set of all :id!D.Wible vecto~ is callea I.he admissible 

set ( or the fea5ible set). We assume tbll1 f and all the Ki functions arc C 1 . 

Whereas in tpe Lagrange problem lhe nwnber of con.straints were assumed to °!le suictly 
less than the numher of variables, in the present problem this restriction is not necessary. In 

fact, there can be many more constraints thllJJ va ri abl~ . 

Note that mio.imil.Ulg J (x) is equivalent to maximizing - / (x ). Moreover, an inequality 
constraint of>the fonn gj(X) ::,:: b1 can be rewrineu as - gi(x) ::; -bj, whereas an equality 
constrsint g1(:l) == b1 is equivalent to the p&ir of co»straiots Ki (x) :S bj and -gj(x) :::: - bi· 

In this way, roost constrained optimi7.ation problems can be expresse,d in the form ( l). 
The sta11datd procedure for solving problem (l) ~ similar to the recipe used to solve 1he 

CO!reSponding problem wilh equality constraints in Section 3.3.1 We define the Lagr<111gisn 
exacrly as bdore. That is, .C(x) = f(-x) - >..1 (g1 (x) - b1) - · · · - >..,. (g.,(x) - b., ), where 

>..1, •• • , )..,,, are the Lagrange multipliers. Again the first-order partial derivatives o( the 

Lag rangi an are equated to 0: 

(2) 

In 11ddition, and th.is is the vitruly important new feat\Jre, we introduce the-complementary 
slackness conditioos 

Aj ~ 0, with AJ = 0 if gj(:t) < hJ , j = l, ... , m (3) 

Finally. of course, the inequality co nstraints tbemsel11cs have: to bt< satisfied. Conditions (2} 

and (3) are often called rhe Kuhn-Tucker conditions. 

Condition (3) i~ rather tricky. It requires that, for each j , the number ;.,1 is nnnnegarivc, 
and moreover thal AJ = 0 if 8J(X) < b1. Thu.5, if A; > 0, we must have Ki(x) = b1 , An 
altemativc formulatio n o f this condition is: 

'A;~ 0, with >-11B1(X) - bj) == 0, j =-" l , .. . , m (4) 

1 If you have not ~tudic<l Jl<lnlillear progrruwning bafore, i t might be a good idea to study a ~oroewbat 
more elementary m .atmenl first, starting with the ca.'lC n = 2, m = l as in, ~ay, F...MEA, Sccti<>11 
14.8. · ·: ', ., 



.· .. ~ ... 

T!J~·two incq_ualiti~~ ~j ~ 0 aod KJ (X) ~ b; are couipfemeotari!y s)ack in the sense that at 
most one c:iJ\ be ··stack"-thal is. ac most one ca11 hold with slrfot inequality. E(ft1ivalently, . 

at least one must be an eqll.'llity. · 
Tf gj (x") = bi, we say that the constraint 8i (;i.) ~ bi i~ active or binding at x•. 

Warning: Jc is possible to have both>-; = 0 ~d K;(x) = b; at the same ti~ in (3). See 
Problem 3.6. l. 

Let IL~ see these conditi.ons in actio11 in a ~imple case. 

Check what the conditions (2) and (3) give for the problem 

ma;rc f(x. y) = -(x - 2)2 - (y - 3)' sub.iect In x ~ I, y ~ 2 

Solution: The solution is obviously .x• = I and y• = 2, becau.~e f(l, 2) = -2 and, ifwe 

choose any other point (x, y) wilh x ~ 1 and y ::=_ 2, lhen f (.x, y) has a value Jes.~ than -2. 

So (x", y*) =(I, 2) solves lhe problem. 
Let us see how {O derive {bis solution by using the Kulm-Tucker conditions. With the 

Lagr:angian £ = -(x -2)2 - (y - 3)2 - J..1(x - l) - J..z(y - 2), the conditions (2H3) for . 

(x*, y*) to solve the problem become 

.1:.: = -2(.x* - 2) - >-1 = 0 

,t.~ = -2(y• - 3) - J..i ""0 

>-1 :::: 0, with J..1 = 0 if x' < I 

>-2 ~ 0, with J..2 = 0 if y• < 2 

(i) 

(ii) 

(iii) 

(iv) 

If x• < l, lhen from (iii) "-I = 0, and !hen (i) yield.s x• = 2, contradicting the cons1raint 
x ~ 1. So x• = 1. In the same way we see that y• < 2 lcads to J..2 = 0 and so from (ii) 

y• = 3, contradicting the constraint y ~ 2. But then x• "" I and y• = 2, and from (ii) and 

(iii) we find J..1 = i.2 = 2. So we get the same solution as with the direct ~'1lmcnc. 

2 r 4 ; 

Figure 1 

Another argument i~ this: maximi7.ing -(.t - '2f- (y - 3)2 subject to the constraints 11\USt 
have dle same solutioDS for x and y ~ minimizing (.x - 2)2 + (y - 3)2 subject to the 

•ame constraints. But Ibis !alter problem is geomea:ically 10 find the point in the shaded 
constraint set in Hg_ I that is closest IO (2, 3). This is obviously the point (1, 2). In Fig. I 
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we have also indicated some Jc:vel curves for the objective fouctio11. They are circles centred 
at (2, 3). The oplimuw is found at lhe point where one of the level curves just touches the 

admissible set. I 

The Value Function 
An iugenious arg111ncnt for lhe Kubn-Tuckef cQnditions is based on studying lhc (optimal) 

value function for problem (1). It is defined as4 

/*(b) = m:X {f(x): gj(lt) ~hi. j = I ..... nil (S) 

In Lhe following argument we assume that f* CJ,) is differentiable. Notice that the value 

function f"(b) mu~t be nondecreasing in each variable bi, ...• b.,. This is because as bi 
increases with all the other variable.s held fixed, the admissible set becomes larger; hence 

f • (b) cannot decrease. 
Fi.x a vector b = b, and let i be a corresponding optimal solution, which must therefore 

satisfy J(i) = j'(b). For any ll, we have f(:.) ~ f'(g(x)) becausex obviously satisfies the 

COIL~train(S in (5) when eachbj is replaced by KJ (x). Butthen f* (g(x)) ~ f' (g(x) +ii-g(:i)) 
since g(j)) ~ b and f' is nondecreasing. It follows that lhc function ip(ll) = f(x) -

f' (g(x) + ii - g(i)) i O for all x. Since ip(i) -= 0, qi(x) has a maximum at i, so 

0 
_ a~(i) _ aJ(xl _ £: a~·o,) agj(i}. 

ox; ax, j= l obi ax; 
i = t, ... ,ti 

If wcdctinc 

(6) 

then then equations(•.) reduce to (2). We th\Ls have a counterpart to equations (3.3.6) and 

(3.3.9), with a corresponding interprecati<Jn of the Lagrange multiplier. 
Since j'(b) is nondecreasing, from (6) we have.I.; ~ 0. Supposegj(i) < bj. Wcwantto 

prove that i,j = 0. Choose b' =(bi, .... bj-h bj, b1+1, ...• b,,.), where bi E (g;(x), b;). 
Then g(i) ~ b' ?. ii. Once again, because f* is nondecreasing, we have f* (g(i)) ~ 
f*(b') :s_ f'(b). But optimality of i. implie~ that J(i) = f*(b). So /'(b') is sqile..:zed 

between two e~1ua\ numbers, implying that ['fb') = J*(b) whenever bi E (g;(i), bj)­
Under lh.c assumption lhat j*(b) is differentiable at ii. it follows that aj'(b)/<lb; = 0. so 

by (6), >-; a= 0. Thus the complementary slacbe.ss condition holds. 

A Precise Result 
In order 10 show that the Kuhn-Tucker conditions (2) and (3) are truly necessary for op-­
timality. we should nor. as~ume that the value function f' is differentiable. To avoid this 
unsatisfactory a5$umption, howeve.c, we need a restriction on the constraint function& made 

precise in the following th..:orem: 

• We assume lhat the ma.timum value alwuys cxisL~. ·nii.\ will be a:uc. for cx2mple, i 11 :ii~ colll.mon 
situaiion where tbe "'1rnissiblc ,set is hounded for all ~sible b. Where die maximum docs not 
exist, we have to replace max in (5) by sup, 
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j Suppose that x• = (x j ..... x;) solve& problem (I) where f and g 1 •... , gm arc I 
/ C 1 functio.osoaasetSinR" andx* isaninierio.i:pointof S. Supposcfurthermore 

that the. following constraint qualification is sa1isfied: 

CQ: The gradient vectors Vg.1("*), I :;: j .::: m, corr.esp<>nding tO thoSt\ C-OD­

stnti.nts that 11Ie active at x• are linear·Jy independent. 

Then fhoo.'. exist unique numbers J.. 1, ... , A., such that tire Kulm-Tucker condi­
tions (2)-(3) hold at x = x•. 

. _______ .__..., ____ .._ __ , .... _____ _ 

An alternative formulation of the CQ is thi~: delete all rows in I.he Jacobian matril! g'(x•) 
(~ee (3.3.7)) that correspo11d 10 constraints that are inactive at x•. Then the remainiJlg matrix 

shoul<l have rank equal to the number of rows. 

The theorem gives necessary conditions for an admissible vector to &olvc problem (I). In 
general, !hey are definitely not sufficient on their own. Indeed, suppose one can find a point 
x• at which f is stationary and g1 (x•) < bi for all j. Then the Kuhn-Tucker condilions 

wiU a111omatically be satistkd by x• together with all the l.agrange multipliers J..1 = 0. Yet 
· while x• could be. a local or global mal!imum. it could also be a minimum or some kind of 

saddle point. 

In the nexc s.:ction we shall see. that, with proper concavity conditions, the Kuhn-Tucker 
conditions are sufficient. 

How to Handle the Constraint Qualification 

If the CQ fails at an optimal point, ic may happen that this point does not satisfy the Kuhu­
Tucker conditions. See Problem 5 for anc.xample. In fact, since some ccxtbooks are unclear 

ahout how to use the CQ, let us ex.plain carefully how to apply Theorem 3.5 .. l. To fin<l all 

possible solution candidates, you need to carry out the following two steps: 

(I) Find all admissible points where the Kuhn-Tuel-er conditions are sati~fied. 

(ff) find also all the admissible points where the CQ fails. 

If values of the ohjecti.ve function are calculated for all these candidates, the ''tlest'' can­
didaccs Cllll be single.d out: tllo~e giving the objective function lhe highest value among all 
canrndates. If Lhe problem has optim'll points, then these are the same as the best candidates. 

An erroneous procedure is so1netime.s encountered: when using the Kuhn-Tucker CO.D· 

ditions to find a unique candidate ii:•, the CQ is checked only at x = x•, However, the CQ 

may fail at other admissible points. These point~ will also be candidat<!s. See Problem 5. 

In the next example we take the co11srrain1 qualification seriously. However, i.t is more 

complicated than the previous problem and iJI such =s it is sometimes bard to know where 
to begin "am,cking" the nece,sary conditions. A general method for finding the candidmcs 

fOI' optimal.ity in a nonlinear programming problem can be formulate<l as follows: first, 
ex.amine rhc case in which all the conmaints are active; Then ex.amine all casc.s in which all 

MPLf. 2 
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hur. one of the constraims an: active; lben all cao;e.s in whkh all hut two are active; a11d so on. 

La.st, ex.amine the case in which none of the con~trair.>ts is acrjve. Ar each srep. we find all 
the \'CCIOrs :r., with 11.~socia!ed values e>f the Lagrang-e 1nnltiplie.rs, that sati~fy all the relevant 

conditions-if !here are any. Tiieu we calculate the v,due of the objective fom:cion for thes,: 
values of x, and rot..'lin tbose lli with the. highest valllcs. The procedure should become dearer 
once you have seen it in action. 

An alternative way to cover all ca.ses srarrs by examining !he ca.,;e in which all rhe 

Lagrang.: multiplfon; are 0. Then. examine all cases where one of the multipliers is 0, while 

all the others are positive, etc. This method c11n be. ~eu in action in the suggested answer 
ro Problem 3.6.1. 

Solve the problem: 

ma:,; f(x,y) =xy+x2 subjecr to g1(x,y) =x2 + y :s 2, c2(x, y) = -y ~ -1 

Solution: Nore thm the second consrtaint is equivalent to y ~ I. The Lagrangia.11 is L. = 
xy + x 1 

... ).1(x2 + y - 2) - i-2(-y + I). So tbe Kuhn-Tucker conditions reduci:; ro 

.l.~ = y+2x-'.!,.,x = 0 

.C~ = x - AJ + A2 = 0 

At :::: 0, with )., = 0 if x2 + y < 2 

J..2 :::: O. with J..2 = 0 if y > l 

We stan the systematic ptoc:eclure: 

(i) 

(ii) 

(iii} 

(iv) 

(I) Borh cnnsrraint, are active. Then x~ + y = 2 and}' = 1, and so x = ±1, y -,, l. 
When x = y = I. (i) and (ii) yield J..1 = 3/2 and ).1 = I /2. Th11s (x, y) = (I, 1) with 
J.. 1 = 3 /2 and .l..2 .::: 1 /2 is a solution candidare. 

When x = -1, y = I, (i) and (ii) yield ),, 1 = 1/2 and i,2 = 3/2. Thus (x, y) = 
(-l, l) with J..1 = 1/2 and J..2 = 3/2 is a solution candidate. 

(Il) Cons1rai111 1 is active. 2 is inactive. Then x2 + y = 2 and y ;, I. From (iv), J..2 = 0, 

and (ii) yields J..1 = x. lnscrtedinto(i) this yields y+ 2x -2x1 = 0. Since y = '.!-x2, 

we get 3x2 
- 2x - 2 == 0. Tot\ solutions are x == 1 (1 ± ../7) . .Rutx = ).1 ~ 0. so ooly 

X = l ( l + .,17) is :tdmissihle. But !hen y = 2 - x2 = a (5 - ,,/7 ), which we easily 
sC<, is less rhan I . So there is no solution candidate in this case. 

(HI) Constraint 1 is inactive, 2 is active. Then .t1 + y < 2 an<l y = I. But then from (iii), 

J..i == 0. TI1en(i)givesx = -1/2,and(ii)gives),2 = 1/2. Thus (x.y) = (-1/2.1) 
with J.. t = 0 and A 2 z.: J /2 is a ~olution candidate. 

(IV) Both constraints are in,ir.tive. Then x 2 + y :, 2 and y > I. so (iii) an<l (iv) yield 

J.1 = J..2 == 0. Then from (i) and (ii) we have y = 0, which conn·adiclS y ~ L So there 
is no solution candidate in Ibis ca.,e. 

Toe thn-.e solution caT.Jdidate, a.i:e f(J, I)=· 2. /(-1, l) ~, O. and /(-1/'.!. I)= -1/4. 
Among tlrcsc, th<' objective fum;tion i~ high<'sl at ( I . I). Since the objective function is 
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contint1ous and the admissible set is closed and bounded ( why?), the eimeme value theorem 

ensures that there is a solution. It remains only to check !he constraint qualificatio11. 

The gradieots oi the two cons1rain1 functions are V g 1(x, y) = (2.c, l) and v x1(x. y) ,.,_. 
(0, -·I). In case (I), when both constraint~ are active. only two points satisfy the consrrai111s, 

which arc aheady candidates for optimality. In case (ll), only lite first constraint is active, 

and we need only look at v /!J (x, y) = (2x, I), which is linearly independent since it is not 

the zero vector.5 In case (Ill), only the second constraint is active, and we need only look at 

'i7 g2 (x, y) = (0, - J}, which is linearly independent si.ucc it is 001 the zero vector. Finally, 

in case (TV), the CQ holds rrivially. So there are no admissible points al which the CQ fails."· 
We conclude that (l. I) solves the problem. 1 · 

t. Solve the problem max 1 - x 2 - }'2 ~ubject to x ~ 2 and y :;:: 3 l>y a direct argument, and 
Chen $ee what the Kuhn-Tucker conditions have to say about the problem. 

@ 2. (a) Consider the 11oolinear programming problem ( where c is a positive wnstant) 

. . I I) b' { .x + 2y -:,. c tlu'\XJJlllze n(x -t- + Jn(y + 1) su ~eel to · · 
X +·y .:::,2 

Wrii.e tlo,\'n tile ne.:ess3l)' Kuhn-1\1cker conditions for a point (.r, y} to be a solution of tbe 
problem. 

(b) Solve rhe problem for c = )/2. (Thcorein J.6.l will secure that the optimum is attained.) · 

(c) Let V(,:) de11ote tile value function. Find the value of V'(5/2). 

(fil) 3. Solve the following problem (assuming ii has a solution) 

minimize 4 Jn(x2 + 2) + y1 subject 10 x1 + y 2: 2, x ~ l 

(Hint: Reformulare ii as a ~tandard Kuhn-Tucker maximi?.ation p1oblc111.) 

@ 4. Solve the problem ma1,, -(x - a)2 - (y - t,)1 subject~> x ~ J, y :-; 2, for all possible 
values of die constants u and b. (A good ch~..:k of the results is to use a g~metric inte.i:pretation . 
oftheproMem. See£,ample J.) 

5. Considecdtt-prol>lemmax /(x,y) =X)' .suhjectl.o i(x,y) =(x + y- 2)2 ~ O. 
Explain why the solution is (x, y) = ( 1, l ). Verify d1at the Kul1n-Tucker conditions are uot 
satisfied for any;., and that tbe CQ does not hold at (I, I). 

@ 6. (a) Find !he only possible solution 10 the nonlinear prograiwuing problem 

subject to l::,l,.<~y 

tb) S,>lvc rile prohlcm by U8i11g il~rated optimization: Fmd first llte maximum value. f(x) i" : 
the problem of ma~irniiing .x5 - y1 ,1.1bjcct lo., :S ~. where x is fixed and y varies. Then. 
maximize f (x) suf>ject 11> .i ~ l. 

! A single vector a is lineaxly iudependent if and only if ii is n<'L the 1.ero vector. 
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3.6 Sufficient Conditions 
The Kuhn-Tucker conditions for lhc nonlinear progm.mming problem 

tna:\o-f(x) subject to gjCx)::, I>;. j -= I, ... , m (1) 

are by themselves far from sufficient for optimality. Howcv·er, a., in !he Lagrange problem, 

the conditions are sufficient if. the Lagrat1gim1 is conc3ve. 

T~EO:J!EM 3 6 SUFflC. ·1 

[ 

Consider the standard problem (1) with associated Lagrangian .£(x) = /(x) - j 
I:7~

1 
.l.

1 
(g1 (x.) - b1 ). Suppose that x• is admissible and, in combination with the I 

vector l. = (.l.1, ... , ) . .,), satisfies conditions (3.5.2)-{3.5.3). Provided that the I 
Lagran1,'llln is ..:oncave, then x• is optimal. j ________ ., ... ,,. .. , ____ ... , ..... ___ ......_ ___ .... ___ ,.., ........ -.... ---... -.-•-·---' 

Proof: Since .C(x) is concave and iU:.(x•)/8x; = 0 for i ,= I, .... n, then according 

to Theorem 3. l .2(a), x = x• rnaxi.tnize& ,C(x). Hence. writing g = (g1 •.... s,.) and l = 
(i..1, ... , An), one bas foi all :ii, f(x') - ). · (g(x•) -h) ~ f (x)- >.. · (g(x)-h). Rearranging, 

we obtain the equivalenl inequality 

f(x*) - J(x) 2: >.. • (g(x'J - g(x)) 

It suffices to show that the sum on die right-hand side E;'..1 "i (g;(x•) - J.li(x)) is?: 0 for 

all admissible x. because this will imply that x • solves i>roblem (l ). 
Suppose that gi,i.*) < bi. Then (3.5.3) shows that i..i = 0. For !hose tem1S in the sum 

in(•) where gj(X") = b,i• we have i..j(l{j(x*) - g;(x)) = i..;(h; - gj(X)) 2: 0, since I: is 

admissible and "i 2: 0. Toe sum on the rignt-hand side of(*) therefore con~ists partly of 

tenns that are O (sinct: .l.; = 0), and panly of terms that are.~ 0. All in all, the sum is 2: 0. • 

NOTE 1 11)e proof actually shows that if,-• maximizes the Lagrangian, is admissible, and 

satisfies the complementary slackness condition (3.5.3), then it* solves problem ( 1.). even if 

£ is not concave. 

AMP E ! Find the maximum of }x - y subject t.o x +e-• + z2 $ y and .t 2:. O. 

Solution: It is important first to write !he problem in exactly the same fonn as (1), with aH 

constraints as ::: inequalities: 

max f(x. y, z) = }x - y .subject w { 

8t (X, y, ~) = X + (!_,. - y + 1,
1 ~ t) 

i:2(.r. y, z) = -1 ~ 0 

The Lag(angian is £(:,;. y, z) .-::. !x - y - "-1 (x + e-• - y + ;.2) - }.2(--.x ). Then I.he 

Kuhn--Tuck.~'T conditions tale. the form 
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f AMPLE 2 

.1:.: = 1 - >.. 1 (1 - ~ - x) + .\.2 = 0 

.l.',""-l +.\.1=0 

.t~ = -2.\.i z = O 

At c: 0, with >..1 = U if x + e ·-< + z2 <: y 

).~ ::'. 0, with A2 = 0 if X ;, 0 

(i) 

(ii) 

(iii) 

(iv) 

(v} 

From (ii) \W, oblaio .\.1 = l , and tbeo (iii) give.~ z ::'! O. Moreover. from (iv) and z = 0 we 
sec that x + e ., =-= y. Also (i) with .\.1 = l implies th.al. e-> = k - .\.2 :::: t S().l: ~ ln 2 > 0. 

Then (v) gives .\.2 = 0 and so (i) giveu: = ln 2. wh.ich implies ii,at y = ; + e-r "" ln 2 ..._ i. 
Thus only the point (x, y, z) = (1n 2, la 2 + ! . U} is a<lmi~sible and also s111isfies the 

Kuhn-Tuder l·ooditions with At = l, A2 "" 0. The Lagrangian is therefore .C(x, y, z) = 
-fx - e-• - z2• which is con.:ave as the sum of the concave functions - fx, - e-• , and 
-z2. Theorem 3.6.1 then tells u.~ th.at (x, y, z) "" (In 2, ln 2 + !, 0) solves the problem. I 

In the. nexteumple it is convenient to use the systematic method first used in Example 3.5.2. 

Sol-ve the. probl~m 

max f(x, y) = .i:2 + 2y suhjoct co x2 + y2 ~ 111, y :=:: 0 (m positive coostallt.) 

Solution: Rewriting the constraint y :=:: 0 a.~ -y ::: 0, the Lagrangian is .C = x2 + 2y -

/q(x2 + ~ - m} - >.2(- y). So the Kuhn- Tucker conditions reduce to 

.t: = 2:t - 2A1x = 0 

.C~ == 2 - 2J..1Y +).z "" 0 
.\.1:: 0, with At = 0 if x2 + y2 < m 

J.1 ::::. O. with >-2 = 0 if y > 0 

We start the systematic procedure: 

(i) 

(ii) 

(iii) 

(iv) 

(I) '/Jot/i consrrainrs cm, active. Then x2 + y2 == m Hml y = U. Bnt with y = 0, (ii) gives 
;.2 = - 2, which contradicts (iv). So there are no sohnion candidates io rhi~ case. 

(ll) Cons,raint I is a.crive. 2 is inactive. In this case x2 + i =< m 3nd y > 0. From (iv) we 
ohtaill 7'.z, = 0, and (ii) gives .\.1y = I while (i) implies x (l - >..1) ""0. From the fast 
equality we couclude thlll either x :::: 0 or Al = 1, or both. 

If x = 0, then x 1 + y7- = m yidds y = ±./m. Since y > 0, only y = ./in is 
possible. Then .\.1 = 1/ v'm and .l2 = 0. He= we have found that (.x , y) = (0, .Jin), 
wilh >..1 = l / .[iii and J..2 = 0, satisfies {i}-.(iv) and I.bus is one solution candidate. 

If J..1 = l , then .\.1y = I implies y = I and rrom x2 + y2 = m we obtain 
x = ± v m - 1. Thus, pmv idcd m :: l , { .J,n.:-f, l) an<l ( - ./in.=I, l ) ar1: 1.wo more 

solution candidates, wilh .\. 1 = I and >..z = 0. 

(Jill Constraim I fr inactive, 2 is tu·rive. 'Then x2 + yZ < m and y = 0. But then from (ii) 

it follows that .l.2 = - 2. a c:ontTadiction. So no candidate arises in this case. 

(IV) Br,rh r.onstraints are inar.1ivt. Then ,c2 + y1 < m. y > 0, and ),·1 "' "-2 = 0. This 
coo1radic\j (Ji). So no candi<lnre solution appears in thi~ case. 
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Thus,ifO <. m < l,theonlycandi<late satisfyillga!Jthe Kuhn-Tudrercondicioll:!is(x. )'} = 
t0, ../,ii}, with>.., "" 1/../m, i..2 = 0, 8lld the objective function is /(0. ,Im } = 2,/m . 

If m :=:: l, in addition t.o (x, y) = (0 • ../,ii). the points (.Jin=J. I) 3nd (-~. I) 
lllso sati~fy the Kuhn-Tucker conditions, For the two latter candidate.~ the ohjcc1ive functiou 
is /(± _;;;-:::-j, I) = 11t+ I. Note that m + l >.: 2.Jin if and only if (.,/m- 1)2 ~ 0, which 
ohviou.(ly is satisfied. 

It<.loes n01look promisingtoapplyTbeore1ll 3.6. l in tbisca$C, because /(.x, y) = x 2+2y 
is convex. Still. in tl1e ca~e O < m <. l, with .).,1 = Ji ,,(iii, >..2 ""0, the Lograngiau is 

2 I ( 2 2 ) ( l ) 2 v
2 

5 ,C :.:.;r +2y- -•- X +y -5 - 0·(-y) ::: 1 - - X --=-= ·t- 2v + --.. 
jiii ,/m .,/m , ../m 

This is actually concave in (x , y) since l -1/ ,/m < 0 when O < m < 1. So Theorem 3.6.l 
shows tbat (0, .Jin) solves the problem when m <i: (0, I ). For m .~ 1, the two points 
(±..,;;;;-::-1, !) both ~olve the maxi111iw tion probleOI because ).1 == 1 ood .1.2 = 0, so the 
Lagn1ngian in tl1is case is 

.C = ~1 + 2y - (x2 + l - 5) - 0 · (-y) = - i + 2y + S 

which is also concave. 

'{be L11g.rruigian .£. (t ) = f (x) - A1 (g1 (x) - bi) - · · · - .\..,(g,. (x) -hm) is concave if f (t ) 
is concave and >.1g1(1}, ... , >-m8m(X) are all convex, since a sum of conca\·e functions is 
concave. The next th.~rem gives an intaesting generalization, 

: 
.I · . ' 

I 
In Theorem 3.6.1 concavity of .C(x) C!IJl be replaced by we following condition: ! 

.. .... f(x) is cone.ave and Anj(11.), j = I, ... , m, areal! quasicouvcJC ! 

. l-...------··- - ----- .. ---·----- -----' 
Proof: We want lo show 1hac for all admissible x. / tJC) •• / (t') ~ 0. Since j (x) is c<>ncave, thc:n, 
3Ca'J(ding to Theorem 2.4. l, 

.. 
j(x) - /(x'):;: 'i1 / (x· ) · (x •· x·) = I:.i.1vsi(x·) . (x - x·, ,~, (i) 

where, we also used (3 .5.2) in w ,·cctor foriu that had be.ea inlrOduced in (3. 3 .8). Juuffices. therefore. 
to show that for all j = 1, .... m, and all admissible x. 

(iii 

The ioequaliiy in (ii) is satisfied for lhuse j such dial g1(:K') < b1, be.:au8e then>.., = 0. foe rhosc 
j sw:h thntgj(x'} = i,1, we h;ive gj(x) :!, Ki(x') becau:;c xis aclmissible. Therefore - ;.;g1(,c) ,~ 
--~1g1(x"). Since the f11nctioo - >..1s; is quasiconcave, it follows frotn Tbe-t•.cem 2.5.4 th~t we have 
!he incqunlity V<- >-1g, (t')) · (x - x' )?. 0. and hence >-;'ilgJ(,r"), (x - x') S O. • 

NOTE 2 l.t is easy to see tha1 the w:iuiremem that.J..j&J(ll) is quasicoovex: in Theorem 3.6.2 
can be replaced by the weaker re-.quiremcnt tb:tt :[j_.1 >..1gi (x) is quasicoovex. (Rem<:10!;,er 

that a sum of quasiconvex func.tions is not ne,;cssarily qut1.1icon~cx,) 
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Quasiconcave Programming 
The following theorem is impo11ant for economist~. hecausc in many t:cooomic opli..wization 
problems the objective function is assumed to be qua.~iconcavc. rather th,Ul concave. 

C onsidcr the standard problen1 (I), where the objectivl~ function f is C I and 

qua.siconcavc. AssuU1e that there exist numbers i..1 •... , i., and a vector x• 

such lhat 

(a) it· is admissible an,i satisfie~ the Kuhn-Tucker conditions (3.5.2)-(3.5.3); 

(h) v f(x') f II; 

(c) J..jgj('X) is qua.siconvex for j = 1. ... , m. 

Then x• is op1imal. 

'----~----·· 
______ _J 

Proof: We prow. first tll.lt, fol' all x, 

f(x) > f(x') ::::} 'v f(x') · (x - x•) > 0 (w) . 

Suppose J(x} > f(x') and choost. a > 0 so small that /(x - aV f(x')) 2:. f(x'). ·• 
Then from Theorcm 2.5.4, v f(x*) · (x - aV f(x') - J<') 2:. 0, or v f(x') · (x -x•) ~ 
Cl('v J (x• J )2 o-- U because of(h). 

l.,et x be any vector such that gj(ll') :oh; for j = l .... , m. Let J e: (j : gJ (x") = bj}­
If j E: J, then ;..J/;; (x) 5 Ajl/i (x'), or -i.1 gj(x) ~ -i.1gj(x'). This last inequality is also 
valid if j ¢ J, because lhen )..i = O. Since each -i·jl/j(ll.) is quasiconcave, Theocem 2.5.4 
implies that Aj'vgj(x*) · (x - :,o:•) ::: O. and so O ~ I;j:.1 ).i\Jgi "" ~ f(x•) · (x - x') .. 
Because of(,.), this implies chat f(x) ~ f(x'), so,.. is optimal. • 

NOTE 3 Conditiou (b) cannot be dropped. Consider th_e problem ma~ f (x) = x3 subject 
Lo g(x) = -x :5: O. With the Lagrangian J:. = xl + i..x, conditic,n (a) in Thcocem 3.6.3 
reduces 10 3(.x'i + ;\, = 0 and >- :::_ 0 with). = 0 if x• > 0. Obviously, these conditions 

31e satisfied by x • :;; 0, i. = 0, which is definitely not a solurion lO the given problem. 

(ma.t x3 subject to x ~ 0 has no solution.) Here f is quasiconcave and ).g is qua.siconvcl!. 

But condi1ion (b) inTheorem3.6.3 i~ not satisfied because '\I f(O) = /'(O) = 0. 

Consider the following problem in consumer theory (see Example 3.3.4), 

max U (,;:) subject to p · x :E. nt, x ?. O. p ;» 0 

a6suming that rfa, urility function lJ is C I and quasicunl,ave. Suppose x• = (x ~, .... x;) is 

ad1ni~sible and satisfies {a) and (b) in Theorem 3.6.3: 

Uf(x')~Ap;, witb.U;(x')=i,p; ifxi>O, i=J, ... ,11 

}. :::. 0. wilh ;,.. = () if p · x' < m 

(i) 

(ii) 
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Supp<lSe too that VU(x'} # 0, i.t~. IIOl all the partial derivatives u;<x·i, .. , u:,cx·) are 

1.ero. Then x' solves the problem. Tbc usu.ii assumption in ec:o11omic~ is rhal Uf (x'} ?:: 0 
for all i. Then at kastone u;(x•) > 0. Hence, (j) implies I.hat J.. > 0, sop· x' = 111, i.e. all 

income is spent. I 

fn Section 3.4 we formulated and pr<>wd suftkiem coodition~ for i0<:t1l opr.intality in optimiwrion 
prohlews wir.h ,.quality coostrain1s. tle .. e is the com:spouJin!l rc~ull for noolinear pr<,gn11wning. For 
a proof. &cc the book·~ websiLe. 

LOCAL MA Jr. IJM 

A~sume ihat an admissible vecror x• and mulripliei:s ;..1 •••• , i .• , satisfy the m;cessary 
Kuhn-Tucker conditioos ('.'l.5.2)-(3.5.'.l) for problem (l). Let J = I} : KJ(x') = bj) 
denoce die set of active constraints, and assume that i.1 > O.foc aJJ j in J. Consi<l<-T the 
Lagrange problem 

rnax J(xJ subjecc io g;(ll:) = bj, j E f 

C•ideutly, x• s•tis6e.s the nece~sary first-order conditions fo{ thi~ problem, for the given 
wultiplie..s i.r If x' also sa1.isfles the sufficient $CCond-ordec condilions of Theorem 
3.4.l for prot,Jem (2) with these same i,;, ihen x• is a sLric1 local maximum poim for 
problem (1). 

t 
I 

I 

I 
I 
I 
\ 
1 

·-··------.! 

1 . Solve the problem max l - (x - 1 }2 - ,,,' suhject to xZ + y! ~ I. 

® 2. Solve the prot>lem max xy + x + y subject 10 x2 + y2 ::, 2, x + y ~ \. 

3.7 Comparative Statics 

(2) 

For the standard nonlinear progranuning prublcru (3.5.1) we de.fined the value fun.;1io11 a., 

f'<b) ~ ma.~{ /(i.): gj(x) :O: b1 • j = 1, ... , m} (1) 

According to (3.5.6), provided nf'(b)/fJl:>j exists, 

ilf'(b) 
--·=),1·(b). j=l, ... ,m 

ilbj . 
(2} 

The value function f' is not necessmly C 1. (See Problem 2 and Example J.l:1.2(..I).) Ill 
Scc1ion 3.10 suflicicnt co11ditiuas for (2) to bold (aud for r (b) 10 bc<liffcrentiahk) arc given. 
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,;ii;:i_:fkM~(i{j) i A linn has L uni1s of labour availahl.e and produces rhree goods which it sell~ at prices 
a, b, and,: per unit, r~-pectively. Prod11cing .r, y, and z units of rbe. goods requires ax\ 
{Jy2, and yz2 nnits of labour, respectivdy. Solve the problem 

max /(x. y, d = t1x +by+ ci s11bjcc1 ro 11(x. y, z) = ax2 + fjy2 + yz2 ::;: L 

of roaximi1.ing the value of output tha1 cau be produced using L unil6 of lahour, where the 

coefticiems a, b, c, c,, #. and y are all positive constarus. Find the value function and verify 
(2) in this case. 

Solution: Thd .. agmngian is £(x, y, z),... ax +i.>y+cz-.l.(c,x'.l+py2 +yz2). Neccs.sary 
conditions for (.x*. y•, z*) to solve the problem are 

a - 2;1.ax" e: 0, b - 2;,{Jy• = 0. ,.· - 2J..yz• = O 

J.. ~ 0 with i.. = 0 if a(x*)2 + (J(y')2 + y(;:*)2 < l 

Herc;.., x•, y•, and z• muse all be positive. and},"" a/Z,,x• = b(!.fiy* == c/2y~·. So 

.r•-= a/~1., y• = b/2f,J.., ~·,... c/2yi. 

Because )., > 0, the complemcntltl)' slackness condition implies 1hat a(x*f + {J(y')2 .L 

y(z·)2 = L. Inserting the oxpresNions in(*) for x·, y*. and z• into rhe resom-ce constraint 
yields 

ti b2 c2 

--+--+--=-/, 4a>.2 4,Bi,,2 4y>.2 -

It follows that 

The suggestion for a solution of the problem is rherefore given by ( *), with >. as in ( ~* ). 
The Llgrangian .C is obviously concave, so we have found the solution. 

The value function is 

Bur lhendf*(l,)idL = 4r- 1i 2Ja2ja + b2jf, + ci;y, so (2) is confirmed. 

In EJ{amplc 3.6.2 we found the following value function: 

f'<m} = l 2./m if O < m < l 
·"'+I if m ~ I 

We see th:,tdf' /dm -·~ 1/,/iii ··~ }.: forO , m -.: land df" /dm = I = J..1 form > 1, so 
(2) i< coufirmed. TI1c value function is graphed in Fig. l. It is differemiablc fot all m > 0 

(.f'(J.) ·= lim.,-1- f'(m) "" lim, •. -+ 1·• f'(m) = I), and concave. I 

~c(TICN 3.7 I COMPARAlWF S7A?l(.5 

• './ 
1/ 

r 
Figure 1 

Here is a general resulc :\bout concavity of the value function: 

REM3.7 l 

If f (x) is concave and 81 (x), .... gm (11') are conve:x., then the value function 
f*(h) defined in (l) is concave. 

L.--------·------------·--·-·------
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Proof: Let b' and b" be two arbitr.iry righ1-hand side vec1or.s, and let x•(b'). x'(b") be 
corresponding optimal solutions. Letr e [0, 1 ]. Corresponding IQ the right-hand side vector 
tb' + (1 - t)b'' there exists an optimal solution x'(tb' + (1 - i)b"), and 

f*(tb' + (I -1)b"} = f(x"(lb' + (I -r)b")) 

Define x = 1x•(b') + (1-f)x•(b''). Then convexity of gi for j"' I, ...• m implies thi,t 

g;(i)::: t,i:;(x*(b')) + (I - l)g;(x*(b'')) ~ tb1 + (1 - t)b1' 
Th1Ls xis admissible in the problem where t.heright-haodsidc vc-.cror is tb' + (I -r)b", and 
in that problem x• (tb' + ( I - t)b") is optimal. It follows that 

/(x) :': f(x·(,b' + (l - t)b")) = /'(tb' + (I -· t)b'') (*) 

But concavity off implies that 

f(i) ~ 1/(x*(b')) + {I -1)/(11:*{b")) = tf*(b') + (l - t)f"(b") 

From the inequalities(*) and (u) we conclude that f"(b) is concave. • 

Envelope Result 

Consider tht' following mo.-e general nonlinear programming problem with parame.ters 

m:X .f(x. r} subject to ,i:j(X, r) ::: O. j "" l, ... , m (3) 

where x "" (x:, .... Xn) and r = (r1, ... , rk) is a vector of parame1 ... -rs. If we put g ~• 
(g1 , .•. , g,,. ), them constraints can then he written as a vector inequality, g{x, r) ~~ 0. Nore 

that in problem (3) we ma.timize w.r.t. x, with r held const.utl. 
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TI1e optimal value of 1hc objcetive function in prnblcm ('.\} is (again) c;illc:d the value 

funclion: 
j'(r) = ru:Jtlf(x, r}: g(x. r) :: Of (4) 

assuming that there is a unique maximum. 

Let the Lagrangian be defined as .C(x. r) "' /(x, r) -· Lfr-,J '·iK;(x, r). We want to. 
find an expression for nf"(r)/,Jr; at a givcu poim r. The conesponding optimal choice for 
:i;: is x· (f), aud we let .1.1, ... , )..,. he the assoda(C() Lagrange multipliers. Under certain 

conditions ( see Theorem 3. 10.4 ). we:: also have the following relationship: 

6NVEL.OPERES-l1l T .,---l ____ . ----··-------· _a·:=:~-__ r)-=~(~a-.t._lt-r;-~-;~-x=-•':.~_-:.-:-'._-_:.-:.~.-~------------__ -_J 

The interpret.Ilion of the righr-hand side of this fonnula i~ analogous to lhe interpretation 

of formula (3.3.15). 

® 1. (a) Sohoe the nonlinear rrogr3mmi11g problem (a and bare conslanls) 

maximi7..e 100-d-< -.·-Y •. e"' subject to x + y +z ~"· x =, h 

(b) Let ["(a. h) be tbe (optimal) value function. Compute the partial derivatives off" with 
re$p¢Cl tO a and/,, and relate diem to the Lagrange. multipliers. 

(c) .Put b = 0, and show that F"(a) = j"(a, 0) is concave in a. 

2. !<or r = 0 the problem 
max (x -r)l 

••1-l,(J 
has two solurions, x = ± I. For r ;f. O. there is only one s<>lulion. Show that the value fw1ction 
.f' (r j i$ not diff,:,:,:1.11.iahlc ar r = 0. 

@ 3. (a) Consider die problem 

max(m.i.11) :,:7 + y2 subject to r1 
::,. 2.,:l + 4y':, .•" 

where O < r < ~- S,1lvc !he maximi,,ation prohlcrn and verify (5) in !his ca•e. 

(b) Reformulate the minimizatiC1n problem as a maJtimir.ation problem, solvt it, and verify (5) 
in thls ca."e. 

(c) Can you given geometric inte[J)retation of the prof:llem am.I its suJution'? 

HARDER PROBLEMS 

@4. l'ruve. that f'(r) de-fined in (4) i$ co11ca\'e if f is concave and g1,, •• , g,., 31'C convex in (x. r). 
(Thi~ gc1teralizes Theorem 3.7. I.) 

3.8 
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Nonnegativity Constraints 
Often the variables involved in economic oplimi:i.~tion prnblcms an.: inhe.rently nonneg­
ative. Thus we frequently .:ncount.cr the $tandard nonlinear programming problem with 

nonnegativity constr~jnts: 

max /(x) suhjectto l/j(x} ~ b;, j = I. ... ,m, x; 2:. 0, ... , x.::::. 0 (1) 

We inlio<lltce n new coostJ:aiu1s in addition to the 111 original 011es: 

Sm+I (x) = -x; ::: 0, , . , , !; .. +.(X) = -.<:. _:::: 0 (2) 

This converts (1) into a problem of the form (3.5. l). We introduce Lagrange multipliers /Lt, 

...• /.Ln to go with the new r.:onsliaints aud forrn the extended Ligrangfan 

m n 

.Cc (x) == f(x) - L)i(gj(x) - bj) - I),,(-.x,) (3) 
j=I 1~1 

According to (3.5.2) and (3.5.3) the necessary oonditions for x• to solve the probkw are 

iJf(x*) _ ~). ilgj(X") . _ Q 
~ L, ·/ i) + µ, - ' 

Xi i:-.1 Xi 

'·i ::::. 0. with ;.i = 0 if K;(x") < b;, 

/.Li 2: 0, with µ.; = Q if X; > 0, 

i = L .... 11 

j=\, ... ,nt 

i aa: I, ... , n 

(i) 

(ii) 

(iii) 

To reduce this collection of m + n consttaims and m + 11 Lagrange mulliplicrs, the necessa,:y 

conditions for problem (l) are often formulated slightly differently. as in Theorem 3.8. 1 
below. In fact. it follows from (i) that /jf(x•)/'rtx; - I:~1 ),,/lg;(x*)//J.:q = -1.1,;. Since 
/~i 2:. 0 and-µ.; = 0 if x; > 0, we see that(i)and (iii) togcrherarccquivalenttothecondition 

<lf(x*) m /Jgj(x*) . • -a--LA;-a--sO (::01fx, :~O). i=l, .... n 
.'C.; J=l Xi 

Asin(3.5.4), wccaosavthatthe.twoinequalitics fJJ(x') - ti../!EJ<x") < O:wdx~ > 0 
"' axi ;::;l <ix; - • -

are complemcntarily slack. · 

Suppose thac x• == (.xj, ... , x:) solves problem (l), Suppo~e further that the 
gradient vectors V g;(x'), j = I, .... rn ... n, corresponding to those coostrainu 

f, :r' ~. EOltE M 3 

r that are active at x·. are linearly indqiendent. Then there exist unique numb.:rs 
i,1, . , , , J..., such that with the Lagrangian J.'.(x) ""f(x} - LJ=I 11.;(J!j(X) -b1 ), 

. a.co,•) of(x"l L,. ilK;(x") . • 
ta) --- = --- Aj---· < 0 (= 0 1f .<: > 0), i ,,, l, ... , n 

a.xi [)xi . ;;...:, - I, 

}":'L L (b)l.1 ::;0. withA1 =0ifgj(X'l<h1 , j=l, ... ,nt j 
-···-----·--·-·-·- ... -----·-·-····---- -----·-----·---··---.. ----.-----J 
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Nore that in the new formulation of the necessary/sufficient. conditions we use the ordinary 
l..agrangian .t., not the extended Lagrangian ,£, l used io. (3 ). 

Consi(for problem (1) :tnd suppose that 1'• is admissible and, iogcrhcr with 

>.1, ... , A,,,, sati.sfie~ conditions (a) and (b) in Tbcorem 3.8.1. If !he Lagrangian 

.l(ii:)"' j('I{.) ·- Ej,,1 AJ(g;(x) -b1) is concave, then x* is optimal. 

L.. .. -~--~--.. - .. -----·--·-·"""''·-·------· 

fXA PlE. 1 

The proof of Theorem 3.8.2 is a simple application of Theorem 3.6.1 to the extended 
Lagrdllgian £I· 

Solve Lhe following problem: 

maximi;.~ f(x, y) = jx - !x2 + t:iY s. I. 
{ 

X < 5 
X :!: 0,y ~ 0 -x + y ~]' 

Solution: With the Lagrangian .l = jx - !x~ + fiY - i..1(.x -5)- i..,(-x + y- l), th~ 
Kohn-Tucker conditions for (x*, y') to solve the problem are: 

.C'1 =}-x'-A1+A2;'.SO (=Oifx*>O) 

.c2 = -&. - >..2 ~ o <= o if y• > o> 
Al ~ 0, and ).. 1 ""0 if x• < 5 

A2 ~ 0. and )..2 = 0 if -x• + y* < I 

(ii 

(ii) 

(iii) 

(iv) 

From (ii) wt see that J..2 > 0. Then (iv} and -x• + y* :'.o I imply -x* + y' = l. It follows 
rbat y• = x* + I > 0, since x* ~ 0. Then (ii) implies A2 = rz. 

Suppose >..1 > 0. Then from (iii) an<l x' ~ 5, it follows that..t' = 5. In,erting ;.1 "" b_ 
an<l x• = 5 into (i) yields a negative value for )..1• 

So }_1 = 0. Then Ii) yield~ x• ~ l .. _ ),1 + )_z == } + ft > 0. From (i) we find 1ha! 
} -- x* + fi ;.:; 0, so x· = r Then y' = I+ .r* = i- Conclusion: (x', y') = <i. {). 
with Al = 0 and A2 "' fi, 5atisfies all the conditions. The LagrJngian is easily seen 10 be 
coucave. so we have found the solution. I 

An aircraft manufacturing finn can operale plants in either of two countries. In country 
A, its cost as a function ofoutput.t ~ 0 is CA(X) ==In(!+ 3.x/100). ln country B, its cost 
a~ a function of output y?. 0 is C.li(Y) == 2Jn(I + y/100). The fimi allocates production 
between rhe two plants in order lo minimii.e the t.Otal cost of producing ac le.as! q unit~ of 
ourp11t worldwide, where q > 0. 

(a) Shnw that the firm's cosr.-minimizing chokes of x aod y mns1 solve a p,uticular con· 
,trninO'<I optimiz.alion pmhlen1 with 11011-negativity con~traint~-

(b) Use the Lagrange multiplier method to show Lha1 there are one, two, or rhn-.e sohnion 
caodidatcs satisfying lhe Kuhn-Tucker co11ditions, depending on the value of q. 
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( c) Show rhar the. furn n~es only the plant in ~ountry A for levc.ls of output he low some 
critical level q•. anJ only the plant in country B wben q > q*. 

(d) Find tlie firm's minimum cost a~ a function of q, and show that it is not Jifferemiable 
:ti q•. 

Solution: (a} Th~ fi~ will choose (x. y) to solve th~ probl.e111 

min C(:t, y) = ln(J + 3x/100) + 2i11(1 + y/100) s.l. x + y ~ q. x::: O, y ·.::::_ O 

(b) Because this is a minimii.atioo problem, we write the L.1gmngian as 

.C(x, y) = -(In~! + 3x/100) + 2 ln(t + y/lOO)J + >..(x + y - q) 

The Kuhn-Tucker conditions from Theorem 3.8.1 are 

-3(100+3x}-1 +.:..~O (=Oifx > 0) 
-2(JOO+y)-1 +>..~0 (=Oifv>O) 

A ~ 0, with .l.. = 0 if x + y > q 

(i) 

(ii) 

(iii) 

ff .l = 0, then from (i) and (ii) we get x = y = 0, which contradicts x + y ?; q > 0. Thus 
)_ > 0, and x + y = q. 

Suppose x > Oandy > 0. From (i)and (ii) wcge.t -3(100+ 3xJ-l = -2(100+ y)-1 . 

If follows that 6x -3y == 100 and becausex + y = q, we have the. unique solution c.andidatc 

(x,y),;:(q/3+100/9,2q/3-I00/9) with J..=9(400+3q)-1 (q>50/3) M 

This interior solution candidalc is valid provided that q > 50/3, which ensures that y > O. 
The associated cost is ln((400 + 3q}/300) + 2 ln[{400+ 3q)/450]. 

Suppose x > 0 and y = 0. 'Jhe sohuion candidate is then (x, y) = ('I· 0), with>.. = 

3(100 + :oq>-1
• and an associa1ed cost C(q, 0) =In(!+ 3q/lOO). This is valid provided 

that (ii) is also satisfied, that is>..= 3(100 + Jqr·t :O: 2(100 + o)··l = 2/100. This is true 
for all q e:: 50/3. 

Suppose .r: = 0 and y > 0. Then the solution candidate is (x, y) = (0. q ), with ~- = 
2(100 +q)-1

, and an associa1edcost C(O, q) "' 2 Jn(l +q /JOO). This is \'ltlid provided !hat 

(i) is aho satisfie-.d, that is ), = 2(100 + q )- ' ~ 3( I 00 + m- 1 = 3 /JOU. This is obviously 
true for all q > 0. 

Thus. for O < q < 50/3 there is only one solution candidau,. (0. q). For q = 50/3, 
(q, 0) and (0, q) are both Clllldi<lates. Finally, for q > 50/3, (q. 0). (0, q ), and (x, y) given 
in ( *) are solution candidalc8. 

(c) Comparing lhese different solution candidates, note char when the intenor solution 

.:andidate exists (for q > 50/3), it is always the worst. In fact, ii is a global m,1.rimum of 

the concave func1ion C (x. y) subjecc to the constraints x + y = q and x :,: 0, y e:: O. 

So the cost-minimizing solution is a choice between (x, y) = (q, 0) with t.he asso­

cia1ed cost ln( l + Jq / 100), and (x, y} = (0, q) with cosr 2 ln(I + q j 100}. Note rhat 
l11(1+3q/100) > 21n(l+,1i!OO) ="1-n(J+q/lOOf ~ (H-3q/HXI) > (l +q/100)2, 



146 (HAPH R. 3 : 5"'/\ : 1( O PT!MIZA TION 

wbich reduces to q < 100. ft follow~ ch.at (q . 0) is ebeapt,r when q :> q' = J 00. hut (0. q} 

is cheaper when q < 100. Wheu q = 100, b,)l}i extreme solutiom: are equally good. (V,'hen 
q < 50/J. the comer solution (q. 0) is actually a global maximum.) 

(d) The mini.u11111i cost func;tiuo is c•(q) = 2 ln(1 + q/100) if q < 100, and c•(q) o: 

ln(l + 3q/100) if q > JOO. Provided chat q ;c 100. the derivative C"(q) = i. (wbieh 

accordswith (l.8.2)). But c• isnotdifferenliablcatq ,,- 100. lnfuct, thelefr-llaud de>i"ativc · 
of C' at q ~• 100 is 1/ l<X l, and the right-hand <lerivative i~ 3i400. I 

NOTE 1 It is actually easier to solve this problem hy puaillg y = q - x aud the.n min· 
i.Jnizing C(x, q - x) w.r.t. the single variable x over !he i..nterval [O. q ]. Nevertheless, we 
huve pn:sented it as a.a ~ample of lhe Lagrange multiplier method, b,:cau.~e ~ Lagrange 
multiplier giYes U<oeful information about the fil'm's marginal cost 

Mixed Constraints 
Sumc optimi7.atioo problem~ in economic:-~ include oo(b equality ooustraint~ and inequality 
C<>nsttaims. Thus, fhey take t:bc form 

max /(-x:) subject to 
j = l. ... 'r 
k = I , ... ,s 

(4) 

The basic conditions for solving such probletns should now be obvious. Associate a 
Lagrange multiplier A.j witl1 each of the r equality constraint~ and a multiplier µ., 11,itb · 

each of the s inequality constraints, then form tb1, Lagrangian 

r s 

L = j (x) - L J..j(gj (l() - b1) - L ,~t(hi (x ) - c.1;) 
1-1 l=l 

Equate each ptlrlial derivative of the l..agnuigiau w.r.t. x; to 0. The Lagmngc multipliers 
associated with the equality constm.i.ots ha\'e no sign restrictions. The Lagrange mullipliers 
associated with rli.e ineguality COTl$traints must satisfy complementary slackness conditions. 
·n,e precise result is as follows: · 

THSQ.\\FM 'l 8 3 {MIXED CO HRAJNTS) 

1 

Suppo.~e x•· = µ j , ... , x;) solves problem (4). where f, along with g1, •.. , gr 
and h1, • . . , h, are C1 functio11s. and r < n. Suppose further that the CQ in 
Theorem 3.5.1 holds for g1, ... , g,.lq, ... , h.,. Then there exisr unique number:< 
J... 1 •.• . , i., and 1i1, ••• , µ.,, such that 

r I 

(a) v j(''fi' i = I: J./v/;j (x*) + I: /.1,t'ilh;, (x• ) 
J•I l=I 

(b) Jit :;:: 0, and /l-t = 0 if li,.(x·) <. c1. k = I ....• r 

(c) If th<! 1,agrJ.Ogian is conca\'e in x, an admi~.~ible x' that ~atisfies (a} and (h) 
.solve, problem ( 4 ). 

I 

I 
i 
! 

---- -- - ---------·-·-------·----·---------- ·--·-------···---·--·-·-_J 
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Tue ne..-essary oonditions ill this theorem, i. c. pans (a) a.ud (b ), follow frorn Theorem 3. l J . l iu 
the I.list section of !his cbap<cr. lt covers, w partictt.lar, the necess.,ry conditiom in Theorem 
3.3. 1 (cll.isteoce of Lagrnnge multipliers in tlie Lagrange pmhlem), Theorem 3.5.l (lb.e 
starnJu.rd Kulm-Tucker con<litioos), and Theorem 3.8. l (explicit n,)nncgativity constraints). 
Part (c) cun be: sho,....11 jli.St a\ for ·n,.:orem 3.3. I (b) and Theorem 3.6. I . 

1. Solve the problem max I .. x2 - y2 subject to x :!:' 0. y ::: 0, by (a) a <.lirc,:t argument aud 
lb) using the Kuhn- Tucker contlirions. 

@ 2. Solve 1M following nonlinear progrJmming problem.s: 

(a) max .t)' subjc.:1 to x + 2y :: 2, x :: 0, .v :::. 0 

(b) max x•yP ~ubjectto x + 1y ~ 2,x > 0, y :,. 0, whereo: :> 0. J3:,, 0, anti a+ /l s t. 

@ 3. (a) Solve the following problem (or aU values of 1he coustantc: 

mM J'(.r, y) "" ex+ y ~ubjcct to g(x, y} = .c1 + 3y2 S '.2. x:?: 0, y ~ 0 

(b) Let r (c) denote the value funclion. Verify tha1 it i$ continuous. Check if (3.7.5) hc)l<.1.~. 

4. (a) Wtiic down cbe nce<:..<:sary Kuhn- Tucker conditious for the probfen1 

max lu( I + x) + .v subject to px +:; !: m. x ;;;; 0, y::: 0 

(b) Find the soluti\m whenever p <Z (0. lJ and m > l . 

@ 5. A model fors1udyi11g thetxpon of ~ii:> fwni Russia to enc rest of EuropeiJJ\'O]Yes tllcfo)lowiug 
optimization problem: 

ruaxfx+y- t(.,+ y)2 -ix - !y] subject to .r ;::: 5, y .:53, -x+2y :, 2., x :;:O, y ~ O 

Sketch the .1d1nissible set Sin the xy-plane. ~nd show that the maximum cannoc occ111 at ao 
i.ntcrior point of S. Solve tile problem. 

HARDER PROBLEMS 

@ 6. With reference to probk.m (]), cJellnr £ (x. >-) = /(11.} - Li~• >-_;(.~1(11.) - · b;). We say tlrnt ;· 
has a saddle poi1>t • I. (x' , t·). wilh x• ~ 0, >. • (~ O. if 

<,o) Show diat if.Cha., a saddle poinr. ut (x•, l. "), then x• sol vcs problem (1 ). (Hill!: u~ the 
seci.m<.1 inequaliiy in (~) to show lhat ,t;;!X') ~ b1 for j = l,. , .. m. Show 11<!\Xt that 
I:j~, ;.i (g;(x") - bi) = 0. Then use lhe lirst inequality in(*) to finish the pt'OO(.) 

(h) Suppose !bu there exist x' ~ 0 llJld >.' .? 0 s:1~(ying both_J.;f.t") ~ b1 and g_;(.:•) ,., b1 
whenever A'. > 0 for j = I, ... , m. a.< well IL~ .C(;s, J.•) .:5 .C(x• , l. 0 ) for all :i: ? 0. ShcJW 
that L(x. l.) tta., a sarldle point a, (x•, l. •) in •his cas~. 
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3.9 Concave Programming 
The nonlinear programming 'Problem ~3.5.1) is said to be a cona1ve progrmnmlng prublMt 
(or just a concave program) i4 tho,case when f is concave and each g1 is a convex function. 
{n this case, the set of admissible vectors satisfying them constrainlS is convex. Front now 
on, we write the concave program in !he vector form 

max f (x) subject 10 g(x) ;;; b (1) 

where g "" (g1, ... , g.,.) and b = (b1 , ••.• b.,). When each cowpouen1 function Ci is 
<:0nvex, we also say tbat the vector function g is ~on vex. The Lagrangian in vector uo1atio11 is 

.t:(x) = /(x)-).. (g(x)-b) (2) 

In !he following resullll no differentiability requiremcnis are imposed at all. Instead, how­
ever, we make use of the following consrraint qualification: 

THE Sl.!ATER CONDITION !··---------------------. 

The.re exi~ts a veclor z in IR" such that g(z) « b, i.e. gi{z) < bj for all j. (3) 

So at lea~t one vector in the admissible set simultaneously satisfies all 1he constraints wilh 
stric1 inequali1y. 

THEORE!v' 3 ~. I ESSARY co ,~OlTION 

Suppose that (l) is a concave program satisfying lhe Slal.er condition. Let the 
optimal value function f* be defined for all c such that {ll: : g(x) ~ c} f. 0. Then 
f' has a supergradient at b. Furthermore, if J.. is any supergradient of f' at b, 
then J.. ~ 0, any solution x• of problem (I) is an unconstrained maximum point 
of the Lagrangian .t(x), and l. · (g(x*) - b) = 0 (complementary 61aclmess). 

Proof: We consider only the (usual) special case where, for 31[ c in R"', the set of admissible poinis 
x that satisfy g(x} ~ c is bo~nded, •nd so compact because of the a.~sumption that lhe functions g; · 
are C'. l:ly assumption there exis11 a po.int z such that g(z) << b. The function j°(c) i~ de6ned as a 
maximum value whenever there e.itis1s al leasrnnc uatisfying g(s) ~ c, which is certainly tn,e when . 
c;;:; g(z}. (For afull!)!OOf allowing for the possibility lbat f"(c) may only hedel\ncdas a supremwn . 
for some values of c, one firi,1 ha.t to pmve that f' is concave in this case as well.) According to 

Theorem 3.7.1, j* must be concave. Moreover, f'(g(x')) = f'(b), by definition. BccaUJ<c 1,1· the · 
Slatercoadition, bis an interior poinl in thcdonwn of r. By Theorem 2.45. the concave function 
f"(c) ha.< a ~upcrgra.di.,nc l. at c = b for which 

r(c)- rt1,) :S).. (c .... b) 

,. 

i, ... 

SECTION ,.9 / CONCAVE PROGRAMM;N(, 149 

Por any such supcw.ulient, if. c 2: b.1hen f"(c) 2:: j'(b), so J.. · (e- b) :::: 0. Hcricc l. · d :~ 0 foe 
all d ~ 0, which implies !hat l. ~ 0. 

Now, if x• solves (I). thc,n /(x") = j"(b) and for evt>.ry s iu R", 

f(x) :,_ f"(g(x)).:, f'<biH-(g(x)-b), so /(,c)->.·g(ll} :,_ j'(b)-)..b::; f(x·)-l.-g(t') (,.) 

Thu$ ,c• malCimir.c.< f(x) - l · g(x) for x € R·. Also, foe x -. x', when /(x) "' f'l11), the hist 
pair of ineqnalili<-.s in(,.) become equalities, sol· (g(x') - b) = O. which shows compleme.m:ary 
slackne$S. • 

NOTE 1 The complementary slackne~s condition l.- (g(x")-b) ""0 together withl ~ 0 is 
equivalent to the complementary slackness condition (3.5.4). l.n fact, 0"" ). . (g(x•) - b) ;;:: 
I:;~1 AJ(gj(X') -bj). Each term.in this sum is nonne.gative, and 50 the tenns adiup to 0 
only if each 1erm is 0. 

An Economic Interpretation 

A general ec.onomic interpretation of (I) can be given in line with the interpretation of 
!he Lagrange problem in Section 3.3. The only difference is lhat in tbc present case the 
inequalities gj(X) ::: bj rcUec! the fact that we no longer insist that all the resources are fully 
utilized. Thus Problem ( l) can then be formulaied as follows: 

Find acri~ilJi le~els at which to operate the pmduc1inn pmr.e.•ses in order 
to obtain the largest possible ourput of 1he produced commodity, taking imo 

account rhe impossibility of wing more of' any resor,rce rhan its !Uta/ supply. 

for each resource j, specify a shadow price of Aj per unit. To produce f(x) uni!s of the 
commodily requires gj(ll:.) units of resource j at a shadow cosl of Aj8j(x). If we let the 
shadow price perunil of the produced commodity be I. !hen the function ,r(x) defined by 

JT(X) = f(x) - I)m(x) 
J=) 

(4) 

indicales 1he shadow p1vji1 fmm running the processes at the vector x of activi1y levels. 
Suppose that we find an activity vector x• = (xi .... , x!) and nonnegative shadow prices 
i.1, ••• , >.,. such that: 

(A) x = x• maximius shadow profit among all activity levels x. 

(B) :r• sa1i.sfies each resource constraint gj(x') ~ bj, j = I, .... m. 

(C) If the jth resource is not fully used because g;(x") < b;, then the shadow price J..; of 
thal resource is 0. 

Under these conditions,:' solves problem (I). For the proof, see Note 3.6.1. It follows from 
(C) that . 

I>·;8;(x') = I>jbj (5) 
i=l i=l 
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Thus, at the given shadow prices for I.he resourc~. 1he lOta/ v,,lue of the resources uud at 

t/v. optimum x.• is equal to the 101al shadQw value of/Ill! initial stocks. 
The conditions (A)-{C) are not, in general. necessary for optimality, i.e. the appropri- · 

aE<! price.~ do not necessarily e.ust. However, if the function :rr in ( 4) is concave, and if 
we impose the Slater condili.on on the admissible ~et. then Theorem 3.9.1 shows that x• 

maxi111izes profit. 

PRO Bl.Et\ S FO 

I 
i 
I 

! 
I 
l 

' I 
i 
I 
! 
l. 

@ 1. Suppose thau• = (xj .... , .r;) ~ Oand). = (.l.1, .. _, l..,) ~ 0 satisfy the sufficiemconditio11s · 
(A)-{C). so that t' solves problem (J). Suppose that i = (.i1 •.•.• i.) ;:; 0 also solve.s lhe 
problem. Prove that.for the,~ .1. 1, ••• , ;._,. a.• thou ossociaud wi1h 1'. the vector i will also 
satisfy (AJ-{C), but with x" replaced by JI:. 

3.10. Precise Comparative Statics Results 
So far the argurne!lts related to the value function an<l the envelope theorems have assu=d 

a priori that the functions are differentiable. It is about time to relax this assumption and 
give sufficient conditions for differentiabili[y. 

We begin with the unconsttained case. TI1e first re.suit is this: 

HE~o ....... E_M_3~·~1~0~.1'--'i~E~N~V~Et~O~P:...aa.~T~H....,~R[~M__.,...1--~~--~~~~~~~~l 

Suppose f(x.. r) is a C2 funecion for all x in llD open convex set S ~ RI" 
and for each r in an open ball .B(r; .5) S: IRt. Assume that for each fiJL'ed r 

in B(f; .S). thefunction x t-> f (x, r) is concave, ll.lld that when r "'i it satisfies 
the sufficient second-order conditions for stric.t concavity in Theorem 2.J.2(b). j 
Moreover, assume that x• is a maximum point foe x t-> /(x. r) in S. Then 
f"(r) ""m.u,.,s J(x, r) is defined for all r in an open ball around i'. Moreover. 
r is C 1 ati', and 

nf~tl = [iJ/~;;r)L~..-<•J.r~.,i j =I, .. . ,k 

Proof: The first,ordcr conditions for maximizing / (x. r) w.r.t. x can be written in the follll 

"i!~f (x. r) = 0. whece v,f denotes the partial gradient vector w.r.L 11, holding r fixed. The 
Jacobian malrix J ofthcmappi11g x,..... v,J(x. r) evaluated ar (x.•. i') i.\ the Hessian matrix 

f~(x•. i'). By the sufficient conditions for soict concavity, this H(:ssian matrix is negatjve 
definite, heoce nonsingular. Because f is a C 2 function, the Hessianllllllr.ix f~(x. r) must 
still be n(,gativc dclinite in •oll'le open ball of R".,.* centred at (x'. r). By the implicit' 
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fun..:tion theorem (Theorem '2.7.2), it follows that the equation system V,/(x. r) ""' 0 in 

the unknown vector :ii: has a unique solution :i(r) which is a C1 function of r in some ball 
B(f; o), and moreover x(i') ==- x•. Provided that r lies in B(i'; E:) r, B(r; .5), the ftmction 

x .-. /(:11.,r} is concave, sox(r) isamuin}um poinfofx t-> f(x,r) forxinS. St.cause 
x(r) is differentiable at r = r', so is f°(r) ::. f('x:(r), r). 1n plil1icular, TI1eorem 3.1.4 

applies. • 

A crucial <L\&umption in the previous Lh£,.orem is that x H /(x, r) is concave. The ne.xt 

theorem replaces this with the weaker assumption that r t-> /'(1') i~ concave, but drops 

. from Theo fem 3 .10.1 I.he second-order conditions for strict conca\/ity. 

Suppose that f'(r) = sup,ES f(,:., r) is finite and concave in r € A, where A is 
an open convex set in Rk, and S ~ R". As~wne that the point (x*, r) E S x A 

satisfies j(x•, r) = f"(r) and that the gr.i.<lient vector Vr exists at (11•, i'). Then 
j'(r) is differentiable at rand V j*(f) = Vrf(x', i'), i.e. (1) holds. 

Proof: Because A is open, Theorem 2.4.5 implies that f" has a supergradient at f, which 

we will denote by a. From I.be definition of f", it follows that 

f(x¥. r) - f(x", r) :s: [*Cr) - f'(i:)::: a· (r -fl for aH r in A (*) 

Titls imp lie,; that a is a supergradient of r t-> f (x •. r) at r. By Note 2.4.3. we conclude that 

a= 'i/rf(x', f). But(*) implies !hat 

/(x*. r) - /(~·· i:) - a. (r - r) < [_°(r) - /'(i')- a. (r - f) < 0 forall r = i 
llr ·- i.'11 - !Ir - ill - ' 

Tue first expression here--+ Oas r-> f. So [f'-{r) - j"(r)-a · (r-i:)]/llr-i'II....,. 0 
al.so, which confirms that f* Ls differentiable at f. with V j•(r) =a""' V.J(x*, r). • 

Envelope Theorems for Mixed Constraints 
fo Section 3.8 we introduced a problem with mi:~ed con.,tra.ints. V..'hcn forn1ulating a precise 

envelope result for such problems it is convenient to rcpre.~ent the problem in this way: 

f ) {
gi(x,r}:ob1 , j=l, ... ,m' 

max (;,;, r s.t. ( ) b . , 
• gi x,r = ;. J=m +l ..... m 

(2) 

where r "" (r1, ... , rk) is a vector of parameters. Note that in problelll (2) we maximize 

w.r.t. x, wilh r held c<mstanl. 
The maximum value of /(x. r) will ckpcnJ on r, and we denole it by J'(r). If we let 

l'{r) denote the set of >ttlmissible point~ in (2), i.e. 

r(r) = {x; gj(X. r) ~ bj, j =I, ... ,m', g;(x.r) =bj, j ::.m' + l. ... ,I'll} 
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we define die (ma:dmllDl) nlue function by 

f*(r) = sup f(x, r) 
ror(r) 

(3) 

We use sup (.~upreomm) IO cover the case where the max.imum value does not eicist. The 
domain off' is the set of all r for which r(r) is nonempty. 

The values of xi, .... x. that solve prohlem (2) will be functions of r. (We assume for 
the moment a unique solution.) If we denote them by xi(r), .... x;(r), then 

f*(r) = f(x;(r), ... , x;(r)) (4) 

Suppo.se that ).; = ;...; (i). i :e. I, ... , m. are the Lagrange multipliers in the first-order 

conditions for the problem (2) when r equal~ a particular vector r, and let .l(x, r) =­
f(x. r)- L~1 ;.,,;(gj(x. t)-bj) betheugrangian. CJnderccrtainconditions (see'J11eorem 
3. 10.4 below). we have !he following generalization of the envelope results in Sections 3.1 
and 3.3: 

ENVtLOl'r RE!SUL --····--------------------·-·1 i = 1 .... • k (51 ____ , __________ .. _____ _ 
·------··-------! 

We &tat<~ more precise resulfs for two differem cases: first when the vector b = (bi . ... , b,,,) 
varies with r fixed, and sec<'l11d when r varie.s with b fixed. Because each c<lnstraint g; (.", r) ::: . 

bj (or g;(x, r)::: bj) is equivalent to the constraint gj(X, r,bj) ::: O (or g;(x, t, bj) = O) 

where gj(X, r. bj) is defined iLs gj(x, r) - bj, the seco11d case actually includes the firsL 

maxf(x) s.t. gj(J.):S.bj,j=I. ... ,m'. !/j(X)=bj, j:::m'+l, ... ,m 

and let f" (b) he maicimum value functioo for the problem. Suppose rJiat: 

(a) fior b = ii the. problem has a unique solution :z:• = x(b). 

(h) Th:re exist an open ball B(b; a) and a constant K such that for every bin 

B(b; tt), the problem f:Jas an optimal solution i in 8(,c"; K}. 

(c) The fu11c1ion, f and g1, ..• , g., are C 1 in a ball arow1d x(ii). 

(d) The gradient vectors V 8j(x•) corrc.spondini to I.hose constraints that are 
active when b "' ii. are linearly independent 

Then f*tb) i~ ditforentiable at ii and of"th)/ilb; = ).;(b), i "·' 1, .. _, 111. 

3.11 

SECTION 3.11 I f.XISTF,NCE OF ~AGRANC,~ MULTlf'Uf.RS 

Consider problem (2) and suppose: 

(a) For r = i.' the problem has a unique solution x• = x(r). 

(b) There exi~t an opes ball B(i'; a) and a consiant K such that for every r in 
B(i; a), problem (2) has at least one soh11ion i i.t1 B(x": K). 

(c) TI1efunctions f andg1, ---,8m arcC1 in soroeopenballaround (xti'),i'). 

(d) The gradient vectorn V,g;(x", r) corresponding to those constraints that arc 

active when r = i', are linearly independent. 

Then f"(r) is differentiable at i' and (5) is valid. 
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NOTE 1 The proof of Theorem 3.10.4 (which implies 3.10.3, as expl~ined above) can be 
found on the book's website. 

NOTE 2 If the appropriate Lagrangian is concave. condition (b) can be. deleted in 'fheotctns 
3.10.3 and 3:10.4. respectivC'ly. (Fonnally, "max" must be replac~ by sup, and f" must he 

given the value -oc if the supremum is taken over an empty set.) 

NOTE 3 Conditions ( c) aod ( d) alone imply tbati' is an imerior point of the domain of f". 

NOTE' 4 The conditions stated in The-0rem 3.10.4 guafantee. that the function f'(r) is 
defined for r in a neighbourhood of i'. Moreover. j"(r) is ct near i' if the .solution ii is 
unique for all r in R (r; a). 

@ 1. (al Solve the problem max ..:2 + y 2 + z2 suhj~, m 

(b) Verify (.5) w this case. 

{ 
2x2 + yz + z2 '5 a~ 

x+y+z~·,O 

Existence of Lagrange Multipliers 
In rhis section we prow a thcon:m that implies the necessa11· conditions in Theorem 3 .8.3 
a.~ a special case. Con~ider the problem 

max .f('!i.) subject to 
{ 

gj(X) =0, j = l, .... r 

h.t(X) :':. 0, k ·"· J. ... ,.< 
(I) 
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1o s implify ootalion w.: assut11<: lh.-u- the ,ight-haod side variables b; and c1 ill rhc <lOOStrainb 
bave been ab.,orbed into the functions g1 aod Ii;. We al so allow r oc s or both 10 be 7.ero, iii 
which case one just ignon,s the cortesp<mding sums in the di.~cussion below. (lf both rand 
s are 0, we get tl1e problem of iln<ling a11 unconstrained locttl cnn:timum off.) The proof of 
Tncorem 3.11.1 is adapted from an argument tu Smirnov (2002). 

Suppose that /, g1 •••.• g, , h1, ... , h, are all C 1 in son1e open set A in a•, and 
suppose that x• is a local maximum point in the problem (1) over A. TI1cn there 
existnn,ubersa. J..1, . .. , i..,. µ 1, ... , µ, that are not all 0, such !hat 

' (a) cc?: 0 J 

(b) a'v / (x*) c: L.J..i';:>gi(:r.•) + tµ. 1 Vhk(x•) I 
j = J t=l I 

l (e) For each k = 1, ... , s <Jnc has ftt ?: 0, ruld J.l,t = 0 if ht(x· ) < O. ! 
L--··------ -··--···--··-----··---··- ------·---------i 

Proof: Let ~(x; J') = max{ y - f(x), 0 ), where y is a real parameter, kt h:(x) 
max{ ht (X), 0 ), k. = I , ... , s, and define 

<t>(x: y) = ,p(x; d + L /8i(x))2 + Lt(h{(x})2 

ft is clear that <I> (x; )') = 0 if and nnly if x is atlnw;siblc in problem ( I) and y :'.o f (x). 
Therefore <l>(x; y) > 0 for ally > f(x·) and all x in A. Furthennore, x ,..... <t>(x; y) is ci 
and it~ gradient vector w.r.L x satisfies · 

<;?<!> (x: y) = -2,p(x; y)'v /(x) + I:
1

2si(x) <Jgj (x) + I:. 2h1'(x)'vht (x) 

(See Problem l below.) 
Fiually dchoe 

Wheu <l>(x; y) :;6 0, we. gel 

l 
v F(x; y) = ----==--= v'<l>(x; y) + 2(x - x') 

2Jit>(x; r l 

where 

= -a"(x}'vf(x) + L /f<x)Vg1(x)+ Lk 11.:(x)Vht(x).,, 2(x - x·) 

,. ,p(x; y) 
VI (X) :s: r==, 

-,1 .P(x; y) 

)' 8) (1') 
;J..j(X} = -~-­

/ <l> (x: y)' 

Since.,· is a local maximum point t'o{ f over the admissiblo set, the.re cxiS1s /IU r >- Osuch 
that j1x") :: /(x) for all adrnis~ihle "in the closed ball K = B(i\ r). For e.ach value of 
y let X' be a minimum point for F(x; y) over tb.c closed ;ind bounded set K. Tbl'rl 

Sf.(TIOr. 3. 11 / r..x1STE!IICt (.)~ LAG ~ANG C Ml!cT IPLIER5 155 

t•fow kt y be a number iu rhc incetv:tl (/('I{* ). /(x• ) + r::.). Then 

soxY liesinlheiutetiar <Jf K. Sinccy >- f(x'), we a lso know that <l>(xY; y) > 0. Hence 
Fi~ differentiable at xY, and 'v F(xY: y) = 0. Jt foll<JWS tbat 

Als<.1, 
(aY(.rn}2 + L ,(J..{(~n)2 + L,(µJ(x.Y))2 = 1 

$0 the point yt' = (aY(,i:Y),).i (XY), ... ,>.{(xY),/-'i(Jr.Y), .... /!: (xY)) lies On the Unit 
sphere.Sin R1·~m +p. 

Now choose a sequence /Yi 1: 1 of numbers in (f(x•), /(x•)+r2
) such that;,; - /(x•) 

as i - oo. This giv.:s rise to a seq\lCllCe {vl1} of points on S. By tile B0l1.ano-Wek~-strass 

theorem (Theorem 13.2.5) this sequcuce has a .::onvcrge.ut surn;eqoence. Repla..-i.ng l YI J with 
a sub~equence, if n=ssary, we can therefore a.~sume that lvr, l is itself converger1t, with a 
limit (a, ).1, .... , ;.,, µ 1, ... , µ.,j, which lies on S. 

Since y; -> f(x') and lixY ·- x•j! .5 y - f(x'), it is clear that xr, -,. x• as i -+ oo. 
Taldog limits iJJ (ii), we gei equation (b) in the rheorem. The definition of 4> implies that 
the inequalities in (a) and (c) are nil sa tisfied, and if Ii* (x•) < 0, then JJ,t = 0. • 

NOTE 1 Tue numbers a, )..1 , and µ,._ in the theorem a.re not all (). Hen.::0, the gradient of 
f :\Jld the gradknts of the functions con-esponding ro constraints that are active at x• are 
linearly dependent. Furthermore, if theconSlratlltqualifi~tion is saci.~lic<l, then rbe "uctive" 
gnldicnls are linenrly l11dcpendem, so the eoeffaie.nt a in part (b) of the theorem must be 

different from 0, hence positive. If wc divide the cquatio11 in (b) by <.t, then let J..1 = >.j/cc 
ru:id Ji.,= µ,~ia., we get 

jufil as needed for the necessary conditions (a) aml (b) of Theorem 3.8.3. 

@ 1. For a f,mction J : R" -+ R, rhe J)(ISftive part r of J i~ the functior1 J+ (.>:) = max([ o,) . 0). 
Show that if f i~ C1 in an open i;et A. tbeu (f"•)1 is al.so C 1 in .ti, and 'v((f'1'i1)(ll) '" 
2[" (X)\7 f(x). (Hint: lf f (X-O) > 0, then j+(x) .,. /(X) for all x in nn open ball 3.tOund ,c,,, 
and if /("Jv;) < 0, W¢ll t<'(x) =() for all x in an open ball around xo.) 
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.• 

I don't know mathematics, therefore I have to think. 

-Joan Robinson 

This chapter considers some topics ;n the theory of integration. We pre$ume that the reader 

has previously studied the elementary theory for funcrions of one variable, for instanc.e 

in EMEA. Section 4.1 briefly revievJS some of this material. and provides several problems tha1 

may help the reader recall material that 1s supposed to have been learned previously. 

Leibniz's rule for differentiating definite integrals with respect to parameters is discussed 

in Section 4.2. Thereafter Section 4.3 (Ontains a brief treatment of the gamma function. The 

main topic of this chapter is. however, multiple integration. In particular. the rule for changing 

variables in multiple integrals is considered in some detail. 

4.1 Review of One-Variable Integration 
Let f(x) be a cootinuo\L~ function on an interval/. Recall d1a1 an indefinite integral of 
f(x) is a fW1ction F(x) whose derivative is equal to f(x) for all x in l. In symbols, 

f j(x)dx=f'(x)+C 

For instance, if a-;/ -1, then 

f x" dx = - 1
-

1 
x"+I + C 

a+ 

when: 

he cause 

Two other impoltant indefinite integrals are 

F'(:x) = f(x) 

- --· -x"+I = x" d ( J ) 
dx a+ I , _,,. 

(a) f ~dx=lnlxl+C, (h) f ea• dx:.::: ~e•• + C (a ,fa 0) 

Nnte that. (a) has ~en ex·Dressed in a frnm th:u mnl<e,s ir v:1li,l PVP.n whP.n Yi<""""';",. 
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Two u.~eful ways co rransfom1 an integral involve integration by parts, 

J f(x)g'(x)dx = J(x)g(x) - J J'(x)g(x)dx (1) 

and inkgratio11 by substitution, or by change of variable, 

J J(x)dx = f f(g(u))g'(u)du (whcrex = g(u)) (2) 

The definite integral of a continuous function f (x) is given by 

l
b ,b 

a f (x) dx = L F(x) = F(b) - F(a), where F'(x) = f(x) forall x in (a, b) (3) 

Recall that if /(x)::: 0 in the interval fa, b], then J: f (x) dx is the area under the graph of 

f over {a, bl. 
For a definite integral the formula for integration by substin1tion is 

11, 1·2 
a f(x)dx = "' f(g(u))g'(u)du (x = g(u), g(u1) = ll, g(112) = b) {4) 

Note also the following implications of (3): 

d 1·· . 
dx " f(r) dt = f (x), 

d lb - f(t)dt=-f(x) 
dx , 

(5) 

Find the integrals in Problems l-5. 

1. (3) J (l - 3x2)dx (b) f x_. dx (c) J (I - x 2)2 dx 

•10 
2. (a} lo (10t2 

- t3)dI 
110 (b) 

0 
4ie-2' di 

11() 10,2 - tl 
(c) ---dt 

. .. t + l 

3. (a) f- 4x_l_dx b /6 l fr ./xlnx dx () ' _ ...... th (c) 
o ,.,/4 - x'· 1 3.,... .,/t +8 ., 

4. (a) 
I (x" - x"')1 

-'-:;{"-dx 
11/3 dx 

(b) ---
o ,.... + I { (c) 

1 
.<v..t - J dx 

@5. (a) [' (.Jx -- 1f (b} f ln(l+./x)dx (c) 
177 xl/J 

----dx ---.dx 
: X c, I +xi/., 

4.2 
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Leibniz's Formula 
Integrals appearing in economics often depend on parameters. How does the value of the 

integral change if the parameters change? We consider first a simple case. 

Differentiation under the Integral Sign 
Let f be a function of two variables and coo.~ider the fimction F delined by 

F(x) = id f(x, t)dt 

where c and d are constants. We want 10 find F' (x). Since the limjts of integration do not 

depend on x, it is natural to guess that we have the following result: 

ld . , . . ld ,!f(x,t) 
Flx) = j(x, t)dt ==> F (x) = ---d1 

c 0,t 
{l) 

Thus we clijjerenriate the illlegral wirh respect to a parame1er rhat occurs only under the 
integml sign, by dijferentiari.11g under the inregral sign. 

In order 10 prove (1) we have to rely on the definition of the derivative. We get 

F
,. ) 

1
. F(x + h) - F(x) lim le. f (x + h, r) - f (x, t) d 

(x = un = t 
h-+0 h h-•CI c h 

= ld lim f(x + h, l) - f (x, t) dt = ld J;(x. t)d1 
C /1·••0 h C 

The only non-obvious step here is moving the limit inside the integral sign. (See Protter and 

Morrey (1991), Theorem 11.1.) A more precise result (for a more general case) is given in 

Theorem 4.2.1. 

The present value of a continuous flow ot income f (t), r E [0, T], at interest rater, is 

K = for f (t)e-" dt 

Find dKfdr. (The limits of integracion arc independent of r.) 

Solution: Formula (1) implies that 

dK 1T 1T - ::= f(t)(-1)e-" dt = - tf(l)e-rs di 
dr o ll 

The General Case 
Toe general problem can be fonnulaced a8 follows: let f(:r:, t), u(x), :md t>(x) Ix given 

functions. and define the function P by the formula 

(

<(>) 

1-'(x) ==- , , f(x, t) dt (2) 
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If x changes, lhen r.he li:mitS of integration v(x) and u(x) both change, and in addition the 
integrand f(x, r) changes for each t. What is the total effect on F(x) from such a change 
in x? [n particular, what is F'(x)'? 

The answer is given in Theorem 4.2.1..1 (Recall that a function of n variables is a ct 
function if it and all its partial derivatives up to and iucluding order k are cominuous.) 

---. 

Suppose that f (x, t) and J;<x. t) are continuous over the rectangle determined 
by as x ~ b, c ~ r ~ d. Suppose coo that u(x) and u(x) are C 1 functions over 
[a, b], and that the ranges of u and u are contained in [c, d]. Then 

1
ulx) 

F(x) = f(x. r) dt 
u(x) 

1v(x) fJf (x t) = F\x) = f(x, v(x))v'(.x) - f(x,u(x))u'(x) + -il-'-dz 
"(.t) X 

i 
I 

I 
I 

----.! 

Proof: Let H be the following function of three variables: 

Htx, u, v) = 1" f(x, 1) dt 

Then P(x) = H(x, u(x), v(x)) and, according to the chain rule, 

f"(x) = H; + H~u'(x) + n:u'(x) 

(3) 

where H; is the partial derivative of H w.r.t. x with uh and v as constants. Because of (l), 

H~ = J: J; (x, t) dt. Moreover, according to (4.1.5), H; = f (x, v) and H; = - f (x, u). 
Inserting these results into(*} yields (3). • 

Use (3) to compuie F'(x) when F(x) = J/ !t2x dt. Check the answer by calo:ulatiog 
the integral first and then differentiating. 

Solution: We obtain 

1 In Richard f-'eymnao's Surely You·,., .Toking. Mr. Fe.y111n&1! (BantalJl Books, New York. 1986). the 
late Nobel Jaurearc vividly descrilx~s rhc usefulness of this result w pbysicist5; it is ¢qually usefiil 
to ecouonli&ts. 

,EXAMPLE 3 

S~(TiON 4.2 i LEIBNIZ'S FORMULA 

In this case, the integral F(x} is easy to calculate explicitly: 

F(x) = !x {

2 

t
1 dt = f.t [' V = !(x1 

- x4
) 

Differentiating w.r.t ; gives the same expression for F' (x) as before. 
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In a growth model studied by N. Kaldor and J. A. ll,,1irrlees, a function N is defined by 

N(t) = 1' n(r)e····AV-T(i)) di 
r-T(t) 

where T = T(t) is a given function. Compute IV(z) under appropriate conditions on the 
functions n and T. 

Solution: If n is continuous and Tis C 1, Leibniz's formula gives 

N(t) = n(r)e-•(t-T(I)) - n(1 - T(l)) e-S(,-T(,j)(I - T(r)) 

+f' n(r)(-S)(l-T(t))e-W·.rt,))dt 
t-Tlt) 

= [n(t) - (1 - T(t)) n(l - T(t)) v·S(t-T(t)) - 8(1 - T(t)) N(t) 

E~MPLE 4 Suppose that a small business e.arns a net profit strc.am y(r) for I e [O, T). At time 
s E [O, 7'], the discounted value (DV) of future profits is 

V(s, r) = [T y(t)e-r(t-s) dt 

where r is the constant rate of discount. Compute v; (s, r) by means of Leibniz's rule. 

Solution: We get 

v;(s, r) = -y(s) + [r y(r)re-r<r-..} dt = -y(s) + rV(s, r) 

where the fast equality was obtained by moving the constant r outside the integr.ll sign. 

Solving equation ( *) for , yields 
r = _y_(t_)_+_'-_';_(s_,_,) 

V(s, r} 

This has an itnpottanl interpretation. At times, the btL~iness owner cams y(s), and the DV of future 
profits is increasing at the instantaneous rate v;(s. r). The ratio on the right-hand side of (n} is 
known a.~ lhe instantaneous pmportional rate of return of 1he investment. f.qu..1tion ( **} requires 
this ratio to be equal tO r. In fact, if r we.re the ins1amant.ous proportional rate of return on a (relatively) 
safe asset lilre goverumenc bonds, and if the left-hand side. of ( **) wen\ higher than the righr-hand 
side, tbl.."ll cht busines~ mvner would be better off selling the business for the amou11t V {s, r ), whi.ch 
ic is worth at time ., , and holding h.onds instc:ld. But if the left-hand side of ( .. *) were lower dJau the 
right-hand tide. then ~-xisring bondholders would do better to sell their bond~ and set up replicas of 
1-h:,. .... v. ... nl.. ...... : .......... ,.. 
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Infinite Intervals of Integration 
Leibniz's formula cao be geoerali1.ed to integrals with unbounded intel"Vals of integration. 

EM 4 . 2 2 ····--------··---··--·-··- ., .. --·-··---·--------~---·---, 

Suppose lhal f (x, l) and f: (x, I) are continuous for all t :::: c and all x in [a, b J. 
and suppose that che integral 

{" f(x, t)dt 

converges for each x in [a,b]. Suppose further that J;(x,t) is integrably 

bounded in the sense that there exists a function p(t), independent of x, for 

which Jc"° p(t) d1 converges and IJ;(.x, 1)1 :::; p(1) for all t :::: c and all .t in 
[a,b]. Then 

d 1·00 100 d.x c f(x,t)dt = c J;(x, t)dt 

' f 
I 
I 

I 

-----····-·-·-·-·-·----.. ---~----·-·· --------·-----··-·----' 

(4) 

(5) 

The existence of p (t) can be replaced by lhe weaker condition that f:° f; (x, 1) d t converges 

unifonnly on [a, b }. We refer to Chaptc.r 11 of Prolter and Money (1991) for the definition 

of w1iform convergence, and for the proof of Theorem 4.2.2. 
Obvious changes to Theorem 4.2.2 yield similar theorems for integrals of the type 

J:.oc f(x, t) dt, and also of the type J~: f(x, t)dt. Combining these results with Leibniz's 

formula gives cooditions ensuring that the formula applies to integrals like J~<:} f(x, t) dr 

and J;:,J f (x, t) di over variable iofinite intervals. 

Let K (l) denote the capital stock of some firm at time 1, and p(r) the purchase price per 

unil of capital. Let R(I) denote the rental price. per unit of capital. In capital theory, one 

principle for determining lhe acquisition value V(r) of lhe tinn's capital implies that 

V(t) = p(l)K(t) = J00 

R(r)K(t:)e-r(t-tl dt (for all r) 

This says that V(t) should equal the discounted present value of ,he returns from using the 

firm's capital. Find anexp~ssion for R(t) by differentiating(*) w.r.t. t. 

Solution: We get j,(t)K(t) + p(t)K(t) = -R(t)K(t) + J,"'' R(r:)K(r:)re-r<r-,} dr. The 

la~t iucegral is simply rp(t)K(r), so solving the equation for R(t) yields 

( irr>) R(t) = r - - p(t)-p'(t) 
K(t) . 

Thus the rental price is equal torp(t), the interest cost of each unit of capital, mio11~ pK / K, 

which repr.csents the loss from depreciation, minus p, because inc-rea.~es i.n the price of the 
. .. ' •. 

SECTION 4.2 LFIBNIZ'S FORMULA 

PRO SH MS FOR SECTI O_ N_4 ...... _2 ____ .._ 

1. Find an. expression for F' (.x) when 

1i e'' 
(a) f'(x) = - dt (x ;:, 0) 

1 /,• 
(b) F(.x) ::-.1· ln(xt) Jt (.< > O) 

I. 

11 e-• dt ls ,2 
(c) F(x) = -- (x > -1) (d) F(x) = ---, dt 

O 1 + XI . ) (1 - Xt)• 
(.t > !> 

(Do not cry to evaluate the integrals you get in (c) and ( d). J 
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@ 2. Uscformula(l)tofind F'(a) when F(a) = f~ xe-ux
2 

d.t. Check !he result by fi11dingan explicit 
expression for F(a) and differentiating. 

3. Use (3) to find an expression for F'(x) when 

(a) F(x) = L-:., 13 dr (b) F(x) = fox (x2 + t 3)
1 

dt (c) F(x) = f ~ cos(r
1 

- x
4
) de 

.JX 

d 1·{.p) 
4. l.d f and g be C' functions. Find an expression for I = - e_,., f(t) dt. 

• dp () 

5. The moment generating function of a random variable X with density function f is M (I) = 
f~ e!-'f(x)dx. Prove (undersuitablccondinon~on f and 1) that M'(O) = J~00 xf(x)dx. the 
ei1pectation of X, and generally that the nth derivative M(nl(O) = J'!:"'-<" f (x) J.x.. which is the 
nth moment. 

7. A model by J. Tobin involves the function F(ok) = 1+"" U(µ,k + otz)f(z. 0. l)d~, where /J,l 
-o,;, 

is a function of '1A- Under suitable restrictions on the functions U, /Lk, and f, find an expression 
ford f?(at)/d<Yt. 

HARDER PROBLEMS 

@'l) 8. A vintage growth model doc to L. Johan~en involves the following definitions: 

K(t) = 1' f(t - t)k(t)dr, T(O)"" (""/(~),/~. V(.1) = -
1
,
1 f' G(r.r)dr 

-0<, lo (0) -oo 

where G(r. 1) = k(r) J,"::, J(~) d~. With suitable restrktions on !he functions involve<l, prove 

that V(I) =s k(t) ·· K(t)/T(O). 

9. Define 

j•r fr 
z(t) = . · x(r} exp(- , r(s) ds) dr. p(t) = citp(-12, r(s),is) 

where the function~x{r) and r(s) are oorh differentiable. Show tbai 

z(t) - r(t)l(t) ~ 2p(r)x(2r) - .c~r) 
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@> 10. A firm faces uncertllin demand D and has existing invcnrory /. There are differcut costs per uni1 
of having IOv much or too little stock. So the firm wants to choose it~ stock level Q to minillli7.c 
the function 

1:(Q) = c(Q-J) +h 1Q<Q - D)f(D)dD + p l\o- Q)f(D)dD 

where c, I, h, p, and a arc positive conslancs. p ~ c, and f is a given continuous and non­
ocgaiive function £batsatisfi.~s J; f (D) d D :e I (so j can beinterpre1cdas a probability density 
function). 

(al Compme g'(Q) and g''(Q), and show thatg is conveit. 

(o) Define F(Q•)"' ft f(D) dD, where Q• is the minimum poim of g(Q). Use the firs1-
order conditions for minimization of g to find au equation for F(Q"), the probability that 
demand D does not exceed Q·. Use this equation to find !he value of F(Q'). 

4.3 The Gamma Function 
Aroond 1725 the S\\iss .mathematician L. Euler asked the following question: is there a 

natural way to ex.tend the definition of the factorial funccion n ! = 1 · 2 ..... n to nonintcger 
1-alues of n? Euler thereby discovered one of the most studied functions in the whole of 
mathematical analysis. the gamma function. It is defined by 

x>O (1) 

(Recall that r is the upper case Greek letter "gamma".) Th.is function crops up in several 

areas of application, and there is a vase literature investigating its mathematical properties.l 
We shall just mention a fow simple propcrtie.s. 

for definition (I) to make sense, it must be shown thac lhe integral exists for each x > O. 
Nol only is the interval of integration unbounded, but for each x in (0, 1) the integrand 

e-•,x-l 1ends to oo as 1 ....,. 0. In order to show that the integral converges, we panilion the 
interval (0, ,x,) into two parts to obtain: 

Concerning the first integral on the right-hand side, note [hat O ~ e-1 ::: l for t ~ 0, so 
0:::: e-,,x-l ~ r·' ... 1 for all t > 0. Because Jd t•·-1 dt converges even when O < x < I (lo 

1/x). it follows that Jd e-• ,x-t dt converges. As for the second integral, because e-1 rb -+ 0 .· 

a.~t ..... rotor every b, there exists a number to such that! ?; to implies e-,, ..... 1 < l. Hence, 

e.-•,•-1 < l/12 fort::-. ro . .But Jt(lit2)dt co1111erges (to 1/ro).'so Ille.second integr'.u on 
lhe right-haml sidt' of (,t.) converges. Thus r(x) i~ wcll-cleiined for all x > 0. 

1 For e.1.ampk. N. ~ielsen: liuru.lbuch de.r T~orie du Gmnmfl(unkrion. l..eiozi>! (1906'1. '.126 ,1,,1!l'es. 
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Let us compute some value.s of f(,x ). For x == I it is easy: 

{"" 
r(l) == lo e-·t dt "' 1 

Furtb.er.inrcgrationb/parl~giws r(x+l) = ft e.-'r" dt = - i: e"·'t' + Jo"" e-'xt·' ... 1 dt 
= x r (x). This implies the functional equation 

r(x + J) = .rf(x) for X > 0 (2) 

for the gamma function. It implies chac r(2) = r(l + l) = 1 . f(l) = I, that f(3) = 
2 · I'(2) = 2 · 1, and that r(4) = 3. I'(3) = 3. 2. 1. By induction, 

f(n) "'(,i - I)· (11 - 2) · ... · 3 · 2 · l = (n - l)! 

for every natural number n. 
It is more difficult lO compute f(;i;) if xis not a natural number. In order lo compute 

r ( 4 ), for instance, we need the Poisson integral formula 

fry) ' 1 
lo e .. ,- dt = 2.Jrr (3) 

lbis is proved in Example 4.8.2. By symmetry of the graph of e-1' about t = 0, it follows 
th f +oc _,, d '- S b . . r. I d at -·::o e r = v JC. u st.Ltunng u = ...; ,. t ea s to 

-J..t'd '" 1+"" r;;: 
e 1 = ,_ 

·"" V ),, 
(). > 0) (4) 

!',ow (3) allows us lo compute r(!), using tbe substitution E = u~. In fact, r(!l = 
Jt e-,,-t12 dt = 2 fa"° e-u' du= .,/ii. 

Once the values of r in (0. l] are known, the funccional equation (2) allows us to find 
r (x) for every positive x. 

Figure 1 The gamma function 

The gamma function i~ continuous in the interval (0, oo ). It can be shown chat it has a 
minimum ,,,. 0.885G .u the poinL x ~ 1.46 I ti. TI1e grnpb is shown in Fig. l. 

The gamma function plays an imptlrtant role in ~tatistir.:s. Problem 5 is c:onccrnecl wii:h 
t·htt. (':.tmm::1 n;~trihu,inn whit·h 1~ n<::"'ti' ;n m~,n,, oC't')tfc-t1, .. .-::.t ...,...n .. ~AI,, 
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MS FOR SECTION 

1. Compute 

/ ('C • 
(.a) fo e -u· dx (a > 0) 

@ 2 . Use (2) co f LOd r(~) and show by induction that. for e.vcry natural number n, 

( 
1) 1·3·5· . .. ·(211 - 1) ,- (2n - 1)! ,-

r ,n +2, = 2• •./Tr= 22n·-l(n - l)'..,; .'r 

3- On<: can sh ow 1hat for every x > 0 there t>Xisls a O in (0, I ) (where 8 depends on x) such that 

Use this formula to show that if n is a natural number, llit:n 

n! ">< ~(11/e}" (Stirlb:lg'.s formula ) 

in the sense thM the ratio between the t,.1,·o expressions tends to I ai; n --+ ex:. 

4. Show that r(x) = { (l11 (1/zl)' .. 
1
dr.. (Hint: Substiruter = - lnz in ( I).) 

@ 5. (a) The gamma dlstribution with parameters i. > 0 and 0/ > 0 is given by 

)." 
f(x) = -· -x«·-1e-;_, for x > 0, f~x) = 0 for x ~ 0 

r(et) 

Prove that f':'.,, f (x) d x = l. 
(b) Compute the moment generating function M(r) associated with f pfO';dw t < ;.. (Sec 

Problem 4.2.5.) Compute also M' ((I), and in general , M<"\0) . 

L4 Multiple Integrals over Product Domains 
The remainder of this chapter deals •,vi th multiple integrals. These arise in statistics when 

considering mul tidimensional continuous (probability) distributions. Double integrals also 

play a role in some interesting cootinuuus time dynumir optimization problems. We sf.al:t 

with the simplcsr ca~. 

Double_ Integrals over Rectangles 

Toe liri-t topic i~ inlegrati0ll of functions of two variables dt>fi ned over n:-ctangles in th e: 

xy-plane. We hegi.n with a geome tric problem. 
The Cartesiao product of the two intervals [a, bl aiid [c, d] is the rl'.ct.tngle R "" [a, b J x 

,J • •" a ,.., , / f ,...t /' 
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be u cominuoos function defined on R with J(x, y) ?; 0 for ;d) (x. y) in R. Con~ide-rf·i g. l. 
The double integral over R will m easure-. the volume of the "box" that has the rectangle R 
as its bottom a.ud the graph of f as its c.ucvcd "lid". This box con~ists of all points (x, y, z) 

such that (x. y) € R and O .::: z ~ f (x. y). Thi~ is al.so ca lied dtc onlinat.e set off over R. 

: I 

Figure 1 Figu~2 

Let t be llJl arbitrary point in the interval [a, bl. Construct a plane parallel to rhe yz-plane 
intersecting the x-axis at x = t. This plane cuts the onlinate $et of f inlo two parts. The 

intersection of this plane with the ordinate set is the shaded plane surface P Q RS in Fig. 2. 
Toe area of this shaded surface is a function of r, which we denote by A (r ). It is the area under 

the curve conn«tiug Q to Rover the interval [c, d]. ~ relevant curve is the intersection 
between the graph of z = f (x, y) and the planex = t,so its equation isz = ip (y) = f(t , y) 

witll t fixed and y E [c, d]. Hence, 

A (t )= [d j(t ,y)dy 

Denote by V (r) the volume of the ordinate set of f over the variable rectangle [a , t] x [c, dj. 
[n particular, V (a) = 0, and V (b) is the total volume to ~ evaluated. 

If we add A t tot, the incremental volume is V(t + C.I) - V(t). Jn Fig. 2 this is the 
volume of the slice that lies betwC'cn the surfaces PQRS and P' Q' R'S'. lf 6.1 is small , tl1cn 
this volume is approximately equal to A(t)M. Therefore. V (t + 6r) - V (t ) """A(t )t::..t, 
implying thac 

V(t + At) - V(t) . 
~ A(t) 

fi t 

This approximation, in general, improves as v.t gets smaller. lu the limit a~ 61 -+ Owe 
canre.isonably expecttooblain V'(t) = A(t). Hence, V(b)- V (a) = J: A(t)dt. Because 
V(a) = 0, if we put V = V(I>) and use (*), we g¢t 

11> 1·1 . 
V ::-:- a ( c f(t , y) dy)dr 

'Jli~' preceding argumcut receives suppo,t from the nex t example ,md from Theorem 4.4. l . 
Th;. ,.,,,,In•< ( "'"') a n~tnrnl rknnit.inn nf the ,;olumc of the ordinal:e set of f over R. 
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f I It f(x, y) == M for all (x, y) in R, where M is a posirive constant, then the ordinate set 

off over Risa rectangular box in the usual sense. The base area is (b - a)(d - c) and its 

height is M. so it~ volume is M(b - a)(d -c). Show thac (**) gives the same result. 

Solution: Letting /(x, y) =Min(**) yields 

[
b 1d [b Id lb jU 

( Mdy)dt= (,My)dt= M(d-c)dt=,M(d-c)t=M(d-c)(b-a) 
a c ' a ~ .. - t1 a 

I 

Suppose we try to find the volume of the ordinate set off over R = [a, b] x [c, d] by 
using the argument above, except that we now choose t in [ c, dj and then let d1e intersecting 
plane be parallel to rhe xz-plane and pass through die point y = r on the y-axis. The area 

of the plane surface in the intersection between the ordinate set and the plane y = r is 
J: f (x, t) dx, so the formula for the volume becomes 

Because we are computing the same volume in both cases, we should get the same answer, 
provided our intuitive aigument above is correct. The next theorem guarantees that the 

numbers obtained in ( * *) and ( ***) are indeed equal if f is continuous on R. (See Protter 
and Morrey ( 1991 ), Chapter 8, for a proof.) 

Let f be a continuous function defined over !he rectangle R = [a, h) x [c, dJ. 
Then 

Now, let f be an arbittary continuous function over the rectangle R = [a, bl x [c, d]. We 
th.en define the double integral off over R, denoted by f JR f(x, y) dx dy, as 

We can take either of the two last expressions :is the defiuition of the double integral, because 
they are equal ai.:cording to Thc.orem 4.4.1. 

Nole that we can calculate tu: f(.r:, y)dy)dx in two stages as follows: 

(a) First, keep x fixed and integrate f (x, y) w.r.t. y from y = c toy = d. Tb.is gives 
t f (x, y) dy. a function of x. 

(h) TI1en iotegrntc fr.'1 f(x, y) dy from x = a to l' = I> t() obtain J,;(t f (x, y)dy) dx. 

Notice that in (I) we do not require f(x. y) to be nonnegative. It turn~ out therefore chat 

double integrals n~ed not always be interpreted a.~ volumes, jus! as single integrals need nor 
always be iTllerpretcd as areas. 
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Let us now consider some applicarions of (l ). 

EXAMPLE< 'l Compute j l (x2y +xi+ 2x)dx dy, where R = [O, 1] x [-1, 3]. 

EXAMPLE' 3 

Solution: The inb:gr.rnd is continuous everywhere. Consider first 

[1 (/
3 

(x2y +xi +2x)dy) dx lo -1 

Treating x as a consta.m. first evaluate the inner integral: 

1
3 

(x2y + xy2 + 2x) dy = ly~
3 

(!x2 y2 + !xy3 + 2xy) = 4x2 + ,¥x 
-l y=-1 

Integrating a second time gives 

f ([~ (x2
y + xl + 2x)dy) dx = f (4x2 + fx)dx = 1: cix3 + Jx2

) = 10 

let us now perform the integration in the reverse order. Holding y constant, we get 

fo\x 2 y + xy2 + 2x)dx = 1: (fx3 y + !x2 y2 + x 2
) = !Y + !l + 1 

Therefore, 

3 1 :I 

1 
( f (x2y+xy2+2x)dx)dy=1 (}Y+!Y2 +1)dy=10 

-I .Jo -1 

We reached rhe same result by both procedures. So Theorem 4.4. l is confirmed in this case, 
and we can write with confidence 

fl (x2
y +xl + 2x)dxdy = 10 when R = [0, I] x [·-I. 3] 

Compule ii>( id y - x .3 dy) dx, where band dare constants greater than 1. 
1 I (y+x) 

Solution: By means of a little trick, the inner integral becomes 

i
d y - X 1" y + X - 2x id 1 . id l ---dv= ----dv= ---dv-2.r ---dy 

1 (y+x)3 ' r (y+x)3 · 1 (y+x)2 · 1 (y+x)3 

11=a ( I 1,=1 · l l ) d 1 

-\=1 y+.J 2x/.,~/ 2(y+x)2, = (x+d)2 + (x+l)2 

Hence, 

11, j" y - x lb d lb 1 ----dy dx"" - ---- d.r + ---dx 
1 ( 1 (y + x)3 ) 1 (x + d)2 1 (.x + 1)2 

II, d lb l d ,I J 1 
- • o t - , 1 - I , • - - • ,"·'" -·· • , • + .._ 
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C"'hoosing instead to integrate w.r.c. x first, a similar trick. leads co 

Then 

{b y - X b I 
11 (y +x)' dx = (y-~b)2 ·- (y + 1)2 

fd(. {b y - x ) b . b 1 I 
11 11 (y + x)' dx dy = - b + d + b + l + J + I - 2 

Simple algebra now shows that the cwo result~ are equal. 

Multiple Integrals 
Let Q denote the Cartesian product [a1. b1] x · · · x [an, h.] of the closed intervals [a1, bi], 

... , [a., b0 ]. It is the set of all n-vectors (x1, x2, ... , .x.) in R" such that a; S: x; :::: b; for 

i = I, 2, ... , n. We call nan n-dimensional rectangle. 
If f is a continuous fum.:tion defined over n, define the multiple integral off over Q as 

ff ... J. /(x1, ... , Xn-1, Xn) dx1 ... dx,._1 d.x. 

= 11,·<1b·-· lb' ... ( f(x1, ... ,x.-1,x.)dx1) ... dx.-1)dxn 

"" ""-' al 

(2) 

The meaning of the notation on the right-hand side of (2) is that integr.uion is to be per­
fomied first w.r.t. x1, al] other variables being tteated as constants, then w.r.t. x2, treating 

the remainder of the variables (x3, ... , x,.) as constants, etc. 
Definition (2) is a simple generalization of ( l ). In this general case one can still prove that 

the order of integration on the right-hand side is immaterial, provided that f is continuous 

inQ. 

$ FOR SECTION 4 4 

1. Evaluar.e the following double integrals: 

(a) Li1 1

(2r+3y+4)dxdy 

f.l 1'.>, 
(c) (x - y)/(x -i- y) dx dy 

-I I 

{" t 
(b) Io Io (x -a)(x -b)dxdy 

1
1i1 {2~ 

(d) 
0 

Io / sin(.x/) dx dy 

I.a lb l @> 2. Find/= ( ·-,ey/x dy) dx (a> I. b>O) 
l O .x:· 

@ 3. Consider the fnnction j (x. y) = -
2
k , , where k is a con~tant. Let R he the rectangle 

(x + y+ I)· 
R :: (0, a J x [0, ll, where a > 0 is a constant . Determine the v.tl11.: k. of k such that 
r..• r; 1'1:- ..• ,t - . ,-., 
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4. Compute lite double integral I e: [2 ({
1 

(x2 y3 - (y + 1)2)dy) dx. 
lo -2 

HARDER PROBLEMS 
.-

@.) 5. Findl '-'ff··· l. (xf +xi ...... · -+x;)dx1 dx2 ... d:x. wheren is the region iDR" deaermined 

by the inequalities O .:o. x; :,. 1 for i "' I, 2, ... , n. 

4.5 Double Integrals over General Domains 
Consider the set A in the xy-plane indicated in Fig. 1. The boundary of A consi&ts of 

segments of the lines x = a and x = b and the graphs of the continuous functions u (x) and 

v(x), where u(.x) ~ v(.t) forall x in [a, b]. 
Suppose.that f(x, y) is a continuous function defined over A, and that f (x, y) 2:: 0 

for all (x, y) in A. Then the graph off above the set A determines a three-dimensional 

volume, as indicated in Fig. 2. The intersection of the solid with the plane at distance x from 
the yz-plane is the shaded plane region indicated in Fig. 2. The area of this region can be 
described as the area under the graph of f(x, y) (with x fixed) over the interval {u(x), v(x)]. 

Let F (x) denote the resulting function of x. Then 

1
vfa) 

F(x)= f(x,y)dy 
r,(x.l 

Here we have integrated w.r.t. y while keeping x fixed. One can prove that F(x) is a 
continuous function of x. As in the case where A is rectangular, a geometrically plausible 

argumem .supports the conclusion that the volume V of the solid must be given by 

11, lb f.v(•) 
V= F(x)dx= ( f(x,y)dy)dx 

a a u(x) 

(l) 

-+ ......... a __ :..~-u(-.x)--·~----;-·; 

c; ...... n 1 Fiaure 2 
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Briefly formulated, tl.te argument is this: let V (x) denote the volume of that part of the 

solid in Fig. 2 which lies to left of the shaded region. Thus V (a) = 0 and V (b) = V, and 

F (x) is the area of the shaded region. Let x be incremented by li.x. Then the volume of rhe 
associated slice of thickness th is approximately F (x) dx. The exact volume of this slice is 

V (x + .1.x) - I/ (x). which is therefore approximately equal to F (x) t.x. This approximation 
will. in general, be better for smaller ~x. so in the limit we expect to have V'(x) = F(x). 

Hence, V(b) ·- V(a) = J; F(x) dx, so that V = J: F(x)dx (since V(b) = V, V(a) = 0). 

Formally, we could define the volume V by (1). Note. that if 1t(,t) = c and v(x) = d, so 
that A is a rectangle, then definition ( 1) reduces to ( **) in Section 4.4. Let us illustrate with 
anexamp.te. 

_E 1 Let A be the set in the .x y-plane bounded by the straight lines x = 0 and x = I and .the 

graphs of y = x and y = x2 +I. The set A is indicated in Fig. 3. The function f (.t, y) = xy2 
is continuous and::: 0 over A. Find the volume V under the graph off. 

r y /x~p(y} 

d r-t,---~,------
, f- -- ~ 
,;--~~- -~~~~-----

X x 

Figure 3 Figure4 

Solution: In this case 

Here 

[
.,~+r l":+i I I - I I I 

.xy
1 

dy = x. -y
3 = -x[ (.x2

-'- I/·- x3] = -x7 + x5 -. -x4 +x3 + -x 
, ;, 3 3 3 3 3 

because x i.~ kept constant when integrating w.r.t. y. Hence, 

[tis possible to derive si milarexpressions for volumes in space when the ba~e A is detennined 

in other ways. For example, if the set A is a~ indicated in Fig. 4. and f (x. y) ~ 0 in A, th011 
the volume \! under the graph off over A is given by 

{2) 
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It is a worthwhile exercise to go through the argwncnt leading to this formula fol.lowing the 

same pattern as used for equation (I) above. 
In Fig. 5, we see. that every straight line parallel to the x-axi11 or y-axis int~rsects the 

boundary of the shaded set in at most two points. Let the functions u and v dcpi.ctcd in Fig. 5 
be continuous. Si nee they are snictly increa~ing, they have continuous inverse functions u-1 

and v-1. [f f is a continuous nonnegative function defined over this set, the volume under 

the gr-.iph off can be computed in two different ways. linder the given conditions one can 
prove that 

11, lv(r) 1J 1u-'(JI) ) 
( . Jix,y)dy)d:r:= ( . f(x,y)dx dy (3} 

0 •1•) 0 .-, ()') 

On che left-hand side we have integrated first w.r.t. y and then w.r.t. x, and on the right-hand 

side we have integrated in the reverse order. If the set is of the type indicated, and f is 
continuous, the two expressions are always equal. Nevertheless, it is sometimes important 

to choose the righc order of integration in order to have simple integrals. (See Problem 4.) 

v, 
. ' 

Figure 5 

b ): 

Figure 6 

How do we define the double integral over more complicated domains of intcgrati.on, such 
as the set in Fig. 6? The obvious solution i5 to panition the set into smaller parts, each of 

which is one of the types considered above. (One such partition is indicated in Fig. 6.) We 

then define the double integral over the entire set as the sum of the double integrals over 
each of its parts. If the set is a union of finitely many sets of the types we have considered, 

one can prove that the double integral is independent of how this subdivision is done. 

Let A be an arbitrary set in the xy-plane of one of the types considered above, and fa 
continuous function defined on A (not necessarily ~ 0). The double integral off over A, · 

f i /(.t, y)d.t dy (4) 

is defined as in (I) provided A is as in Fig. I, by (2) if A is of the fonn iu Fig. 4, and so on. 

If f (x, y) :;:; 0, the nwnber obtained from (4) can be interpreted a:; the volume of a solid in 
space. [t nuns out, however, that the double integral as defined here can be given <1 number 

uf other inrerpretations of greater interest 10 economists. In statistics. for example, suppose 

two random variables x and y have a joint probability densicy given by f (.t, y), which is 
alway.~?.'.. 0. Then the probability th3t the random pair (x, y) belongs to rhe set A is given 

by (4). Also, in the theory of production, multiple integrals of capacity distributions arc 
,._,,,..,,• ,,IA,..,~~• 
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A Useful Formula 

Let f(:x, y) be a continuous function over the rectangle [a, bl x {c, dj. We shall prov~ that 

o2 F(x y) axa;·- =f(x,y) forall(x,y}inla,h}><[c,d] ~ 

jd ( lb f(x, y) d.x) dy = F'(b, d) - F(a, d) ·- F(h, c) + F(a, c) 

(5) 

Indeed, if yin [c, d] is fixed, then oFjoy is a function of x whose derivative w.r.t. x is 

a2 F/o:xoy = f(x, y). Hence, foreachy in [c,d], 

l h lx~b <!F(x, y) oF(b, y) /JF(a, y) 
f(x, y)dx = --- = --- - ---

a x=a ay ay ily 

This implies that 

1\j·b J(:x, y)dx )ay = [\~F(b.y) - a Ft y)) dy = la (F(b. y) - F'(a, y)) 
a r ily y , 

= f"(b, d) - F(a, d) - F(b, c) + F(a, c) 

1. (a) Sketch the domain of integratinn and compute the integral f 1 ( 1~ (x2 + xy) dy) dx. Jo · x• 

(b) Change the order oi integration and verify thal you obtain the same result as in (a). 

@> 2. Compute the integral in Example I by first integrati.ug w.r.t. x. (Hinz: The set in Fig. 3 must be 
suhdivid~ imo two pai:ts.) 

3. \\'hat is the geometric interpretation of J 11 dx dy. where A is a set in I.he xy-plane'/ 

4. Let f(x. y) ::.: e'
2 

be defined over the t1iangle A = {(x, .Y) : x E [0, 1], 0 ~ y ~~ x). Find 
the volume V under the graph off over A. (Hine: Integrate first w.r.L y. U you Ii)' to integrate 
w.r.t.. x first, there is no expre~sion for the relevant integral in terms of elementary functions.) 

1.··:--0· 

5. Compute the integral f (1" z,-,- 2x d/} J_, by reversing the orda of inccgrafion. 
ltl :\x/3 I 

@) 6. Calculate r I 11 

ix -- Yi dx dv. Can you confirm your resoll by a geometric argument'! 
lo •> 

HARDER PROBLEMS 

7. Sketch the set A "'-1(.x,_v): 0 :':- x :c, 2lf, ···x::: .~~"sin.ti i111.hexy-plane. Then compute the 

...t,·,1,hJ,. int .... n t•11 l r { '"'J \• rn~ " A 't. A,, 
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8. A motlcl t>y J. F.. Meade. of ,;aving$. inheritance, and economic growth involve$ the double 

integral 

.-
(a) Show that l = (q,,(a) - ,p(b))/(a - b). where ~(u)"' (e",. - l)/11. 

(b) Skc!ch the domain of integration in the (IT-plane and write doy,,n the e.xprcssion for 1 when 
we first integrate w.r.r. 8. Test the answer in (a) by computing thfa new double integral (if 

you have the energy). 

9. (Fcom Johansen (1972).) For foted positive values of q1 and q1, consider !he set G(qi, q1) in 
lbe ~1~1-plane given by (draw a sketch!) 

Let /(~1• {.1.) be a continuous function defined over G(q1• q,). 

(a) Write down the double illtcgcal off over G(q1, ql) when integrating first w.r.t. ~2-

(b) Write down tliecorresponding expression, integrating ftnt w.r.t. f1. 

(c} The value of the double integral in (a) and in (b) will depend on q1 and qz, denote it by 

g(q1, q2). Compute 3g/'iJq1. 

4.6 The Multiple Riemann Integral 
We consider next how to define multiple integrals in a way that corresponds to Riemann's 
definition oflhe usual single integral. (See e.g. Chapter 9 in EMEA.) We need this definition 
in order to explain the rule for changing variabks in multiple integrals. 

Let f be a bounded function defin~ on a closed and hounded set A in the plane, anJ let 
R be a rectangle containing A. Subdivide the rectangle into a number of small~r rectangles 

as indicated in Fig. I. 

,V] · -++H,,"l-+-ie-
4-,---4-.,.;-of"-1-i 

··~ 
b .t 
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Ler R;j denote the typical subrectangle [x;. xH-il x (yj, Yi+IJ. Someofthe:.ercctanglcs Rij 

~ill 1.ie inside A, others will be entirely or panly outside A. For each R;1 inside A, choose 
an arbitrary poim (\'. Yj) in R;;. The product f (x;, yj)Ax; t.ly;, where !:l.x; -= .t;+i - x;, 
!:l.y; = YN·l - Yi, can be interpreted geometrically as the volume of the rectangular column 
suggested in Fig. 2. Form the sum of all these products corresponding ro rcccangles Ru 
inside A: 

L f(xt, Yj) Ax; l::iy; (I) 
R,J~A 

Suppose this sum tends to a limit a~ rhe number of recrangles increases in such a way that 

the diameter of the largest tends to 0.3 Suppose further that this limit is independent of the 

particular sequence of subdivisions that we choose and also i.Ddependent of which points 

(.xj, Yj) we choose in Rij· Then the limit is called the double integral off over .A. (The 
limit process here is more complicated than those we have used before. For technical details, 
see e.g. Protter and Money (1991), Chapter 8, or Munkres (1991).) 

When A is one of the types of set described in Sectioo 4.5 (such as Figs. 4.5.l, 4.5.4, 
and 4.5.6), one can prove that the limit in ( 1) exists and is equal co Che double integral as 
defined in Section 4.5. 

E 1 Compute fo 1 fo 1 

(x -t· xy) dx dy from the definition associated wilh (1). 

Solution: Subdivide therectangleR = [O, l] x [O, l] inton2 subrect.anglcs by puttingx; ;,, 

i/n, Yi= j /n for i, j = O •... , n. Then t.x; = Xi+1 -x; = 1/n, t:,.yj = Yi+l - Yj = 1/n. 
Put x; = i /n, Yj = j/n. Then (xt +x;'y!)t.xit:,.Yi = (i/n +ij/n2) 1/n2 = i/n3 +ij/n4, 
so that the sum in (1) becomes 

n-1 n-·1 I l l n-1 . n-1 l 1\-l n-1 

L ~ (113 i + n4 j . j) = n3 L ( L j) + n'i ( L j) (Li) 
J=iJ 1=0 J=O 1=-0 J..dJ ,~o 

= ..!_ 11 (11 - l)n + _!_ (n - l)n . (n - l)n = ~(l _ .!_·) + .!.(t _ ~)2 
,i3 2 n4 2 2 2 . n 4 11 

As n 4 oo, the number of subrc{:ta:ogles will increase, and at tbe same time their (equal) 
diameters will tend to 0. The expression above clearly tends to 1/2 + 1/4 = 3/4, so we 
finally obtain 

t f\,+xy)dxdy=~ Jo lo 4 

To confirm this result, compute the integral in the usual way. 

TI1e definition associated with (I) involved subdividing the given set in the xy-plane into 
rectangles. But we could equally well have used other kinds of subdivision. Let us consider 
rhis briefly ·without going into technical details. Imugine that the closed and bounded seE ,.\ 

is subdivided inro II subsets S1 • ...• Sn, with areas !:l.s1, ... , ~ ... (.~ee Fig. 3). 
---- .. _ .... .,. ___ _ 

3 
We define the diameter of any closed bounded ~et as 1be ru:vjmum distance bc1weea any two of 
1t~point.s. 
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Figure 3 

Choose a point (x;', yi) in S; for each i = 1, ... , n, and form the sum 

n 

f(xj, Yi) !:l.s1 + · -· + f (x:, y;) t,.s. = L /(.ti, yt) /::is; 
i=I 

Suppose w~ construct a whole sequence of such subdivisions with associated sums, and 
do it in sur.:h a way that the g1eatest diameter of any subset tends to 0. The limit of these 

sums will then equal the double integral of f(x, y) over A, as defined befo(e. lbis limit is 
iodependent of how we subdivide A. Moreover, it is independent of whir.:h points (x;, yt) 
are chosen in each S;- Briefly formulated, 

!'{ f(x.y)dxdy=. lim tf(x1,y:)t).s; j A di=(S,> ... o , •=1 
(2) 

Riemann's definition of the doub!o;! integral makes it pos~ible to prove a number of properties 
that correspond to .~imilar ones for the one-dimensional integral. 

For instance, suppose f and g are continuous functions over a set A in the xy,plane, and 
that the double integrals of f and g over A are defined. Then 

f L(/(x, y) + 8(X, y)]dxdy = f i f(x, y)dxdy + f i g(x, y)dxdy (3) 

j L cf (x. y)dx dy =cf j f(x, y)dx dy (c constant) (4) 

f i f(x, y)dxJy =fl, f(x, y)dxdy + f £
2 

j(x, y)dxdy (5) 

In (5) we assume that A = A: U A2, A 1 n 112 = 0, and that f(, and ( (t are defined. 
,. '11 • .. I 1 

Let f still be definc-d over A and imppose that there exist number:; m and M such that 
m ::5. f(x, j) ~ M for all (x, y) in A. Thcu there exists a number~ in fm, M] such that 

{{ /(x,y)dxdy=~· ff dxdy=~·area(A) (6) 
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111e number~ is called the average value of f in the dosed and bounded set A. If the set A 

.is a also connected (i.e. not the union of two disjoint closed sets) and f is continuous, then 
it can be shown that there ex.isl:$ a poim (_i:, y) in A such rbat the number~ given by (6) is 

equal to f (_'i •• y). In this case (6) takes the form 

j i f(x, y) dx dy = f(x, ji) · area(A) for some (i, ji) in A (7) 

This result is called the mean value theorem for double integrals. 
This section has dealt with double integrals. It should be clear that the theory associated 

with (I) and (2) can be generalized to triple integrals and multiple integrals in general. One 
can also obtain formulas that correspond to (3)-(7), but for these we refer to the literature. 

S FOR SECTION 4 6 

@ 1. (a) Compute the following double inr.:gral by the method in Example 1 above: 

f \ f1 (2x - y + 1) dx) dy fo Jo 

(b) Check the answer by integrating in the usual way. 

. 7 Change of Variables 
One of the most important methods of integration for single integrals is rule (4.l.4) for 

integr.ition by substitution: 

11, 1u2 
f(x)dx = u; f(g(u))g'(11.)du (1) 

ll turns out that there is a sirnil ar rule for chanb>ing vari abks in multiple integrals. Let us 

look at this problem for double integrals first. 

Change of Variables in Double Integrals 
Consider the double integral JJ.~ f (x, y) d x d y. Suppose we introduce new variables u and 11 

together with functions h and g such that 

x = g(u. v). y = h(u, v) (2) 

With suitable re~uictiotL~ on the. i.n1.t:grands and rhe domains of integration, we claim that 

fr fr i i)tg, h) I 
f(x.y)dxd."::..: f(g(u,11),h(U,l'));~ dudv (3) 

SECTION 4.7 I CHANGE OF VARIABLES 

Here we use the a/Jso/me value of the Jacobian ddenninant 

o(g. h) I ag/au ag/av: 
a(u, v) = 3h/a,, rJh/ov i 
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(4) 

Also, A' is the set in the uv-pla.ne .. corresponding to" the giYen set A in (he xy-plane. More 

precisely, A = f(g(u, 11), h(u, v)) : (u, v) E A'). Precise conditions for (3) to be true are 

stated in Theorem 4.7.1. 
Comparing the two formula~ (1) and (3), we see that introducing new variables causes 

two things to happen. First, the domain of integration is changed in each case. Second, a 

new factor appears under the integral sign. lo ( I) it is g' (u), whereas in (3) it is the absolute 

value of the Jacobian determinant of the transformation (2).4 

Let us see how formula (3) can be applied to a simple example. 

EXAMPLE I Compute 1 = J)~(x2 + y 2 - l)dxdy where .4 is the set in the xy-plane boondcd hy 
the lines .x + y = !, .x + y = 5, x - y == -1, andx - y = l. The set is shown in Fig. 1. 

,p 
I 

V 

4i 

:[ A' 

,, 
x-y~,1 

2+ 
x+y=5 

i ~il 3 4 X u 

x+y=l 

Figure 1 Figure 2 

Solution: By subdividing the set .4. in a suitable way, one can compute the given integral. 

For example, if we use the vertical line.~ x = 1 and x = 2 to divide A into three parts (see 

Fig. 1), we can see that I is equal to 

[

1(1 1
+x(x2 + y2 - J)dy) dx + r2c1·"\x~ + / - !)dy) tlx + f\1s-,(x2 + / - I) dy) dx 

.,.O 1-.c · J1 ' ,e.-1 J2 · x-1 

Af~ a fair amount of calculation, we can find the value I = 52/3. 
In this ca~c, however, A i.s a rotalt:d rectangle. This suggests that it might be easier to 

introduce u = x - y and 1, = x + y as new variables. Note that this transforms the boundary 

Jines ..r - y = -1 and x ·- y = l of A into the straight lines u = -1 a.nd u = 1, and the 

'Why R'(11) rnlberthan lg'C_u}i in(!)? Note that if ,s:'(u) < l)jn (I}. then;,1 > u1. S0ifwclc1 I 
denote the interval hetwt-,.,n the two cndpoi.11t$ u I and u1 • 1hcu the righc-h&1d side of (I) c:m b.; 

writrcn a.s (, f (g(u)Y,{{(r,)i dr,. which is 1hc obvious one-<lime11sional versiun of (3). 
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straight lines .t + y = I and x + y = 5 imo v = l and v = 5. Let A' be the rectangle 

io the uu-plane shown in Fig. 2. The transformation trawforms the bound:iry lines of A 
in xy-plane into the boundary lines of A' in the u u-planc. Moreover, tho interior of A is 

mapped in a one-to-one fashion onto the. interior of 1\ 1
• From u = x - y and v = x + y it 

follows that 

x =!(u +v), .v ={(- u+ u) (i) 

which, in a similar way, rnaps A' outo A. The tran.<;formation given by (i) corresponds to 

lhe transformacion (2), and in this case the Jacobian is 

I ox/ilu 
i &y/ou 

With x and y given by (i), the integrand becomes 

x~ + i - 1 = !(u + u)2 + !(-u + v)2 
- l = ! u2 + -!v2 

-· I 

Therefore, through simple calculations formula (3) yield<; 

l= fl cx2 +y2 -l) dx dy= JLHu2 + !v2 - lHdu dv 

5 1 

= i J, ([
1 
(!u2 + 4112 

- l)du )dv = 52/3 

Provided (3) is a pplicable in this case, it s implifies the computational work considerably. I 

Coosidec next tbe general double integ1al off (x, y) over some set A in the plane and a.<;sume 

that we introduce the new variables u and v as in (2). 

r 

.t 

... J: -, 1+-+-+----++-H 

~ ~ ~~~.--u-·~a-u~ ~ -u 

figure 3 A curvilin;:ar grid 

We shall sketch an 3.fgumc::nt tbat can be e~tendcd into a proof of formula (3). Assume that. 
g and hare C 1 functions thac together map the set A' into A, and that each point (x, y ) in A. 
is the image.of a unique point (u, v) in A'. The sets A and t1' migbt be as indicated in F ig. 3. 

The definition (4.6.2) of the double integral off over A allows any sequence of subdivi­
~ions of A in to subsets, provided the diameter of t11c tugest subset con~·ergc.~ to 0. We shall 

make. u:se of thi~ fact and employ a subdivision of A that is "induced'' by the tran~fonru1tion 

('.!) in the foll<1wing way. Take a point in A with coordinates (x , y.). The unique point (u , u) 
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in A' thatcorruponds to (.t, y} is givenimpliciUy by (2). TI1e numbers u and v are called the 
curvi/inea.r <:oordinaft•s of (x, y) w.r.t. the given transformation. Keep u fixed at u = uo. A 

number of point~ in A will have curvilinear coordinates witb this sp¢eial value of u , numely 

tbosc point$ (x, y) of J\ for which x = g(uo, v). y = h(uo, v). By choos.ing different fixed 
values of u, we obta.i.o-a family of curv;;s in A. These curves cannot intersect becuuse the 

correspondence between the point~ of A an.d A' is one-to-one. Similarly, by choo$ing dif­
ferent fixed values of v, we get another family of curves in A, characterized by the fact that 

along any particular cwvc. v has a fixed value. Some of the curve,s in lhe curvilinear grid 

obtained in this way are indicated in the set A. io Fig. 3. Through the tr,msformation (2), 
this curvilinear grid corresponds to the rectangular grid drawn in the set A'. lf we "refine" 

the rectangular grid in A', the curvilinear grid in A will also be "refined". 

Consider next the rectangle S' indicated in A' in Fig. 3. Tes area 6.S' is equal to 1:,,u!lv, 

and the tran.~formation (2) maps it to a curvilinear " rectangle" Sin A. Ii we denote the area 

of S by t:.S, we obtain an approximution to the double integral by f over A as the sum 

L f(x,y ).6.S 

where (x , y) is an arbitrary point. in S, and we sum over all the curvilinear rectangles in A. 
We drop from tbe sum. in ( *) tbose rectangle,<; thot have point~ in common with tbe boundary 
of A. The joint contributioo to the SWll in(*) from all these boundary rectangles will tend 

to O as the subdivision is refi11ed. 

To proceed further Wt! need another expression for the sum in(*). First, let IL~ find ao 
approximate value of 6.S by using the fact tbat S is the image of the rectangle S' under the 
transformation (2). The relationship between S and S' is indicated io more detail in Fig. 4. 

.fj 

----- D 
Pi (u.v) 

Figure 4 

The point P1 is the image of P(u.nder(2), w P1 bas coordinates (g(u, v) , h(u. u)). The point 

P2 is the image of P~ . so Pi has coordinates (g(u + ti.u. 11), h(u + t.u . v)}. In tbe same way 
thecoordioatesof P3 and P4 are (g(u+ au. v+ 6v). h(u.;...Llu , v+6t>)) and (g(u , v+~v), 
h(u, v + t.v)), respectively. Jf t.l.u and !.iv arc small, we obtain good approximations to 

these coordinates by using Taylor's formula iind including only first-order tenns. 
If the Ctl-Ordinatcs of P; are (x;, )';}, i : l , . .. . 4 , we get 

Pi : x, :.:: g(11. v), y , = h(u, v) 

a ~ 
P2: x2 = g(11 + L:i.u . u) :=::: K(u . v) + : -*- 6.u. v, = h (u + :\1' . 11\ "" h.lu "'+ - -- A" 
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ag ag 
P3 : .t3 = g(u + tJ.u, 11 + tJ.v):,;,: g(u , v) + au tJ.u + av tJ.v, 

i)h :lh 
y3 = h(u + Ll.u, v + L:> v) ""' h(u , v) + -tJ.u + -;- tJ.v 

a11 "" 
. ag 

P4 : x4 = g{u, u + Li11J:,;,: g(u, v) + - Liv, 
cJt; 

ah 
y4 = h(u. 11+ Ll.u) ""' h (u, v) + i)

11
,'.lv 

For small values of Ll.u and Li 1, the curvilinear rectangle 1'1 P2 P3 P4 is appro:timately a 
parallelogram. Therefore, ils area is approximately twice the area of the triangle P1P2P3 
with vertices (xi. Y1), (x2, n), (x3, .YJ). Problem 2 a.sk.s you to show that this triangular area 
is half the absolute value of the following determinant: 

I! :~ ~-/'=11·~ 
I 1 X3 Y3 0 

.t 1 

X2 -x1 

XJ -X1 

With the oot-order approximations to th'C' coordinates obtained above, the determinant is 

/Jg (ah M ) ( ar: ag ) ah (·ag ah ag ah) -t:.u - Ll.u + -ti.u - .....O...tJ.u + -tJ.v -6.u = - - - -- tJ.utJ.v au au av au av au au av av au 

. ·, ag/:lu Hence, 6.S is approximately equal to rhe absolute value of ah/iJu clglclv I 
cJh/cJv uul\v. The 

determinant here is the Jacobian of the transformation (2) , so 

l
acg. h) \ 

!).S R< - - 1 tJ.utJ.v 
J J(u , 11) 

It is rcasoD.l.lbk to expect that this approximation will be better for si::nallcr t.u and 6.u . 

We observed above that "£ f (x . y) 6 S is an approximation to the double integr.11 off 
over A when we sum over all the curvilinear rectangles in A that have no points in oommon 

with the boundary of A. By using (2) and <~'"), we therefore obtain 

L f(x , y)6.S ~: L f (.g(u, 11), h(u, 11)) I:~:::~ j 61u\1J (5) 

There is a one-to-ooc correspondence between curvilinear rectang les S in A and rectangles 

S' in A'. lt Iollows rhat the last sum is an 11pproxiruat:ion to the double integral of the. function 

f(g(u. 1,), h(u, 11)) ja<g, h)/o(u . u)I <:,ver the set A': if the subt.livis ion of A' is refined in 
such a way that the diai:netcr of the largest rectangle tends to 0, then passiilg to the limit in 
(5) gives (3) . 

Wi thout. going into the fine.r points of the proof, here is a prec.i~c result (~cc Protter and 
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THEOR1:l.1 4 1 1 ( HANGE OF VARIABLES IN DOUBLE INTEGRALS 

Suppo.se that 

x == g(u, v), y = h(u, v) 

defines a one-to-<me C) transfonnation from M open and bounded set A' in the 

ut•·plane onto an open and bounded set A in the xy-plane, and assume that tbe 
Jacobian determinant i:l(g, h)/a(u, v) is hounded on A' . Let f be a bollnded and 
,ontinuous function defined on A. Then 

J·r 1·r < ) la(g,h)i ]Af(x , y)dxdy = J,._J g (u,u),h(u, t!) o (i, ,v)l dud11 
i 
! 
f 
l 

! : 1...------"·"·-·-·--·-------~·--··--- .. - ----·--------.J 
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NOTE 1 A set in the plane is said to have area (or measure) 0 if it can be covered by 
a sequence of rectangles whose total area is arbitrarily small. (A set consisting of a finite 
number of points or a finite number of curves with finite lengths will have measure 0.) It 

turns out that we can always remove a subset of measure O from the domain of integration 
without affot:ting the value of the integral. It is therefore sufficie!lt if the conditions in the 

rhe.arem are satisfied after suitable subsets of measure Oare removed/mm A and A'. 

NOTE 2 The CQndition in the theorem that the transfoI'Dllltion be one-to-one is sometimes 

difficult to check. Note th.at it is not sufficient to assume that tbe Jacobian determinant is 
different from O throughout A' . (See Example 2.7.3.) 

Polar Coordinates 

When a double integral is difficult to compute in the usual way, it is natural to seMch for 

a suitable substitution so that one can use Theorem 4.7.1. The choice of the new variables 

must take into account the fonn of the integrand as well as the domain of integration. One 
substitution that is often helpful is that of introducing polar coordinates. In that case wc 

usually denote u and v by rand 8, and we define the tr.msformation by 

x = rcos O, y::: r sin8 (6) 

Toe Jacobian isthen equal to r (see Problem 2.7.8). Ifwe as~ume thatr > 0 and thatO lies in 
an interval ofthefonn 180, &o+2rr), then(6) defines a one-to-one C 1 tra.usfonuation. (From 

Problem 2.7.8(b) we sec that the transforllllltion need not be one-to-one over an arbitrary 
set in the r O-plane.) In this case (3) takes lhe forru 

f L f(x , y)dx dy = Ji, f(rcosB, r sinO)r drdB (7) 

Polar coordinate~ are particularly l'Onvenicn t if r or O i.s constant along the boundary l•f the: 

doruain of integration, and/or when the integrand is particularly ~irnplc when e)lpre~scd i.n 
""h" ,.,v,ro1in:Hf'.~ Consider the followinll illu~trative example. 
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£ ] Find fl Jx1. + y•dxdy, ,.,,ith A = {(..t , y): 4 S x2 +y2 :S 9, ~,13 x s y ~ ./3x ). 

Figure 5 

Solution: Figure 5 shows the set A , which is bouuded by the circles .x2 + ),2 = 4 and 

x 2 + y 2 = 9 and the straight lines y = ./3 x /3 and y = ./3 x. The straight lines in question 
fom1 angles 'lr / 6 a.od rr /3 respective ly with the x-axis. Hence, io polar coordinates A is 

. determined by 2 ::; r .:5: 3, rc/6 < 8 :: n/3. The conditions in Theorem 4 .7. 1 are satisfied. 

Because Jx2 + y2 = Jr2cos26 + r2sin2 6 = r, we get 

!1 1.;r/3(11 ) 1;,/3(1J r3) 19,r .j x2 + y2 dx dy = . r · r dr dB = . . .::.. dO = -
A r./ 6 2 ,r16 2 3 · 18 

To find Ibis ru1swer by direct integration would be unnecessarily cumbersome. 

Change of Variables in Multiple Integrals 

Theorem 4.7.1 can be generalized ton-d imensional integrals. We just state the result: 

M 4 7 'l ((HANGE Of VAIUABLES IN MULTIPLE I TEGRMS) i-----
Suppose that ll. = (x; , . . . , Xn) = g(u) = (g1 (u) , ... , i:n (U)), where u 
(u 1, •. . , un),definesaone-to-ooeC 1 transfon:nati.ongfrom anopen and bounded 

set A' in "u -spacc" onto an open and bounded set A in "x-sp-ace". Suppose that 

the 1 acobiao determinant 
l = 0(81, ... ,g.) 

o(u1, .. . . u.) 

is houn<led on A'. Let f he a bounded, continuous function defined on A. Theo 

I· ·i f(x 1, , . . Xn)dx i .. , dxn = J. . -L f(gi (u), .. . , gn(u)) Ill du1 . .. du. 

I 
~~~~~~~~~--~~~~~~~~~~~~--~~~~~·_J 

Note 1 (awropriately gen .. -raliz<:d) applies eynaliy well to the prc~cnt thcorern. 
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PROBLEMS FOR_ SECTION 4 7 

1. Consider th.: Jouble integral I = j)~ (x + x y) dx d y where A is the rectangle in the xy-plane 

with vCftices at the points (2.0), (4,2).. (2,4) and (0,2). 

(a) Compute the it1tegral directly. 

(b) Vr'bal integral do we obtain if we introduce new variables u and i:, where 1, = x - y and 
v "" x + y? Compute its value. 

@ 2. Shuw that the area of a triangle with vertices at (x1, y1). (xi, n), aod (x3, YJ) in lhe xy-plllOl.'. is 
given by half tbe absolute value of the determinant 

, 1 x, y, I 
'1 l X2 }'i 
I x, YJ : 

(Hint: Draw the normals from each of the three poiots to the x-a'(is.) 

@ 3. (a) Compute the following double integral by i.iltroducing !JOIUC coordinates: 

f1x2 dxdy, where A= ((.r,y): x 2 +/ ::,. li4} 

(b) Wru\t is the valne of the do11ble integral if A = Hx, y): x2 + (y - I)':: 1/ 4}? 

4. Consider che linear t.ran.~forrnation 1' : R:2 ..... R1 given by 

x =: au + bv, y = cu + dv 

(a) Fi.DJ Jhe Jacobi.an 1 of T. Show that T maps the unit squ.u-c [O, IJ x [O, IJ in the uu-plane 
onto a parallelogram in the xy-plane whose area is IJ 1- (Make use of Problem 2.) 

(b) lf A' is an arbitrary bounded sei in theuv-planeand the boundary of II' has measure O, lhen 
one can prove that in general 

arca(T(A')) = iJ: · area(A') 

Verify that tlJis formula holds if r is given by ( i) in Ex:imple 1 and A' is the set in Fig. 2. 
(See Note l for the definition of sets of measure 0. and Section IJ. l for Jhe definition of 
the boundary of a set.) 

1W 5. Let A 1 be the set ((.r, y) : x2 + y2 :::'. I ) and lee Ai be the set in Rz bounded by Jhc lines 
y - 2r ~ - I, y - 2.1: -= 1, y + 3x = 4, and y + '.lx ""8. Compute !ht: follo"ll<illg integrals by 
int.rodudng suit.1blc sub~titutic>o.s: 

(a) /1
1

( 1 - x1 -- /j dxdy (b) f 1i (.t + y) d.1:dy 



: HAPTER 4 I TO PI C S \N INHGR AT!ON 

4.8 

PLE 1 

Generalized Double Integrals 
So far. rhe treatment of multiple i.otegrals in this chapter has dealt with integrals ofbQulldcd , 

continuous functions over bounded set~. We now consider briefly the p roblem of defining 

double integrals when the domain of integration is infinite and/or the integrand is unbounded. ·. 
We begin by considering a type of double i,,tt:gral frequently encountered in statii;tic:;, 5 

F (x , y) = {~J_~ f(u , v) dvdu (1) 

The definition of this double integ ral is straightforward if we recall the- standard way of 
defining integ rals of one variable functions on unbounded intervals. We let F(x. y) = 
f:_:o G (u , y) du, where G (u, y) = J~. f (u , v) du. The latter integral is, by definition, 

f!.00 f(u, v) dv = limN-+oo f,!N f(u, v)dv, provided the limit exists. Then F(x, y) 
J~"° G(u, y) du = limM-,oo f~M G(u, y) du, provided this limit also exist~. 

Evaluate tlw integral (1) for x ~ 0, y ?: O if j (u, 11 ) = fe-!" 1-M. 

Solution: Since e-l11H "I = e- l•le-1•1, we get F(x, y ) = ! f:_
00
f ~cc e- l•le- 1••! dv du = 

1 J:.,,,e--;,,f du J!,:,c.e-!"1 dv . Since lul = 11 if u ?. 0 and ju; = - u if u < 0, we find tJ1at 

I:.ooe_,,,, du = t,,,e• du+ fo' e-• du = l~::o e• + l~ - e-• = I + ( -e-X + 1) = 2 - e-X. 

Similarly, f !.Q()t:-W' d u = 2 - e- Y, and so 

Note that if x - oo and y - ex.>, then F (x , y) .... 1. 

In the last ex.ample it is natural ro define J::,f:.:, f (u, v) d v du = I. In general, if we · 
incegrate f (x, y) 2: 0 uver A = ,e = (-oo, 00) )( (-oo, oc-). it [ UU)S out that we can 

clcfine 

roo le<.> f(x ,y) dxdy = Jim 11 f(x,y ) dx dy 
.. -co -o.> n.-,oo Ac 

(2) 

where A" = [-n, 11 J x 1-n. n ]. (Check that this de6ni tion g:iv~ the correct result in 
Example J.) Problem 4 shows what can go wrong if we remove the assumption that 
I (:c. y) 2: o. 

Conside{ more generally a bounded, continuous function f defined on an unbounded set 

A in th.e plane. We a.~sume that f (x.. y) ?. 0 , since tin,; simplifte$ matters somewhat. Our 
problem is to find a sensible definition of the double integral off (x, y) over A. Our point 

of departure is the fact that we already have defined the double integral off (.T, y) over each 

c losed, bounded subset of A. Let .-4.1, A1, . .. be an increasing seque nce of closed, bounded 
~ubscts of.A, so that 

,'\ 1 £ A2 <::· · · £ An ~ · ·· £ A 
·--··"·· ····--·,···-····----
5 Jf the two r:rndooi vari3ble~ X and l' have a joi.nt distril>mion determined by the probahili1y dcn$ity 

function f(x . y), lh,~n F(x . y) i.~ th(' cumulative ilisuibution function. For f to be a valid density . . .. . 
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We shall say that A., converges w A if for each dosed, bl.~undcd subs<.'t A' of A there exists 
a number N .such that for each n :::. N we have A' £ A,.. H this is the case, we define 

!"{ J(x,y)dxdy= Iirn_ f "f f (:r:, y)dxdy .J A n-..0v ),Aon 
(3) 

if the limit exist:;. One can prove that if the lim.itexists for one such sequence {A~} converging 
to A, then it will also exist and have the same value for any other sequence of this type. 0111:: 

can try, in each case, to choose a convenient scquenc:e of the required type. ff the limit in (3) 

existS, we say that the double integral of f over A converges. If no t, we say that it diverges. 
In order to show that the double integral off over A diverges, it is obviously enough to find 

one such sequence {A. } a.5 described above for which the limit in (3) does not exist. 

Compute Ji e-<x
2 +,1

> dx dy when A is the whole xy -plane (A = R2), (a) by us ing 

An. = {(x, y) : x 2 + y2 :s n2
}; (h) by using Bn = {-n , nJ x [- 11 , n]. Use the results to 

prove the Poisson integral formula (4 .3.3). 

Solution: (a) The conditions for u~ing (3) are satisfied and, using polar coordinates. 

!
0 
= 1· { e-<x''"',2) dx dy = { 2x ( f" e- /1 r dr) dO 

l.1. Jo lo 
= f

2
"(·1n<-~e-'0)) d(I = ! (1 - e- nl) f

2
" de= it (l -e-"2

) - 1E lo ,o 2 2 lo r.-oc 

It follows that the given double incegral is convergent, with value rr. 

{b) The integral over Bn is J,. = ff». e~•
1
+,il dx dy = 1: .. u~ne-x"e- Y' dx)dy. Since 

the integrand is separable, In = (!~., e-"' dx)(f~,. e- Y' dy) = (f~n e-x' dx)2. And since 

A0 £ Bn £. Ai,, for all n and e-<xz+,i) > 0 everywhere, ,r(I - e- "2
) :5 {!~. e-x' dx)2 :S 

ir(l-e-4n\ Takinglimitsasn - oo, weget .7 = u:_...., e-x' dx)2,so f':x, e_,,a dx = fo. 

By symmetry, Ju°" e-x
1 

dx = ! .fir, the Poisson integral formula. I 

Unbounded Functions 

This section concludes with an example showi11g how co extend the definition of double 
imcgrals to certain unbounded functions deli ncd over bounded sets . The idea resembler; the 

one associated with the definition (3). For more details, see Protter and Morrey (1991). 

E :<Al,IPLE 3 The fu.nction / (;x, y ) ::: (x2 + y2)-r, p > 0, is not bounded over the sec A detem 1incd 

by O < x 2 + y2 ~ l, becatt~c f (x, y) -+ oc as (x, y) -4 (0, 0). The double iutegrai 

- - - -dxd v 11 ( 
A (x ' + y2)P . 

is therefore so far not defii1ed.. Felt' 11 = 1, 2 ... . , ]eL /\ 0 be the d rcular ring (or anm,­
, ... , -'-""- 1 h u 1 , ~ 2 , . ,2 .J. v2 < I 1br.n A, . ,h ... . fof1Jl an iucreasinll, Se.Jueni;c nf 

':); \ .. 
' ' ' 
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sets A1 ~ .42 £:: · · · C An £ · · ·, and, a~ n incrt·ascs, An will "tend to" the $Ct A = 
/ (.t , y) : 0 < x 2 + y2 ~ I}. because U~ 1 A., "" A. The double integral off is defined 
over the set An for each n = I. 2, ... . Indeed, by introducing polar coordinates, we obtain 

!1 l 12,r 11 
I 1~" ·11 

. In= -( 2 ." -) dx dy = ( --:,-r dr)do = ( ,.•-2Pdr) do 
A. X + Y~ p O l/n r •P O 1/ n 

It follows that In = 211' ln n for p = 1, while In = Jl'(J -· n 2<P- 1i )J(l - p ) for p :/ !. If 
p < 1, then n2(p -l ) -+ 0 as 11 - :xi, and /,. -+ 1'/( I - p). If p 2: I. we see that I,, does 

not tend to any limit On the basis of this observation, if O < /I < l, we say that the integral 
is converge nt, Ytith a value ll'/ (1 - p ), whereas we say that it is divergent if p.::: 1. I 

MS ~ 0 R SEC Tl ON 4~8--:....--------

@) 1. (a} Compute the value oftne double integral /1 -- 1
- -, dx dy . 

. ,, ... p~l (.x2 + y2)· 

(b) Discuss the convergence (for different values of p} if we replace the integrand in (a) with 
(x2 + yz) -p, but keep tbe same domain of integration. 

2. lf I(z) = J':, (!~:,: f(x , y) dy) dx !hen, under appropriate conditions on f(x, yj, compute 

l '(z) by o~ing Leibni1.'s rule. 

3. (a) Let f(x , y) = k /1-=.x1 -· yi_ f ind a value of k such that Jf:~02..._1 f(x , y)dx dy 
= 1. (Then f(x. y) is II joint density functi<:>n for two sta<:bastic ,·ariabfos-X and Y .) 

(b) With the vruue of k from part (a), lind the marginal (!cnsity of X, which is d~fined as 
fx (x) = f x:+yl:<.1 f(x , y) dy. 

@ 4. Let I (b, d) denote the double integral in Example 4.4.3. Find the two limits 

lim [ Jim 1 (b, d)) and lim [ fun J (b, d)] 
b-- oo J-+w J-+ro b-r,o 

Wbatdo your answers tell you about fccloc (y - :t)(y + xr·3 dxdy? 
.1 1 

5. Prove that iftlte> function F is denned by (l), then unde{ appr<.•priate conditions. F~2(x, y) = 
f(x. y) . (Him: Use Lcibni:r.'~ rule.) Vt-rify this ~uality for lhe function in F.umple I. 

HARDER PROBLEMS 

@ 6. Compute (a) J l~ (x2 + / + l}-3/2 dx dy Jl 
e- c.,·-,i'1 

(b) - · .. - --- .. dx dy 
ai I + (;c + y)2 . 

@ 7. Checlc whclhe:r the following d<•nblc integrals converge and, if they do, find their values. 

(a) 1·r . ··2 x~~ ;;fi dxdy (b) 1·r - ln(.~~.: ( l dxdy 
lo--.,1':r st 1.x + .r) J,. ,Ix• .,. y2 

In (b) Jet A= { (x, y): 0 -~ x 2 + y2 :::: I , x ·'.'. 0, y ~ 0 }. 

DIFFERENTIAL EQUATIONS I: 

FIRST-ORDER EQWAli-lONS 
IN ONE VARIABLE 

. .. the task of the theory of ordinary differential equations is 
to reconscruct the pasc and predict the future of the process from 
a knowledge of this local law of e~/urion. 
- V. I. Arnold (1973) 

Economists often study~he changes over time in economic variables like national income, the 
interest rate, the money supply, oil production, or the pri<:e of wheat. The laws of motion 

governing these variables are usually expressed in terrm of one or more equations. 

If time is regarded as continuous and the equations involve unknov,,n f unctions and their 
derivatives. we find ourselves considering differential equations. In macroeconomic thc!ory es­
pecially, but also in many other areas of economics, a certain knowledge of differential equations 
is essential. Another example is finance theory, where the pricing of options now requires quite 
advanced methods in the theory of differential equations. 

The sys tematic study of differential equations was initiated by Newton and Leibniz in the 
seventeenth century, and this topic is still one of the most important in mathematics. 

After the introductory Section 5.1, ,he short Section 5.2 merely points out how to draw a 
direction diagrarr., and how solving a differential equation is equivalent to finding a curve whose 
tangent cit each point is given by the direction diagr.im. 

Section 5.3 gives a systematic discussion of separable differential equation~. i.e. equ;itions 
of the form x == f(t)g(x). 

Section 5.4 concentrates on the sp«ial properties of first-order linear differential equations, 
first with constant and then with variable coefficients. Sever.ii economic eXclmplQS are studied. 

Section 5.5 desils with exact equations and integrating factors. Ex;ict eq11ations appear less 
frequently in economics and this section is tnerefore in small prin:. 

Although only a fow type5 of differential equatiol'.S have solutions given by explicit formulas, 
Section 5.6 shom how a clever choice of new Vilri.itJles can sometimes help with ~eemingly 
ir.so!ublc equ.itions. 

Section 5. 7 considers wha1 rwalrtative properties of a solution can be ,nterrf!d. even if thr. 

equation cannot he sot·,ed c1natytic;illy. 

finally, Section 5.8 i, concerned with existence and uniqueness theorems for first-order 
('('JI t,1tic",r)~ 



HAPHR 5 ! OIFF E REN 7 1Al ~0UATION5 I: FIRST-ORDER EQUATIO NS I N ONE VARIABLE 

; . 1 Introduction 
Wlrnt is a dif:Ierential equation? As the name sugges~. iris an equation. Unlike ordinary · 
algebraic cqi.aatlons, in a differential equation: 

(A) The unknown is a function, not a number. 

tB) The equation includes one or more of the derivatives of the function. 

An ordinary <iillerenrial equation is one for which the unknown is a function of only uue·· 
variable. Parnul differential equmion., are equations where the unknown is a function of rwo 

or more variables, and o ne or more of the partial derivatives of the fu nction are included. 

In this c lulpter we restrict attention to first-order (ordinary) differential cquatioM-tb.at 
is, .-:quations -where only the fast-order derivatives uf the unknown functions of one variable 
are included. Three typical examples are: 

i = ax, x +ax = b, x + ax = bx2 

With suitably chosen constants, these describe natural growth, growth towards a limit, 

and logistic g rowth, respectively. (Recall that we often use dot notation for the deriv~tive, 

.i = dx./dt, especially when the independent variable is time i.) Oilier examples of tirst­
order differential equations are 

(a) x = x + t (b) k = a(! K + Hoe.1" (c) k = sf (k) - H 

Jo Examples 5.4.3 .u1d 5.7.3, rci;pectively, we shall give equatic,os (b) and (c} interesting 

ecooomic inte rpretations, both concerning the evolutio n of an economy's capital stock. 
Solving e<)uation (a), for instance, means finding all functions x(t) such that, for every 

value ofr, the derivativex(t) of x (t) isequalto x (z)+ t . In equation (b), K (t) is thcunk.no~n 

function, whereas a, Cl, Ho, and µ, <1re constants. In equation (c), f (k) is a given function, 
where.ass and). are constants. The unknown function is k = k(t) . 

NOTE 1 '.Ve o ften use l to deuote the i ndependent variab le. This is because most differential 

equations tha t appear in economics have time as their independent variable . The following 
theory is valid eveo if the independent 1>ariable is not time, however. 

A tirst-order d ifferential equation i.~ written 

x == F (t, x ) (I) 

where F is a g iven func tion of two variables and x ""' x(t) is the unknown function. 

A solution of (J) in an interval I of the real line is any diffe.entiab lc function ,p defined oo 
f such tha1 x = IO(I) satisfies (I), 11:tat is ¢,( r) : F (z, q,(I)) for aU t in t .1 The graph of a 
rnlation is called a solution curve o r an integral CW-Vt'. 

'Iheequati'l.)ns (a). (h), and (c) are all ofthe fonu (l ). For example, c.a) becomcsd.t /dt = 
F (1, ;;c) with P (i .x) = x + t . 

- .. - - - ·-- -·---··· '""''"' 1 Usually we :\..,.,urne. that the intcrVi'tl l is ope11. hut s.-.metime, it is use.fut t•.> ~llow closed (or half-
o~~J) im;:~a.l~. If I_ i:s a closed inler,,aJ, ;1 S<olution i~ (~quired to t,e. continuous 011 I and to satisfy 

EXAM PL 

•··.· 
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Consider the differcutial equa tion 

(a) Show thal both x "f:! - r - l and x = e' - t - 1 are particular solutions of the equation 
over the entire real line. 

(b) More generally, show that x = Ce' - t ·- l is a solution of(*) for all t , whatever the 
choice of the constant C. 

(c) Show that x = e1 
- I is not a solution nf (*) . 

Solution: 

(a) lf x = - t - I. theo x = -1 and x + 1 = (-r - 1) + t = -1. Hence, x = x + 1 forall 
t in this case. lf.t = e' - t - J, then ;i- = e' - land x + t = (e' - t - l) + t = e1 

- I. 
Again we see that ( *) is satisfied for all t. 

(h) When x = Ce' - J - 1, we have±= Ce' - 1 = x + t for a U t. 

(c) Jf x = e' - I , then .i = e' and x + t = e' + 1 - l. fo this case., xis only eq ual to x + t 
fort= l, so x = e' - 1 is not ;i solution of equation(*) on any incerval. I 

fuample 1 iilu.strates Che fact that a differential equ;ition usually b.as infinitely many ~olu­
tions . We found that x = Ce' - 1 - 1 was a solution of x = x + t for each.choice of the 

constant C . The answer to Problem 5.4.3 shOW$ that no other function satisfies the equation. 
The set of all solutions of a differential e-quation is called its general solution, while any 

specific function that satisfies the equation is callc<l a particular solution. 

A first-order differeotial equation usually has a ge neral solut\011 that depends on one 
constant (Problem 5 shows why we mus1 use the word "usually" in this statement.) If 
we require the solution 10 pas.s through a give n point in Lhc ix-plane, then the constant is 
determined uniquely, except in special cases. 

Assuming that the general solution is .t (t) = Ce' - t - .l, find the solution uf .i: = x + t 
that passes lb.rough the point (t, x) = (0, 1). 

Solution: To make the solution x(t ) = Ce1 - t - I pass through (t , x) = (0, l ), we must 

have x(O) = I . Hence, l = C e'1 - 0 - 1, implying that C == 2. The required solu1ion, 
therefore, is x (t) == 2e1 

- 1 - l.. I 

Toe problem in Example 2 is this: fi nd the unique function x (r j such that 

x (t) = x (t) + t and x (O) = 1 

If t = 0 den()tcs the initial time, then .:r. (0) = t is .::illed an initia l condition and we call 

( *) an initial-value problem. 

Such iniciiil-value problems arise natun!.lly in many economic models. For instance, 
suppose au ecouomic growth model iI1Yolve11 :i first-<irdcr differential cqtwtion for the accu­

mulation of .:-apir,1l over time. The initial sto..:k of capital is historically given, ;md there-fore 
hcloo LO dctemlinc the unique solution of the equation. 
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Qualitative Theory 

When the theory of differential equations w,,s first d.:veloped, mathematicians primarily fried 
to find exp! icit .~oluuons for some special types of equation_ lt bec.:ame increasingly obvious. 
however. that. only very few equations could be. solved this way. In many cases, moreover, 
explici t formulas for the solutioni; are not really needed. Instead, the main interest is in 
a few important J}l'Opertics of the solurion. As a rcNUl t, the tht'Ory of diffei:erttial equations 
includes many rcsult:i; ..:oncerning the genera.I behaviour of the solutions. 1h.is i.s th.e so-called 
qualitative theory. Its main results include existence and uniqueness theorems, sensitivity 
analysis, and investigations of the stability of equil ibria. Such topics arc of hoth theoretical 
interest and practical importance, and will be discussed iu some de(ail. 

Along with this qualitative theory, much work has bee;,n put into developing useful nu­
merical methods for finding approximate solutions of differential equations. Computeri; are 
playing an increasingly important ro le here, but these developments are not discussed here. 

SH HON 5 1 

1. Show that x (I) = Ce-1 + kc' is a solution of the differential equation _i (I) + x (t) :: e' for all 
values of the constant C. -

2_ Show that x = Ct 1 is a solution of the differential equation ti, = 2-, for all choices of the 
consmnt C. Find i~ particular tlle inwgral curve tbtuugh (l, 2) . 

3. Show that any function x == x(t) that satisfies the. equation xe'" = C is a solution of the 
di:tferentfol equatiC'll (1 + rx)x = -.T2. (Hint: Differentiate xe'" "'" C implicitly w.r.1. t.) 

4. Jn each of the following cases, show that any function x = x (r) thar satisfies the cq\Jation 011 

the left is a solution of the corresponding diffaential equation on the right_ 

(a) x1 = 2.it, 2xx = 21 .;z + a (a is a .::onstant) 

(h) fr.'2 
+ e-'(x + l) + C = 0 , xX = te'1+,\· 

(c) (I - r)x1 :::: t' , 

5. Sh.ow that x ,·a C l - C2 is a solotion of the differential equation i 2 = rx -x, for 1ill values of 
the constant C. Tb,m show tb;,1 il is not the general soh,tion b~c:111sc x ,,, l 12 is lliso a solurion. 

HARDER PROBLEMS 

6. Tiie func tion x = x(r) sanstics x(llJ '" 0 MJ the diffc:rcntial equ~1ioo .i ·,a (l + x2)1 for all tin 
au open inrerv~l / a10uo,i 0. Prove that t = 0 i~ a global minimum point for x ( t ) in I . and thal 
I.be functi<>ll .t is convex on I. (flu,t: You do not have lo solve the- equation.; 
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5.2 The Direction is Given : Find the Path! 

Consider again the differential equation x = x + t. which was studi~ in E.'{amp)es 5.1.1 and 
5.1.2. If x = x (1) is a solution, then the slope of the tangentto the graph (or integral curve) 
at the point (t , x) iseqli:11 tox +1. At the point ( t ,x) = (0, 0) the slope is therefore equal 
to 0, whereas at ( I . 2) the slope is 3, an.d so on. In Fig_ l , we have drawn small straight- line 
segments with ~lopes x + t thnJugh several points in the. Ix-plane. This gives us a so-<allcd 
direction diagram (or slope field) for the differential equatiou i = x + t. If an .i.n tcgral 
cw:vc pa~ses through one of these poioL~, it will have the corresponding line segment as its 

tangent This allows us to sketch curves that follow the direction of the line segments, and 
get a gener.11 impression of what 1llc integral curves <>f x = x + r must look like. 

: ~ : I ,!1 , I): 1 : : : 
~ r 12 I / • 

\\ / !// I l l 

\ \ ...:: , ·· .,,. 1 / '/ i : I ; 

\ \ \ , , , - // I I I I 

•-II• ~.3 I -2 -1--n-! Z 3,. ·+ t \ \ \' -·/ /// 

\ \ \ \ \ \ ~ J , - ~- /I ! I 

\\ \', \\ \ , ,- -·// / 

Figure 1 A direction diagram for x = x + t. 
Toe integcal curve through (0. 0) is show11. 

A direc tion diagram like this can be drawn for any differential equation of the fonn x = 
F(r, x ). (Computer programs like Maple and Mathematica enable us to draw direction 
diagrams and ~olution curves with ease.) Whether or not it is possible to solve the equation 
explicitly, a direction diagr.im can give a rough but u~eful indication of how the integral 
curves behave. In a nutshell, the problem of sohing the differential equation i: = F (t , x) 
can be put like this: lhe direction is giveo, fi nd the path! 

PIIOBLEMS FOIi SECTIOIJ S 2 

1 . Draw a direction diag.rn.111 for the differcatia.l equation .i: = x / r and draw $Orne integral , urves. 

8 2. Draw g <lirnctinn diagrMJl for the. dift'ercniial equation :i :e -r i .c and <lruw the integral curve 
through {'>. '2). 
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i.3 Separable Equations 
Suppose that ;:i = F(t, :x.). where F'(r. x} can he wriucn as a product of two functions, one 

of which depe-nds only on t and the other only on x. Specifically, supp,.1sc that 

.i = f(t)g(x) (]) 

We say that this differential equation is separable. For ins1ance, x = -2tx2 is obviously 

separabl.e, whereas i = t 2 + x is not. (Prohlem 7 offers practice in deciding if a given 
equation is separable. or not. Since separable equations are among those that can be solved 

in cenns of integrals of known functions, it is useful to learo to distinguish between separahle 

and non.separable equations.) 
A particular solution of ( 1) arises if g(.x) has a zero at x = a, so that g(a) = 0. In this 

case x(t) :e a will be a solution of the equation, because the right- and left-hand sides are 

both O for all t. For instance, x = (x + l)(x - 3) has the two particular solutions .x (t) ~ -1 
and.x(t) e 3. (lnadditionx = -1 +4/(l-Ce4

') isasolutionforall values of the constant 

C. See Example 4 with B = I, a= -1, and b = 3.) 
Using differential notation, a general method for solving ( l) can l>e expressed as follows: 

0 FOR SOLVING SEP'A BL!;, DIFFERENT! L t(l.UATIONS: -------·-··--.. -·1 

I (A) Write equation (I) as 

(B) Separate the variables: 

(C) Integrate each side: 

d:c 
di = f (l)g(x) 

d.x . - = f(t)dt 
g(x) 

f dx = j f(i)dt 
g(.t) 

(D) Evaluate the two integrals (if possihle) to obl.ain a solution of(*) (possibly 

in implicit. Conn). Solve for x, if possible. 

(E) In addition, every zero x = a ~,f g(x) gives the con~tant solution .x(.I) = a. 
i 
! 
i 
I 

,...,_...___._ ......... ,. ... ,-.. ·--···"···· ...... --.-.-...•.... , ............... ,. .. ·····'···-·-· ._._. ............................ _....._._. ........... -..-------·., 

To justify the n,ethoo. ~uppose that :r "'' ,p(l) is a fuaciion defined in an in1.erval I sucb rhat g( q,{t)) f 0 

throughout l. Th,:n:,: = ,p(t} will solve ( 1) iff 

~~(z) . 
---:- = j(t) 
g(fl)U)} 

for all r in I. B \.It the~ rwo Jiloc1.io11s are c,'tnal in I iff 

I- ,j,(t) r . . 
--,.--: .. :"~ d1 = j (f J dt 

~ AMPLE 1 
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Suppose. we subsrituto: x = '()(I}, so that d x = ri>(t.l di in the integral on the lcfl.-hand si<k .. Then 
accon1ing to the mle of inlcgration hy substitution. the lasr i,quation is equivalent to 

I .. ~x. "'f f(1)J1 
g~:t:) 

Thus. G(x) = F{1) + c;';,..,herc G'(x)"" lfg(.l). F'(1) = j(t). and C is a con~tant. 

NOTE 1 Suppose the function G(x) is deliu.:d on an interval I where eicher g(x) > 0 

everywhere, or g (x) < 0 everywhere. li G(L) ::: ~. then a solution x(1) exists for all I E: ~. 

with values in{. But if Gt/) is a proper subset of~. then x(t) "" o-1(F{t) + C) is a 

solution only for a restricted range of values of C and t. 

Solve the differential e.quation 

dx , 
- = -2EX"' 
di 

and find the integral curve that pa~scs through (t, x) = ( 1. -1). 

Solution: Vfe observe first that x(t) !!c O is one (trivial) solution. But this does not go 

through (1, -1), so we follow the recipe: 

Separate: 

lntegrate: 

Evaluate: 

dx 
-2 = 2tdt 

X 

J. dx r ., 
- x2 =. 21 Ill 

1 . 
- = t2 + C 
X 

It follows that the general solution is 
I 

x=---
,2 + C 

X 

I
, ': I l \ t'r·--c,.-2 
i {: / ~ 1 : ~-t--c = -I 
•1: I / ':'\\Ill 1 

r I r , i : 1..L..l.J.+- C •·a O 

J 
11 1; I -l \:; \1 \ 

0
/~1 

\~· 
1
-\--C=li2 ' I I 'I ;\ . 

), , ~--.:~C=l 

~~~r~~· 
1 1 -·U.... '\i.n.·-1) 
i l' / i \ \J -··C,.,-] 

'. I: I ti \ I : -; I 1 , -2 -~ .... ·C <--1 
1 I! ( . I I.· 
']. j ; I.'!. 
I 'I I; l. 
'i : f I [: 

fi!lure 1 'lh,· .solution curves .r"" l/(rZ + C) f,,r particular value.s of C. 
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[ 2 

E 3 

Tt• find the integral curve thmugb (l, -- l), we roost determi.uc ch~ correct value of C . 

Because we require x = - 1 for t = I. it follows fro m (.-.) that - l = I /(1 + C). so C = - 2. 

Thus, the integral curve passing through (l , ·-1) is x = 1/(r'l. - 2). 
P\gure l shows integral curves of the fonn ( *) for five different values of C. The constant 

of integration c111cial!y affect.~ the sbapc of the curve as well as ics position. (Note that when 
C ::; 0, the solution is not defined over the entire real line.) I 

. ·a1 . dx t
3 

Solve th~ <lillerent1 ~uallon dt = x6 + l . 

Solution: We use the previous method, with f (r) = t3 and g(x) = l /(x6 + l). Because 

g(x) is never 0, there are no constant solutions. We proceed as follows: 

Separate: (x6 + I)dx = t 3 dr 

Integrate: f (x6 + I) dx = f r3 dt 

Evaluate: 

The desired functions x = x(t) are those that satisfy the last equation for all r. 

NOTE 2 \.Ye usually say that we bave solved a differe ntial equation even if tbe unknown 

function (as shown in Example 2) cannot be expressed explicitly. The important point is 
that we. have found an equation involving the unknown function where the derivative of that 

fun<:tion does not appear. 

(Economic growth) Let X "" X (t) denote lbe national pt<Xluct, K = K (t) the capital 
stock, aod L = L (t) tbe number of workers in a country at time £. Suppose that, for all t ~ 0, 

(a) X = A K 1 _,, L" <h) k. = s'X (c) L = Lo/·' 

where II, a, s, Lo, aod .l are all positive constants, wi1h a < J. Derive from these equations 
a single differential equation to determine K = K(t), aml find tJ1e solution when K (O) = 
Ko > 0. (This is a special case of the Solow-Swan model discussed in Example 5.7.3. 

In (a) we have a Cobl>-Douglas production function, (b) says that aggregate investment is 
. proportional to output, whereas (c) implies lh,lt the labour force grows exponentially.) 

Solution: From the equations (a}-(c), we dctj.ye the single ditJerential equ.ation 

)(- dK -· r 'I.Kl -aL" -r,\J"e"''Kl- a - dt - . J - • • •() . 

This is clearly separable. Using the recipe yields: 

K"'- 1 d K = sAL0eaA, dr, f K ,,_, d K = f sAL~e";., di, .!_ K ., = _!_sALot'.:.: + C 
ct a)-

If we put Ct = a C, we get K" == (sA/}.)J,ge").' + Ci H' K = Ko for r :::: 0 , we get 

C1 = Kt·- (.sA/A)l.g . Therefore the solution i~ 

K [Ko+ A '')l"( "';,.' l )·,ifn :::-: r, (s / A .... 0 .e - . 

SC(.' Problem 9 for a clcJser examin:,t'ion of this modd. 

SE CTION 5.3 I SEPAR ABLE EQUATIONS 

EXAMPLE 4 Solve the following diffor.:mi,'1 equati,,11 whc.n c1 ,f:. b: 

dx . - = Blx - u )(x - b) 
dt . 

197 

In particular. find U1eso~tion when B = - 1/2, a= -1, and I> = 2. and drnw .some integral 
cun·e~ in tbi$ case. · 

Solution: Observe that 1:>otb x "'a and x ;.;: bare trivial solutions of the equation. In order 

to find the other solutions, separate the vari<1bles as foll(•ws. Fir.st, put all terms involving x 
on the left-hand side, and a1l temlS involving ton the right-hand side. Theo integrate, to get 

J · 
1 

dx = f Bdt 
(x - a)(x - b) 

The oext step is to transfonn the integrand on the left. We find that 

_ 1_ 1(1 l) 
(x - a)(x - b) = b - a x - b - x .:._-;_ 

(Verify lhis by expanding the right-hand side.) Hence. 

·1 l dx = _I (/ -1 dx -f - l dx) 
(x - a)tx - b) b ·- a x - b x - a 

Except for an additive cons tant, the last expression equals 

I l Jx -bl - -(In Ix - bl - !nix - al)= -- In - ­
b - a b - a Ix - al 

So, for some constant C 1, the solution is 

l Jx- bl 
-- Jn--= Bt+C1 
b - a Ix - al 

with C, = Ci (b - a). So 

l r - bl = ell(l•- ait+C1 = CB(b- ul1 eC: 
x-a 

or 
I

x-bl In -- =B(b - a)1+C1 
;X - a 1 

or :._-:- b = :f:l'C1 CB(b--a )r :=. CeB(b·-o)r 
x-a 

after de!ining the now constant C = ±ec2• Solving this last equation for x finally givc:s 

d.t b - aCeB(b-n)I b - a 
- ::: B(x - a)(x - b ) ..;:=> x :::, = a + --- -- (2) dr · I _ Ce.B(b- n)r · I _ Ce.Bl.Ir·")' 

For B = - J/2, a== -1, and b = 2, tJ1c differential equation is i = -} (x + l)(x -2). 

Note that x is posilive for x between - I and'.!. Hence, tbc integral cun'CS rise with t i.u the 

hori;,.,onlal strip between lines x = - l and x = '2.. In the same way, we can S(,'e directly 
from the di:fforential equafa)n that the integr,iJ curves arc falling above and below thi~ st.rip. 

In addition to the const.mt solutions x = - 1 and x = 2, indicated by da~he<l horizontal 

lines in Fig. 2. we see that lbe general solution of rbc: equation i = -! (x + 1 )(r - 2) is 

3 
X =-I+ ·---- ""' ' I - CF.·-J,f1 

Some of tht' 11ssociatcd intcsiral curves a.r.:: ~hown in 'Fi" ?. 
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... 
3 ; \ ¥_..-C= I 

; "-
2 + < "'"'= 

"' C ))' ... J/ 2 

/ 
---- . ·---+-- -+-- ~' - 4 -3 2 3 4 

-:·:\ :;···········-· ······· 
1-Jf 

Figure 2 Some solution curves for :i = - f (x+l)(x - 2). 

NOTE 3 lo the St:COnd part of ( *) we r¢moved the absolute value sign around the fraction 
(x - b)/(x - a ) . and replaced the fa«or eC:i by ± ec2 , where we use + if the fraction is posi­
ti,·e, - ii it i~ n<:g:ttivt:. We claim that the $igll must be tbe same for all t in the int.:rval where the 
solution x = x (t) is <lefined: this is because x must be continuous, and (*) was derived usiug the 
a.5sumptioo tbat x ditTe.rs from a and b everywhere. Therefore, (x - b)/(x - a) is continuous and dif­
ferent from O ill the whole domain of x. If follows that the fraction has !he same sign everywhere-if 
not. the ioccrmediate vnlue lhcorem would imply tl!at the fraction must be 1.ero for some 1. H= 
the factor ±ecz has the same value for all rele,·anc values of r, i.e. it is a constant factor (dunotcd by 
C in (•)). 

(Compound interest) Suppose that w = w(r) ;:,- 0 is !he:: wealth held in an investment 
account at time t, and that r(t) is the interest rate, with interest compounded continuously. 

Theo 

W = r(t)U! 

which is a separable equation. Separating die variables and integrating yields 

f dw j - = r(t )dt 
l/,1 

Therefore, 1n w = R(t) + C1 where R(t ) = f r (t ) dr. So 1he solution is 

after introdudn g the new co11stant C ::: ec,, Suppose che initial value of the account is 
w(O). The.n (**) implie.s that w(O) = Ce R\O) , so C = w(O),!-RcllJ and l**) becomes 
w(t) = 111(0)<!' .l<(:)- RCO). But R(t) - R(O) = .rc: r(s) ds , and so 

u, (t ) = w(O)eJ; , /,l ds = w(O) cxp { r (s)tlr 
.n 
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) pj!)BLEMS FOR SECTION 5 3 · ... - .. ..;..;,, .. . 

1 . Solve the equaci on x 1 .i = r · t- 1. Fi.o.,l the inccgral curve through (I, x) = (l . 1) . 

2 . Solve the following .Eliffereotial equations: 

(a) X = 13 - I (b ) x ::.. u' - t 

~ 3. Fiud the gcnl!ral solutioos of the followi.ug differential cqu:itioos. Also find th~ integr.il curves 
cllrough the iill1icated points. 

(a) d = x (l - t). (41, xo) = (1. 1/ e) 

(cj x.i = t, (lo . .xoi = 1-h. I ) 

(b) ( t + ,3).r ~· r2 x. (to. X-O) •= (O, 2) 

(d) e2
' x - x2 

- 2. = l. (ro, XI)) = (0, 0) 

4. Find the gener.tl solution of x + a(t)x = 0. In particular, when 0 (1) ==a + btJ (a, h. and c arc 
positive; c 1" !) show that the solution of the equation can be written in the, form x "'Cp'q" , 
where p and q are coostanL~ detcnnioed by a, b, andc, when:as C is an arbi1rarycoostant. (This 
is Gompertt- Makebam 's law of mortality.) 

5. fa.plain why biological populations that develop a5 sugg.ested in the figures A. and B below 
cannot be described by difforcutial equatiollS of th.e form Ji,/ N = f(N) , no matter bow the 
function f i~ choscu. (N (1) is the size oftbt> population a1 time 1.) · 

N 

l ~ 
.v r-1--·-··-r-------

r : : 
IJ 

Figure A 

- --- + 

N 

r --· N = N(t) 

-+-- --·- - - --·-- -H 

F",gure B 

@> 6 . Find x :::: x(I) when El, x = t.i/x, the efascicity ofx(r) w.r.t. r, $atisficsthe following equations 
for all I > 0: 

(a) El, x = a (b) .El, X :<e Ql + b (c) El,x = ax+b 

7. Decide which of the following differencia\ tquations arc separable: 

(a) x "" x
2 

- J 

(d) x:i= <!' 1 1J 1~,2 

(b) x = X I + t 

(c) x "'- y;i + x 

{C) X = XI+ I ~ 

(!) x :.: F (r) + G(.r) 

@> 8 . The follov.ing differential eq\1ari1Jns have been studied in economics. SulV¢ them. 

(a) f< = An0a1' K" ···,J,w+<)r , b - <' I,: 1, av + c f' U 

. (jl - a x)(x - a ) 
(bl x - · ·--.. ·-- -- - . a ;.• 0 . . 8 > 0, a > 0. cw j.·. {J 

.t 

(/liru: ~ .. _, _ _ x _ _ ._ ,.,, ... ,--
1-(--P- + --·"!- ) .) 

• , ,, •••• )/... ,.\ /.I. ••• '""" 11 .... ~.., •. y .... ' " 
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HARDER PROBLEMS 

(§ 9. (a) With refercmie ro Example 3, ~how that K / L tend;; to (sA/>.)11
"' as r -• ~ - Compute the 

limit fo( X/L as t....;. oo. 

(b) Replace equation (c) in Examtllc 3 by (c') [, = b(t + a)I' , where a, b, a.o.d p are positive 
comtant~. From (aj, (b), and (c' ), de{ive a differential equntion for K = K(r). Solve the 
equation when K (0) = K 0, and «x.amine the bc:hlwiour of KIL as I -r oo. 

10, l.Jl connection with tbeir study of Cf:S (constant elai:ticicy of substitution) lltoduction functions. 
Arrow, Chenec:y, Minhas, and Solow were led to consider cbe di fferential ,--quation 

dy y(I - ay") 
dx = --x-- (a and Q areconstanL~, o 1' 0, x > 0, y > 0) 

Use the identity 1/y + aye-1 /(I - ay~) = 1/y(I - ayC) to show that the general solutioo is 

y = (fJ_-.;-e + a)_,,c (tt) 

(Suppose we Jct x = K f L, y = Y / L, and define new constants A and a by A = (a + p)-1 fo 
,tnd a = /3/(a + /J). Then l - a = a/(ct + P) aod a+ f3 "'A-", so a = ( I - u) A-g and 

f) = a A-Q. Now it follows that Y = A[aK-q + /1 - a)L -cr'10
, which is a sp,.-cial form of 

the Cl::1.S production functfoo.) · 

. .4 First-Order Linear Equations 
A first-order linear differential equation is one that can be written in 1he fonn 

x + a(t)x = b(t) (1) 

where a(r) and b(t) denote continuous functions oft in a certain interval, and x = x(1) i~ 
the unknown :function. Equation ( l) is called ''linear" because the:: left-hand side is a linear 
function of x and x. 

The following are all examples of first-order linear equations: 

(a) x +x == r (b) .i: + 2tx = 4t (c) (t2 + l).:i: + /., == t ln 1 

Toe first two equations are obviously of the form (I ). Toe last one can be put ioto this form 
ifv.-e dh·ide each term by t2 + l to get .i: + {e1 /(t2 + l )lx = t In t /(t 2 + 1). 

The Simplest Case 
Comidcr the following equation with a ,md h as constants, whe~ a :/- 0: 

x+ax ::.. b ('.") 

EXAMPt:E 1 
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Let us multiply this equation by the po~ili v~ factor e"1, cnlkd an integrating factor . We 
then get the equivalent equation 

.i:e4
' + axe"' = be'" 

It may not be obviou:f wby we came up with this idea, but it rums out to be a good one 
because the left-hand side of(*) happens m he the derivative of the product xe"' . Thus ( *) 

is equivalent LO 

!!_(.u:a' );:;: be"' (**) 
dr 

According to the definition of the indefini te integral, equation (**J holds for all tin an interval 
iff xet'1 = f be0 • dt = (b / t.t)e'11 + C for some coustant C. Multiplying this equation by 

e-"' gives the solution for x . Briefly foonulated: 

b 
X + ax : b {:=} X = Ce-"' + -

a 
( C is a conslJIDt) (3) 

If we let C = 0 in (3), we obtain the constant solution .t(t) = bi u. We say that x = b/ a 
is an equilibrium stare, or 11. stationary suue, for the equation. Observe how this solution 
can be obtained from x + ax = b by letting x = 0 and then solving the resulting equation 
for x. If the constant a is positive, then the solution x = Ce-a' + b/a converges to bj a as 
t -> oo. u;i this C.'\SC., the equation is said to be swbk, ~use every solution of the equation 
converges to an equilibrium as t approa<.:hes infinity. Sec Section 5.7 for more on stability. 

Find tl1e general solution of 

and determine whether lhe equation i~ stable, 

Solution: By (3), the:: solution is x = ce-21 + 4. Herc the equilibrium state is x ""4, and 
the equation is stable becau$e a = 2 > 0, so x --• 4 as t - oc. I 

EXAMPLE 2 (Price adjustment mechanism) Let D(P) = a - bP denote the demand and S(P) = 
a+ {JP the supply of a certain commodity when the price is P. Here a, b, a, and /3 
are positive constants. Assume that the price P = P(t) varies wi th time, and that P is 
proportional to excess demand D(P ) - S( P). Thus, 

j, = J,.[D(P) - S(P)) 

wherci,. is a positive::constant. Inserting the expressions for f)( P) aodS(P) into th.is equation 
gives P == ).(a - bP - a - {JP). Reammgiog, we then obtain 

P + t(b + /3)1' "". ,l.(a - a) 

According to (3), the solution i.s 

P = ' ' i ... 1.(1>+e>, + ~ 
'" . . h + fJ 

Because i,.(b + f,) is positive. as c t~nd~ ro infinity, f' converges to the equilibrium pri..:e 
P' = (,t, .•. /'I') /{I, -l- fl) for whir.h /)( p t ) -,,, .W µ<\ 'l'h»< ,h,. .,,.,,~,inn ;, ,-, .;°h<., I 
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E 3 

Variable Right-Hand Side 

'Ibe methud used co find the solution of (2) can immediately be applied to the following 

case of a variable right-hand side: 

X + (lX = b(f) 

V.-'ithout futther comment, after multiplying by the integrating factor e'" , we find: 

iea' + axe0
' = br_t)e0

' ur, equivalenlly, :, (xe"' ) == b(t)e"' 

so 

xear == f b(t)e0
' dt + C 

Multiplying the last equ:.ition by e- a, yields the solution for x: 

X + 11 .. 't = b(f) *=> :c = Ce-at + e. -m j ea'b(t) dt (4} 

(Economic growth) Consider the following model of economic growth in a developillg 
country: 

(a) X(t) = rrK(r) (b) K (t) = aX(t) + H (t) (c) N(t) = Noe"' 

Here X (I) is total domestic product per yc:u-, K (t) is capitlll stock, H (t) is the net inflow of 

foreign investment per year, ru1d N (t) is the size of the population, all measured at time t. 
In (a) we assume that the volume of production is simply prop0rtional to the cap.il3.I stock, 

with the factor of proportionality a being called the average productivity of capital. Tn 
(b) we as.'lllme that 1he total growth of capital ~ year is equal to internal savings p lus 

net foreign inve.stmcnt. We asswnc that savings are proportional to pruduction, with the 

factor ofproportiouality a be ing called tho savings ratl! . Finally, (c) tells us that population 
increases at a constant proportional rate of growth p. 

Derive from these equations a differential equation for K (t). Assume that H (t ) = Hoe"', 
and find the solution of the differential equation in chis case, given that K (0) == Ko and 

a.pf-µ.. Find an expressiun for x(t) = X(t)/N(r), which is domestic produ.:t per capil.a. 

Solution: From (a) and (b). it follows mat J.: (1) must satisfy the linear equation 

K (t) - aaK(t} = H(t) 

Put H(t) == Hoel'' and u~e (4) to obtain 

K(t) == Ce'"''+ e'n' f e·-»ai Hoe"' dt = CellO't + e'"'' Ho I /µ -«ult d: 

.... r:,,"o-r + I'?'"'' __!!!:__,._e(J,.-"ci' =Ce'"''+ ~ 1- -·e1u 

EXAMPLE 4 
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For c = O. we obtain K (0) -= Ko = C + flo/(Jk - ac; ), so C =- KQ - Ho/(JJ. - a.,:r ). Thus, 
the solution is 

K(t ) = (Ko - _§_ )ea"'+ --...!:!2..._e"' (*) 
ti - <:l.<J' /L - (X(T 

Per c.apita production ii; equal to x(i) = X (t)/ N(1) = o K. (c)/ NoeP'. lf we use the expres­

s ion. for K (t) in (*), ao rasy calculation shows that 

Problem JO asks you to srudy chis model more closely. 

The General Case 

We proceed to find the solution of the geoeral linear equation (1). Toe trick used to solve 

x + ax == b(t) must be modified. We fi rst multiply equation (I) by a suitably chosen 
integrating factor e11(:), to obtain 

XeA(i) + a(l)Xetl(I) = b(t)eA(t) (5) 

Now we need tofiodan A (t) such that the left-bandsideoftbise.quationequals the derivative 
of xeA,tl . But the deri~ative of xe A(c) is equal to xeA(r) + xA(t)e4<1} . We therefore make 

A(t) satisfy A.(t) = a(r) by choosing A(t) = J a(t)dt; chis makes (5) e.quivalent to the 

equatiou 
d dt (_uA(t)) = b(l )e·{(t) . 

Thus xeA(t) is an indefinite integral of b(t)eA<ll , so there eJUsts a constant C such that 
xeAl') = f b(t)eA(l) dt + C. Multiplying by e.-A(r) we obtain 

x = Ce-,1 (ri + e -A(•> f b(i)eM•i dt. where A(z) = f a(t) dI 

T(I summarize, we have shown that: 

F ind the gencr.al solution of x+2rx = 41 and the integra l curve through (t, x) ..:: (0, -2). 

Solution: n,e fonnula in {6) can be u.sed with a(t) = 2t and b(t) = 4r. Then f a(r) dt = 
f2tdt = t']. + C1. We choose C: = 0 so th.it f a{t)dt == t' (choosing another value for 
C1 instead gives the same gen.era! solution). Then (6) give~ 

lf .x: = -2 for t "" 0. thc-n ··· 2 = C/1 + 2 , and so C = - 4. The integral c urve rhrougb 
m. - 2) has the euuation x = 2 - 4e ·· ,;. I 
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The Solution when x(to) = x-0 is Given 

Assume that the value of x(r) is known for r = t0. Theu the ~·onstant C ia (6) is deter­

mined . We d ~r.ive hcrc. tl:le formula for the corre~ponding solution of che equatioa, which is 

sometimes u seful. 
Def1ne F (t) as an indefinite integral of b(r)e·~<•>, where A (r) =: J a(t ) d r and so A(t) -

A(s) = J,' a (~) c1r The SOllltiOn in (6) then becomes 

X(I) = Ce-A\t) + C - A ( t ) /t(r) 

Now let t = to and solve for C tO get C = x(Io)e·~(l>ii - F(to) . l:fonce, 

x (t ) = x(to)e- lA(rJ· .. A(<o)l + e-Mrl [F(t) - F (to)J 

By definition of F(t) , we have F(t) - F(to) = J~, b(s)e-~(si ds . So 

1
1 •I 

e-A(rj (F(r) - F(t0 ) ) = e-A(i) <o b(s)et!(s) ds "" L b (s)e·- [A<r)-AV)I ds 

(We can include e-AV) i111be integrand, because we arc integrntiug w.r.t. s .) Finally, there­
fore, we have the following result: 

x + a(t)x = b(t) , x (to) = XcJ -{=c:> x = xoe-f:,"t~J ds + 1' b(s)e-J;oc~ld, ds (7) 
to 

Wealth A ccumulation 

As io Example 5.3.5, suppose thar the amoumof savings in aaaeeountat time r is w = w(t). 

Suppose aow that lhereare deposits and withdrawals at the rates y(t) and c(r) , respectively. 
If th.ere is continuous compounding of interest at d1c rate r (t ). then wealth at time I follows 
the differential equation 

w = r(t )w + y(t) - c (1) (8) 

T his is clearly a first-order linear differential equation. According to (7), the solution is 

w(t) = w(O)ef; r(, ) ds-+- f [y( r) - c(r)le. f: r(s) ds dt (9) 

Since J: r (s) ds = f~ ,·(s) ds-Jr; r (s) ds,andsincc J; r (s) ds is iodependcmof-r,equatioo 
(9) can be written as: 

{' ' w(t)e- f. ' \S)d., = w(O) + Jo [y(r) - c(t)je- lo r (r)d, dr (10) 

Note that the discount factor to he applied to wealth at tirne t is e - J; r(s) !fr . So equation 
(J.0) ~tate.~ th.at the prei;ent discounted value (PDV) of assc-t.~ :11 lime I is !he sum of the initfal 

as.~~ w(O) and tht" tntal POV or all deposits, minu.< the total PDV of a ll withdrawals. 
If there arc no deposits to or withdrawals from the account, then y(t) = r.(t) = 0 and so 

(8) reduces t.o the separahk t::quatiocJ ti, :::: r(1)w . The general solution is w ·""· Aef r(,.,J,_ 
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Pf. OBL MS r OR SE-C...T ION 'S d 

1. Find the gene-cal soluticm of i. + 1 x = i. Detcm1ine the cq,tilihrium state of the equarlon. and 
e~amioe whether it is ~table. Also draw some typic:11 illtei;ral curv.~s. 

2. Fi DJ tbC general solutions of the following Ii.near differential equ.ati,)IIS: 

(11) i + x = 10 (b) i - Jx = 27 (c) 4.i + 5x = 100 

3. Find the general soluriou of i "" .t + r . (See EX.3mple 5.1. l.) 

4. Fi11d the general solutions of the following diffe rential equations, and in each case. find the 
iotegrol curve through (t, x_):: (0, 1): 

(a) i - 3x = 5 (b) 3.i- + 2x + 16 = 0 (c) .i + 2r = r2 

5. The differential equ3tion in <3) is separable. Sulve it by using the method in Section 5.3. and 
show th:it you obtaiu the same solution as that given in (3). 

@ 6. Find the general solmions of the following differential CQuation~: 

1 
(a) 1.i. + 2:c + t = 0 (r ;t: 0) (b} i - 1x = t (t > 0) 

(c) i - -
1
- x = / 

t1 - J 
(r > l) 

2 2,i2 
(d) .i: - ,x + Tz = 0 (1 > 0) 

7. For the differential cquationx = 2tx + r ( I +1~) . show that the solution x (t) th.at passes through 
(r, x) = (0, 0) ha,; a local mini.mum all = 0 . 

8. Prove that if x(T) = xr , the solutioo of (I) can be expressed ag 

-~(1) = x7ef; <>c.) dt - f T b(s)ef.' •(t)Jt ds 

HARDER PROBLEMS 

<m) g _ Let N ::: N(1 ) denote the sue of a certain popll lati()ll, X = X (t) the total product. and 
x (t) a.: X(r)/N(l j the prod\lcl percapitu.1 timer. T. Haavelmo (1954) sn1dicd me model: 

(i) ,V/N = a- fJN/X (ii) X = AN" 

whe-r,, a, fi, and a ar.e pos itive constants, with tl ~ l. Show that this lend~ to a differential 
equationof theform(3) for x = x(t ). Solvethist>.quationandthcn find expressions for N "' N (1) 
and X = X(t ). Examine rhdimiL~ for x {t ), N(t), and X(I) as I ~=in the case O < n. < I. 

(§ii) 10. (a) Con~ider the model in Example 3. With I-lo "' 0 find the condition for I.he production per 
,upita to incm1:;c with tirne. A common estimate for a in developing countries is 0.3. If the 
papularion im:rease.<: at uie rJle 3% pet ycar (p = 0.03), how high mu.~t 1be saving~ r.i.te a 
be for x (t) to increase with time') 

(b) Show that x(I ) given by (.u ) ls gr.:ater th.an x(O)e'""-"l' for all I > 0 . (Look at th, two 
ca.~cs a<J' - µ :> 0 and ,Y(J - t• .-~ 0 sepamcly.) Why was this to be eApe,;tecl? 

(c) Assllme that an •: p . Find a necessar)· and ~uflici,:nl c<mditinn to obtain su.rtain"d growrh 
in producti()n per capita. Give an c,:onomic interpretation. 
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.5 Exact Equations and Integrating Factors 
We stsrted this chapter by studying the differe.ntial equation .i = F(z, x ). Only in very special. cases 
can we find explici[ analytical solotious--for example, when the equation is separable or when it is 
line..r in x. In this section we study tir&t-order equations of the form 

f(I,x)+g(l,x)x=O (I) 

where f and g arc C 1 f11nctious. (Of course, x = F(t, x) can be written in this form: F(t. x) + 
(-1)..(- ""0.) Suppose we h:ippen to find a funl:tion h(t, x) such that 

h;(t, x) = f(t, x) and h~(I. x) "'g(1,x) (2) 

Note that f.h(t. x) = 1t;(I. x) + h;.(r, x)x. So if (2) is sati&fied, equation (1) is equivalent to 

f,h(t, x) = O. which is satisfied if and only if h(I, x) = C for some constant C. The sol11tions 
of (l) are therefon, those functions x = x(r) that satisfy 

h(t.X) :::= (;, for some constant C (3) 

Th~ differential equation 

is neither separable nor lioc.u-. But we might just notice that the function h(1. x) = t + !r2x2 has 
partial derivatives h;(t. x) = t + tx2 and h~(t, x) = t~x. Then we sec that the solution of(*) is any 
differentiable function x defined implicitly by the equation r + {t2,t

1 = C, for some constant C. I 

The key s1<,p in finding rhe solution of equation (t) having the form (3) is to detenniol) an appropriate 
functionh. Note first a necessai:y condition for the existence of such a function h. In fact, if f(r, x) = 
h;(r, .x) andg(t, x) = h:(t •. t). then J;(l. x) = h;~(t, x) andg;(t. x) = 1i;,(1, x). Hence, byY011ng's 
theorem on the eqllality of second-order cross derivatives, 

(4) 

We shall show in a moment that ( 4) is al~o sufficicul for the cx.is1.c11ce of a function Ii satisfying (2). 
Equation (t) is calk.d e.,act if (4) is satisfied. 

Jn Example 1, f(t,x) = l + tx2 aod g(t,x) = r2 x, and we s~c that (4) is satisfied be.cause 
1:0. x) = g;(r, x) ""2tx, so the cqllaiion is exact. Note also that if we write the scpJrable equation 
(5.3.l) as f(t) - :x/g(x) '-" 0, then coudicio.o (4) hold~ trivially. 

Next, consider equation (I) and 8upposc that condition ( 4) is satisfied. Motivated by the first 
equation in (2). define the function Ii by 

h(t,x) = £ f(r,:x)dT +a(x) (5) 

where we need to choose a(x) appropristely. Differentiating (5) w.r.l. x and using (4) yield.~ 

h:(t,x) = 1' J;(r,:x)dT l-a'(x) = { g'.(r,.t)dr+a'(x) (6) 
IO "':c 

N<•W J:, g;(r, x) dr ,. g(r,x) --- 1:(li!, x). To make (6·1 easy lo solve. let us put 

rr:'< rl ,.. v!t.. ,) with r,i..t.,) ""0. so !hat <Y.!x) = t' ~('"· Eldt (7) 

E){AMPLE "2 

EXAMPLE 3 
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Togcchcr (5) and (7) imply that the left-hand side ot' equation (3) takes the form 

h(t, ,:) ,... t f(r,.t)dr + r g(io. {)d~ 
• Jr, "'-'ll 

(8) 

InE:umplc 1, f(1.J1.)"" I.;. tx2 audg(r,x) = 11 x, sofonnula(8)yie.lds 

E,:cepl for the constant to - 4 r5xJ, equation (3) gives the same answer a.5 in Exampk l. 

Consider equation (I) again. If the equation is not already exact, one might wonder if it can be 
made so by multiplying it by a suitable function {3(t. x). In fact, the equation ~(t,x)f(t, x) + 
/3(1.x)g(t,x):x = Oisexactprovidedthal ;Jax [jJ(r. x)f(r. x)] = t,ffl(t, x)g(z. x)J,or,eq11ivalcntly, 

'tJ;(1.x)f(t,x)+P(r,x)J;(1,x) =P;(r.x)g(t,.x) +{3(r,x)g;(r,x) (9) 

A function /3(1. x) satisfying (9) is called an integrating factor for the differential equation(!). In 
general it is hard co find such an integrating factor, even when one exi~1s. But in two sped.ii cases it 

is relatively easy. 

Ca.5e /: Suppose (J~ - g;)/g is afimction ofr alone. Then We can let /J(t, x)"" fJ(t). In this ca~e 
(9) reduces to {3(r)J;,,.. fJ(t)g; + ~'(t)g. So 

P'(t) = fl(r/;; g; , and hence /3(t) = e,:p (/ J;; g; di) (10) 

Case I/: SuppOS<! (g; - J;} ff i.r a fimrrinn of x a/()n.e. Then we can let P (t, x) = # (x ). In this case 
(9)reduces to fp'(x) + {3(x).f; ""/3(x)g;. So 

. f' 
~

1 (X):::;; fJ(.t) 8; ~. X, (
,/ j(' -r ) and hence p~.r} ,-= exp -' '--·· dx 
' f , 

Solve the differential equation I - {I+ 2:c)i = 0. 1 > 0, .r. > 0. 

(11) 

Solution: (The equation is clearly cquivalenl to x. "" l/(1 + 2x). which is nci1ho:r sepamhlc nor 
linear.) With f (t, x) ,= l and gV. x) = -t - 2.x we get (g; -·· 1;>! f"" -1, which docs not depend 
on r, so Case II applies. By (I I), {J(x) ""exp(j(-1),1.t) as e-x is an i11tegr11ting factor. Hence, 

e-• - 11-x{I + 2.<}.i "'0 is euct, and (8) takes the fonn 

h(t,x)=j'' c-xd'C ·-1' e-!(tr,+~)d~ 7.s I' u--' + I' ,-!(ta+2~)-1' '2e-'1I~ 
'll '" •o ·'O .<o 

= rt(··1 + 2c,:·-,l -- t?-'.:{, (!9 ~·· 2.TG) + ·2c.r.· .. ,( --· e-XO) 

uiang int~gration by parts. The. so)uf.ion is ih,~n any ditferentiabk fllucrion .x = x (t) r.hat sabsiies 
, ;. ' /"' , ... _ .. ,. ...... h """"c,r,:.ot ,. ,·.rfhl'"' "''llU:lt1nn ,,,·.I .:J_ ?.'J.'l'-L + ? . ..,-x = C1 for some ~oust.ant C,. 1 
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1- Solve the differential equation 2r + 3x1i ::: 0. first a~ a separable equation, and second by 
consident1g it a,; an ex.act eqW!tioo. 

@ 2. Solve the differential equation J + (2 + t/x )i ""0, 1 > 0, x > 0. 

.6 Transformation of Variables 

E 1 

Only very special types of differential equation have solutions given by e,:.plkit f01UJul.as. · 
However, transfonning the variables sometimes convert5 a seemingly insoluble differential 

equation into one of a familiar type tbat we already know how lO solve. 

One example is Bernoulli's equation which has the form 

..i + a(t)x = b(t)x' (1) 

where the exponent r is a fL,:cd real number, and where a(t) and b(t) are given continuous 
· functions. 

lf r = 0, tlle ~uation is linear, and if r = I, it is separable, $ince .i = (b(t) - a (t) )x. 

Suppose that r ;f I, and Jet us look for a solution with x(t) > 0 for all t, so that the power 
xr is always well defined. If we divide ( I) by xr , we obtain 

Now introduce the transfomiation 

of the variablex. Then i = (l - r)x - rx. Substituting this into(*) gives 

-
1
- i + a(t)z = b(r) 

I - r 

(2) 

(3) 

which is a linc.ar differential equation for z = z(t ) . Once z(t) ha~ been found, we can use 
(2) to determine x(c) = z(t) 1l( l-r), wbich then becomes the solution of (1). 

Solve the differential equation .i = - tx + t 3x 3• 

Solution: Thi$ is a Bernoulli equation with r = 3. As suggested by (2), we introduce the 
tnu1sformati on z = x 1- 3 = x-·2 . AftL"f re.ammging. equation (3) then t.1kcs the form 

.~ - 21z = -·2t3 

This is a liucar differential el.)uation, and we can use formula (5.4.6) with l1(1) 

Because J a(t) dt = J -21(/t = - t 2, we get 

,, ... ,2 f J _,, d z = Ce - ,.e I e I 

-21. 

(:1<) 
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If we substitute u = - r7 in the last integral, then du = - 2£ d t and we have 

where we have used in~gration by parts. Now (*) yields 

z = Ce'
1 

- 2et'( - i t~e-,i - !e-'1
) = Ce'' + r2 + I 

It follow~ that the original equation has the solutions 

x = ±z- t/2 = ±(Ce11 + t2 + l ) - 1i 2 

Here are two oth& examples of sucet...~ul substimtioos. 

EXAMPLE 2 The diffcrentia\equation 

y' - I + 2x(y - x)2 = 0 

evidently has y = x as one solution. Define y = x + 1/t., where z is a function of x, 
and show that this substitution leads 10 a separable differential equation for z. Solve this 

e.quation and then find the solution of(,*) that passes through the point (x , y) = (0, -1 /2). 
(Note that in this examplex is the free variable aod y is the unknown function, and we write 

y' fordy/dx.) 

Solution: If t t, 0,differentiating y = x+ 1/z w.r.t. x gives y' = I - z'/ z2. When wcinsert 
this into (•) and reorganize, we obtain an equation that reduces t,pz' = 2.x, with general 

solution z = x2 + C. We are looking for the solution with y = -1/2 when x = 0. 1hls 

gives z = - 2 whenx = 0, so C = -2. Hence, the required solution is y = .i: + 1/(xi - 2) 

(defined for - ,/2 < x < ,/2). I 

Show that the substi tution z = x + r2 transforms the differential equation · 

. 21 
X = X + (2 

into a separable differential equation for z. and use this to find the general solution. 

Solution: The suggested substitution implie.~ that i = z - 21. Inserting this into ( *) gives 

i - 2t = 21/1., hence 

(. 1) z+l z = 2t I+ : = 2t - .-
' ~ 

This equation is separable, and we tise the recipe from Section 5.3. Note the constant solution 
z ~ - I. ·me other solutions arc found in the w;ual way by se.parating the variables: 

f _z_dz = j 2ld, 
t: + 1 

Sincez/(z+ 1) ""(z + l - 1)/fr+ l) ""' l- l/(z + 1), wcoht:iin z--- ln lz + 11 "'12 .. J· C1. 
T,l'..,..,~ .-.n\.. ,...,.; t ,~t,.. ,.. __ I .,"2,, -. ,J - ,... .. - .... ,;, . .. •••• •M"•' ··' • , ? • 1 1 • 
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Ix +12 + 11 = e-Cie>,i.e. x +12 + J = ±e.-c•eX. Hence,ifwedefJneC = ±e-c!, these 

solutions are given implicitly by 

X = Ctr - t
2 

- 1 

Toe constant solution z = -1 gives x = -12 - 1, which corresponds to C = 0. 

MS FOR SECTION 5 6 

@ 1. Solve the following Bernoulli equations assuming t > 0, x > 0: 

(a) ti+2x=rx2 (b) r=4x+2e'......'x (c) t.i'+x""x2 1nt 

2. Solve the d.ifferenti.ll eqll.ltio11 (I + tx)x = -x2, r > 0. (Hinr: Try the sub~tit11tion x = w/r .). 

@ 3. An economic growlh model leads to the Bernoulli equation 

K = aAn0i•" ... ,), K
1' - aoK (A, n0, a, b, 11, ex. o, and e are positive constants) 

Find the general solution of lhe equation when av + t + ao(l - b) ;f:. 0 and b I 1. 

® 4. An economic growth 1nodel by T. Haavelmo (1954) leads 10 the differential equation 

Ji:.= YibK" + 'Y'IK 

where y1, Yl, b, and a are positive constants, a ,fo l and K = K (I) is the unknown function. · 
The equation is separable, but solve it as a Bernoulli equation. 

5. (a) Consider the equation 

t_r, = X - f(t),:2' t > 0 

where f is a given continuous function, and x = x(i) is the unknown function. Show that 
the substitution x = ti tra11sfonns ( *) into a separable equ,1tion in z = z(r ). 

(b) Let f(t) = t 3/(r4 + 2) and fmd the solution curve foe(*) through the point (l, l). 

6. (a) Differential equations of lhe form .i' = g(x/1), where the right-hand side depends only 
011 the ratio .~ / t. arc called projective. Prove that if we substitute z = x / r. a projective 
equation becomes a separable equation with z as the unknown function. 

(b) Solve the equation 3ix2i = x 3 + 13 , t > 0. x > 0. 

® 7. Find the general solutioJJ of the projective equation .i ::., l + x/1 - (x/1}2. 

HARDER PROBLEMS 

8. Jn general. differential cquatiorLs of the form 

i = P(t) + Q(t)x + R(r)x2 (Riccati's equation) 

c:m only be solved numerically. Bm if we know a piirricuLv solution u '·" u(t), che substitution 
x ·" 1, + I/ z will u:aosform the equation into a linear differential equation fot z as a function 
of 1. Pro~e this, and apply it to t.i "' x •· (., - 1)2. 
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5.7 Qualitative Theory and Stability 
It is convenient when economic models involve differential equations that can be solved 
explicitly in terms of elementary functions. Csually this will make it easy to study the 
nature of the solution .• Most kinds of differeotial equation do not have this nice property, 
however, so the nature of their solution ha~ to be investigated in some other way. 

The theory we have discussed so far i.s insufficient for another reason. Any economic 
· model is based on a uumber of assumptions. It is often desirable to make lhese assumptions 
as weak as possible without losing the essential aspects of the problem. If a differential 
equation appears in the model, ic therefore typically contains unspecified parameters. 

M a result, when a differential equation is used to describe some particular economic 
phenomenon, the typical situation is as follows: 

(A) It is impossible to obtain an explicit solution of the equation. 

(B) The equation contains unspecified parameters (or even unspecified functions). 

Even so, there is often much that can~ said about the nature of any solution to the differential 
equation. In this section. we discuss, in partfoular, the stability of any solution. 

Autonomous Equations, Phase Diagrams, and Stability 

Many differential equations in economics can be expressed in the form 

x = F(.x) (1) 

This is a special case of the equation x = F(t, x), in which t does not explicitly appear on 
the right-hand side. For this n:ason, the equation in (I) is called autonomous. 

To examine the properties of the solutions to (I), it is useful to study its phase diagram. 

This is obtained by putting y = ;i and drawing the curve y = F(x) in the xy-plane (or 
x.i-planc). An ex.ample is indil.:ated in Fig. 1. 

x 

1 x = F(x} 

1---~a ---x 

Figure 1 

Anv solution .t = x(t) of (1) has an associated i: = x(I). For every t, 1J1e pair (xV), .i(l)) is 
a ~int on Ilic curve in the phase diagram. What ~an he said generally about this point when t 
incrca~cs? If we consider a point on tl1c curve lying above the x-axis, then F(x(r)) > 0 and 
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therefore .lt"(r) = l-"(x(t)) > 0, so that x(l) increases with t. /tfollowsfrom rltis obsuvario,i 
thal rhe poim (x(!), i (l)) movesf rom left to right in the diagram ifwe are above rlie x-<Ui.i,. 

On the other hand. ifwe are !Lt a point on the graph below the x-axis, then x(I) < 0, and 
.t(I) decreases wirh r. so we move from right ro left. These movcmems are indicated by · 
arrows in Fig. J. 

One of the most imporiant properties of a differential equation is whether it has any equilib- · 
riwn or .~ta.1ionary srates. These correspond co solutions of the equation chat do not change 

over time. In many economic application&, it is also very important to know whether an 

equilibrium state is swble. This can often be determined even if we cannot !ind explicit.• 
solutions of the equation. ln physics, the rest position of a pendulum (hanging downward 

and motionless) is stable; if it is slightly disturbed while in this position, it will swing back . 
and forth until it gradually approaches the equilibrium state of rest. To use a common ana. 

logy, we do not expect to encounter an unstable equilibrium in the real world for the same • 
reason that a pin will not balance on its point. 

In general. we say that a point a represent~ an cquilibriwn slate or a stationary state 
forequa1ion (l)if F(a) = 0. futhiscase, x(t) = a is a solution of the equation. If x(to) = a 
for some value to of 1, then x(t) is equal to u for all t. 

Toe example of Fig. 1 has one equilibrium state, a. It is called globally 3S)mptotically , 
stable, because if x(t) is a solution to x = F(:x) with x(to) = :xo, then x(t) will always 
converge to the point on the x-axis with x = a for any start point (to, x0). 

.i '"' F(.r) 
'-..... 

Figura 2 a; is a locruly stahle equilib­
rtmn state for x = F (x ), whereas a1 is 
unstable. 

Figure 3 A corre$ponding directional 
diagram and some solution curves for 
i = F(x). 

I.n Fig. 2 there are two equilibrium states, a1 and a 2 . If we start in either of these states, tht:n 

we will remain there. However, there is an important difference between the two. If x(t) 
starts close to a1, hm not at a 1• thc.n x(t) will approach at as t increases. On the other hand, 

if x(t) starts close to, hut not al. a2, then x (t) will move away from a2 as I increases. We say 

that a1 is a locally asymptotically stable equilibrium state, whereas a 2 is un5tablc. Note 
how this heh,wiour of the integral curves is confirmed by Fig. 3. 

Look at Fig. ?, again. Nole that at the stable point ,~1, the graph of ;i: = F(x) has a 

negative slope, whereas the slope i.s positive at ct2 . Suppose that a is an equilibrium statt: for 
i = F(.x), so chat f'(a) "'-- 0. If F'(a) < 0, then F(;,c) i.s positive to the left of x =a.and 
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nega1ive tu the righL Around .t = a the graph of i: = F (x) and the directional diagram both 
look similar to Figs. 2 and '.I near .x = a 1. So a is stable. On the other hand, if F' (a) > 0, 

they both look similllr to Figs. 2 and 3 near x "" a2. Hence ,1 is unstable. We have the 
following result: 

[ (a) F(a) = Oand F'(a) < 0 ~ a is a locally asymptotjcally stable equilibrium. 

j (b) F (a) = 0 and F' (a) > 0 ~ a is llll unstable equilibrium. 
(2) 

L~~--~~--~_._J 

EXAMPLE 

EXAMPLE 2 

XAI.IPLE 3 

If F(a) = 0 and F'(a) = 0, then (2) is inconclusive. You should now give two different 
e:itamples showing that a can be locally stable or locally unstable in this case. 

In Section 5.4 we studied the equation 

x +ax =b (a -f,. 0) 

Itisaspccialcaseof(I), wi!hF(x) = b-ax. Thereisauniqueequilibriumstatc,atx = b/a, 
where F'(x) = -a. According to (2), x = b/a is locally asymptotically scable if a > 0, 
but unstable if a < 0. Compare this result with the remarks following t:quation (5.4.3). I 

(Price adjustment mechanism) We generalize Example 5.4.2 and assume that lhe price 
P = P(t) satisfies the nonhneardiffcrcntial equation 

P = F(P) = H(D(P) - S(P)) 

As before, P is a function of the excess demand D ( P) - S { P). We assume chat the function 

H satisfies H (0) = 0 and H' > 0, so th..'l.t H is strictly increa~ing. H demand is greater than 
supply when the price is P, then D( P) - S(P) > 0, so P > 0, and the price increases. 

On the other hand, the price decreases when D(P) - S(P) < 0. Equati<)n (*) therefore 
represt:nts what can be called a price adjustment mechanism. 

Assume P' is an equilibriwn price at. wlrich P = F(P•) = 0 because demand D(P') 
equals supply S(P'). Note that F'(P) = H'(D(P) - S(P))(D'(P) - S'(P)). Because 

H' ~- 0, we sec that F'(P) has the same sign as D'(P) - S'(P). By (2). we see that the 

equilibrium price P' is stable if D' (P') - S' ( P") < 0. This condition is usually sati:slied 
because we expect chat D' < 0 and S' > 0. I 

(The Solow-Swan growth model) 'rliis "neoclassical" growth model involves a con­

st,mt returns lo scale production function Y = F(K, L) expfessing national output Y as a 

function of the capiral stock K and of the labour force L, both assumed to be p<>sitive. It 
is a.<.sumed that L grows at. a consrant proportional rat~. i. > 0. Also, a (:onstant 1rncti.cin 
s E (0, I) of outvut Y is devote:d t<> net inv~slmP.nr k' Tho, ;,. Ii' - ,. Y 
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lbe model is usually analys~ by dividing aU variables by L, thus obtaining ucw variables . 

y 
Y = -L (the output/labour ratio) and k = !!.. (th L . c capital/labour ratio) 

Because there are constant returns to scale the f llllcti F · h · 
Th . _ y , . , on JS omogencous ot degree I 

A'
~sk! , ;- 1.L ~ J<_( ~ . L)/L = F(K;L, l ) "" f (k), where f (k ) is defin~ as F(k l ) . 
so •I<= K/ K.-L/L- sYIK J.. /k · M · · ' ·. 

d . .., ' . . - ' - = sy -1.. ulttplymg by k leads to the separable 
1uc.rent1al equatJon 

k = :,J(k) - iJc 
(3) 

Without specif}ing For f, equation (3) has no explicit solution. 

Neverthel ess, sup~e we make the usual a.sswnptions that F(O, L) = O and that th 
margmalpro ductofcap1tal F;;(K, L) is positive and dirninishing forall l Putting£ - 1 _e 
follows that f (0) - o a d th.at f'(k) 0 ,, . · - , 1t 
and , - n > ,/ (k) < Oforallk > 0. Providedthatsf '(O) > J.. 

sf (k) < A for large k, the phase diagram for equation (3) will look like Fig. 4. 

k. c -u 
I k·\k 

Figure 4 Phase diagram for (3). with appropriate conditions on f . 

Then there is a unique equilibrium sure 1.1,ith e > o lt · · b · . 1s given y 

sf(k·) = .>..e 
(4) 

By studying F ig. 4 we see that k·' is stable. No mauer what the initial · IIJ b · 
k(O) may be, k (r) - ;.• as t ~ 00 capita a our ratJo 

. I 

~b~! :a t .ts~!:~~: discuss sufficient conditions for the ex istence an<l unique!less of an eqai­
we poi;1ulate the lnada an=de\Apru:1 from the assump!lon~ Oil F or f we have already i:ru1de 
ask - ·• oo. con ons, t1ccording lo which f'('/c) - ,x, as k-> 0 aod also f'(k) .... 0 

To scewby these conditio~1s are sufficient, ddlne G(k) =: s/ik) .•. H To G' 'k) _ . , , 
and equanoo (3) cbang.:.s to J: _ G ·1c • · ~ • • en ( ... sf (k) - "• 
a.s k -+ 0, G' ( k} - .. . .- 0-;- . l ). The llSS1.1~1oos on ( unply that G (0) = 0, G' (k) -+ ~ 

. . · ~ .. a~ k .....,. ·X>, and C, (k.l = s{"(k\ < () for all k > (t So G b•• 
uoiquc Stallonal')' point k .. , o h · h , . • · · • · = a 
for •11 I , , at w JC C·ik) .,., 0 . Obviously, G(k) > 0. But (;'(J: ) <' -1,l .,. 0 

" llrget'nough k. ft follows rh1li C(kl 4 , k . · • ? ' 
"-ilh G (k ') .-.: () In ad<fr' ( '' ., .• ) · · -:cc 115 ···> oo, so Ch<.'Tt: 1s a unique Pl.lint k' > o 

• I J()n, 1 (" <; 0. A.~COl'd ll)" W ('> l thi~ 't• · • ffi ,· • · · · 
asyDJJ)lotic ~tabi lity of k' . " ~.. · ~ ,l su 1c1ent c,:>nd1hon tor the local 
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General Results on Autonomous Equations 

Figure '3 shows some solutioa curves for !he equatiot1 i = F(x) wbi ch is graphed in Fig. 2 . It st.ems 
tbat.. given any one solution cu1ve, all the others arc obtaiJled by shi fting that curre hmiwntally to 
die right or to the left. ~ is C()nfinned by the following: 

If x ,,, q,(t) is a wlution of i .=.: F(x), ~o is x c:: y>{I + c ) for any C(IJ).stant c 

The argument is easy: i = rp(1 + c) = f'('{)(I + c)) :: F(:x). 

Note how Fig. 3 displays two cons t.1nt (equil ibrilllll) solutions, corresponding to the 7.ero,; a1 and 
a2 of the function F, while all. the other solutions appear 10 be either strictly increasing or strictly 
decreasing in the intervals wb.crc they arc defined. This behaviour of lhc solutions of .i = F(x) turns 
out to be typical provided F is a C1 function. To prove this result we use Theorem 5.8. l in the oext 
section , which says that when F is C 1, there is one and only ooe solution curve pa~sing thro\lgl1 a 
given point (to, .t()) in !be rx-plane. 

THEOREM 5 7.1 ·- ·- .............. __ ... - - -- .. - ----.. -· ----.. - --.................. _., _ __ . ---- ·-··---·- --- t 
. i 

L 
Jf F is a C1 function, .,very solution of the autOllOmous differential equation i = F (x) / 
is either constant or strictly monotone on the interval where it is defined . ! 

i 

. ---··- ---..... - --·-""--·----~-- - --·- ·--- ----.. -~- - ------ ; 

Proof: Suppose first that x is a solulion suGb that i(to) =, 0 for soilll:; lo. and put a = x(ro)- n,en 
F (a) = f' (x(tc,)) = i(/o) "'0, so a is a zero of F . The cons tallt func tion x,(1) ,!!;: a is then also a 
solution. Because both x (I) and x. (r) pm;s through the same point (ro, a) in the t .r-planc, it follows 
lhat .t(t) == :r.,1(1) = a for all t . Hencex is a constant function . (See Note 5.8.2.) 

If:x is nor a constant solution, then.r(t) ;,!, Oforall I in the'domain ofa. Bccau&ex is differentiable 
and F is continuoos, the derivative i(I) ""' P(x(1)} is a continuous function of t. It follows that .i 
muse. have the same sign everywbere in it5 domain, otherwise [he int.ermediar.c valut theorem would 
gi'le os a zero for i. Hence. i is either everywhere positive or everywhere ~arh e, twd x itself must 
he either everywhere ~trictly increa~ing or every where strictly decreasing. • 

Assume still that Fis C' . Then two different &olution curves fur x "" F(x) cannot huvc common 
poinL, (Theorem 5.8.Jj. (This .holds al so in the nonautonomous case.) In 1be pr~nt autonomous 
cas,\ a ll solution curve~ crossitig any given l.iJ1e parallel tu c.he t rotis have tht'· s:une slope at the 
crossing pointS. 

Let us return to the example illu~tratcd in Fig. Z. The straight line~ x ::: n 1 and x = •1':: in the 
phase diagram of Fig. 3 are solution curves. Hence ,10 <itb<.-r solution curve can t.'Toss either o f th.:se 
lines. Consider a ~lurion x "" q,(1) that passe.~ through a point (4, • .ro) where a1 < X-O < a2. Tl1C11 
(()(/) must lie irt the interval (a t, a1 ) for all 1, so 9 is strictly decre.ising with lower bowid a 1. nus 
impliC$ that ,p(r) must approach a limit as , approaches infinity. It is rea~on~ble tu expect {~nd ic 
fo llows from Theorem 5 .7.2 below) that the limit n = lio1,_00 q,(r) must he an equilibrium state for 
the equation .i = F(x) . Simx, cl1ere ar..: no e4oilibriua1 state~ in the open interval (a1 . a2). we must 
actually have a = 11 1• Simil~ly, we .cc that a soluti.un tbat Ii.es b.;Jow a1 will !_!t(>W tuwwt~ a 1 in 
the limit as t ·¥ oo. A solution with x > ,i1 "'ill t.cnd to infinity. unle~s thccc an; other cquilihrium 
f>t•,1"'<> 1.., ... ,,. .... th:>n ,,,.. 
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Suppose that .c = x(r) is a solution of i = F(x), where the fl1I1Ctiot1 F is conthn,ous. 
Sup.po~ that x (1) approach,;;s a (finite-) lituil a as t approaches oo. Then a must be an 
<XJuthbnum stare for the e.quation. i.e. F(.a) = O. 

Proof: for acontrailiction, suppoSe F(a) > 0. Since Fi~ continuous there cx.i~L· a• > o . 'h .: __ . 
r . 1 • , • ., o . sue uu,t 
!'(x)-:-F(a)[ < 2F(a)forallxm(a-:8,a+o). Inpa1"ticular.F(x) > fF(a)foraJJxinthisinterval .. 

Since hm,_."" x(1) =a.there must exm a T such that x(i) lies in (a - S. a+ o) for all t > 7· F 
t > T we then h:we~(I) = F(x(t)) > ! F(a). Hence, x(t) - x(T) = J; i-(t) dr > ! F(a)(I ..:_ T~~ 
But the last expression tends to oo as r --* oc. It follows that x(I) also tends to ~ as r -+ · 
contrary tox(t) being in the iucerval (ll - i5, a+ S). Therefore. we cannot have F(a) > O. A simi: 
argument shows that we ca11t101 have F(a) < O either. Hence. F(a) ""O. 

• 

MS FOR seCTION 5.7 

1. Drdw phase diagrams a.,socia1ed with the di.ffeiemial equations and determine the nanue of th, . · 
possible equilibrium states. e 

{a) x = .t - I (b) .i: +2x = 24 (c) x :o- .,2 - 9 

2. Determine lhe nature of 1be possible equilib1-ium states for: 

(a)i-=xi+.t1 -.r-1 (h) x=3x2 +1 

~ 3. Consider the di.lleremial equation x = ! (x1 - l), x(O) = x0. 

(a) Find the solution of this separable differential equation, and draw some integral curves in 
the rx-plane. V.'hat happeus to the solution as r -,. oc, for different initial points xo'} 

(h) Draw the phase diagram for the equation. Find the two equilibrium siates. Decide whether 
they are stable or unstabfo. Compare wilh the results in part (a). 

HARDER PROBLEMS 

~ 4. fa) TIie s1ationary stat.ck* defined by (4) in Example 3 depends on sand i... Find expressions for 
iJk* l_cJs and &k* f~). and determine the signs of these derivative., when f"(k) < O. (Show 
that ln this case sf'(k•) < A.) Give an economic interpretation of the result. Prove that 
Fk (I(. L) =: .f'(k). 

{b) C'..oosumption per worker c is defined by c "" (Y - K.)/ L. Show that wheu k = k' !hen 
,. = f (k') - a·. Use this to show that if cou~umption per worker in the sratiooa~ state 
1s to be inaximi,.cd. it is necessary that j'(k.') :c ;., i.e. ilF f[)K "" ),. Thus, th<! ,,,;rfiinn.l 
~mrlu'.:r of capitul ii F j[J K must equal rite proponi<1nal rute af growth of the /11bvur Jrm:e. 
( llus ·is often called ''the golden role of ac.:umularion".) 

(ci Show !hat iu the ~ratinnary state, }( / K is equal LO) •. 

5.8 
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Existence and Uniqueness 
For an economic model to be consistent. the equation.~ in that model must have a solution. 
This is no less true when the model involves one or more differential equations. Also, if a 

solution does exist that .• arisfics the relevant initial conditions, we want w know whether 
the solution ts unique. 

Answers lo such questions are provided by existence and uniqucnes.~ theorems. For 
first-order ~quation.~, one ha~ the following re.suit {a sp~1.-'ial case of Theorem 5.8.2 below): 

Consider the first-order differ~nti.al equation 

i=F(t.x) 

and suppose that both F(L, x) and F;(t, x) are continuous in an open set A in the 

tx-plane. Let (to, X<J) be an arbitrary point in A. Then there exists exactly one 
''local" solution of the equation that passes through the point (ro, xo). 

The. following tWtl notes mal<e things more precise: 

NOTE 1 Uthe conditions in the theorem are met, and (to, xo) is an aroilrary point in A, 
then there exist au intefval (a, b) around to, and a function x(l) defined in (a. b), such that 
.t(t) is a solution of the equation in (a. b) with .x(/o) = Xt) and (t, x(i)) E A for all i in 
(a, b). Note that the theorem guarantees only the existence of an interval as described; the 

length of the interval could be very small. For this reason Theorem 5.8.l is a local existence 
theorem; it ensures the existence of a solution only in a small neighbourhood of to. 

NOTE 2 As for uniqueness, one can prove that if x(r) and y(i) are solutions of the equation 

lying in A with x(io) = y(io). then x(t) = y(r) forall rat which both .~olurions are defined. 

EXAMPLf I Suppose F(t,x) is the continuous fum.,'ti.on ax, in which ca~e F:(t. x) ="is also 
continuous everywhere. Theofem 5.8. I implies that there is a unique solution curve of the 

associated equationi "" ax passing through each poim (10. xo). In fact, the required solution 
is x(r) = x(to)e"11

-
1"i. I 

EX MPl:E 2 Let F(t, x)"' f(t)g(x). Tt follows from Theorem 5.8.l that existence and uniqueness 

arc ensured if /(1) is continuous and g(x) is cominuously duierentiable. I 

As pointed out in Note I, ·n,corcm 5.8. \ gives no information about the length of the int<.-rval 

on which the:: solution is defined. One factor which can limit this interval is that x = x(r) 
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· Fiod the largest .interval on which there i.~ a solution of .r = x2, with x(O) = I. 

Solution: Any nonzero solution of rhis separable equation is of the formx = -1/(J + C). 
Because x(O) = t gives C = -1, the solution is x = 1/(l - t), defined on (-oo, l). The 

solution curve is shown in Fig. I. The graph "runs off to co" as t approaches 1 from the 
left, and this solution cannot be extended beyond ( --·oo, t). (The function x = l / (I -. t) 

also satisfies x = x2 fort > l, but this i~ not part of the solution satisfying x(O) = t.) f 

---1-~-.~------·-···>----+----+--
-3 -2 -I 

figu~ 1 figure 2 

The following more precise result specifies an interval on which a solution is defined. 

Example 14.3. l gives a well-known proof based on Picard's melhod of successive approxi­
mations, explained bclow. 

S.8.2 EXISTE N CE ti) ------~ 
Consider the initial value problem 

i = F(r,x), x(to) = xo 

Suppose that F(l, x) and F;(i, x) are continuous over the rectangle 

and let 

r = ( (t. x) : It - rol ~ a, Ix - xol ~ b J 

M = max 1F(1, x)l, 
(r,x)<.I' 

r = ntln(a,b/M) 

Then (I) has a unique solution x(I) on (10 - r, to+ r), and i.r(t) - x0 1 ::ob in 
this interval. 

i 

(1) 

(2) 

NOTE 3 It may well be that the solution in Theorem 5.8.2 can be extended to a larger 
interval than that described in the theorem. Nole that the kngth of this interval is 2r, where 

r is the smaller of th,: numbers a and b; M. Of co11rse, we cannot expect r to be larger than 
,1. Also, the inequality r ~ bf Mis chosen to ensure that the solution x(t) will stay io,idc 

the rectangle l'. Be.:ause -M ::::: i S M as long as (r. x) f.: r, the part of any solution 

curve thmugb (ro, xo) lhc1r. is comaincd in I' must lie betwe-en the two straighr.lines through 
(rn. r") with ..:lnnP..: -~« •.)..: THn..:1'l"·.,tP,4 ;n J:"iCT ') 

XAMPLE 4 
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Prove that 
x(O) = 0 

has a unique solution on the interval(-!,!>· and that !x(r)I :S: 1 in this interval. 

Solution: We use the notation of Theorem 5.8.2 with a = ~ and b = 1. The rectangle r 
•) ; ? . -):2 .,. 

is r = l(t,x): lrl ~ ~. lxl ~ t}. Note that !F(t.x)I = !3,- -re-• I :o. 31- + :rle ~ 
3/4 + l/2 = 5/4 for :ill (t, x) in r. Toe desired conclusion follows from Theorem 5.8.2, 
wilh M = 5/4 and r = min{l/2, 1/(5/4)} = 1/2. I 

Dependence of Solutions on Parameters 
Asswne that the condition.~ of Theotcm 5.8.1 or 5.8.2 are met. The unique solution will 

obviou.sly depend on the initial values to and xo. One can prove that the solution depends 
continuously on 10 and x0 • so that small changes in to and xo cause small changes in the 

solution. 1n fact, the solution will even be differentiable as a function of (to, xa). For a 

precise formulation in a more general setting, see Section 7.6. 
Differenti,al equations appearing in economic models often involve a number of par.tm­

eters in addition to the initial values. These parameters are often inferred imperfectly from 

empirical observations and so are subject to uncertainty. This gives a reason tu prefer models 

whose solutions arc not very .~cusitive to small perturbations of the parameters. In fact, under 
rather mild restrictions placed on the differentiaJ equation, one can prove that the. solution 

depends continuously on the parameters. Again see Section 7.6. 

Picard's Method of Successive Approximations 
Here is a brief indication of how tu prove Theorem 5 .lt2. which simultaneously suggests a method 
town~truct an approximaie solution of .i: = P(t, x) with x(ro} == xo. 

Define the sequence of function, {x.(r)}. n = 0, l, 2, ... , by letting x,;(t) = xo, and 

-~• (1):::: xo + t F(s, Xn-\ (s)) ds, 
~ I<) 

,, = L2, ... 

Assuming that f' and F; are continuous, in Example 14.3.l ii is &hown.1hat, u~dt.-r the hypotheses 
of Theorem 5.8.2, the se<.1uence x, (t) is well defined and converges uruformly to a funcuon xv> 
,atisfying ;x(t) -xol ~ b for all r in (ro - r, to+ r). As 11 - .::,o, th.: le~-hand side ~f(*) converges 
to x(t) for eJ.cb I in (10 - r, 10 + r), whereas it can be shown that the nghl-hand &1de _conver~e~ to 

xo + J.' F(r.x(s))ds. So x(I) ""x0 + J:'. F(J·,-r(s))ds for all tin (to - r. t,; + r). D1fforenuaung 
this eq~ation w.r.t. t yields :c(t) = F(t, xrm. Moreover, x(lo) ,._, XQ, so X(I) is a solution of (1). 

Use Picard's method to solve the ini1ial va.lne problem 

X ;;., I;- .l, x(O) ""0 

:;- A &equenCt' /x.(r)} of func;ion.s de.line.(! on an interval Ii~ ,ai,I to conv._-rgc w1ifom1ly IO a function 
x(I) defined on I if, for each s ~- 0 there is a namral number N{e) (dependmg on~:. bttt.rwton ,) 
........ s.. ,.1-,,,, ;"" i,\ _ ..... 1,): .. .,, t: fr.,r .:ilf n > N(,:.:, :lnd all tin/. 
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E 6 

Solution: Here F(t, x) cc.: t + .~ artd x.0(i) ,. O. so we get 

xi(t) ""0 + l F(s. xo(s})ds = [ (s + O)ds = !r2 

.t2{t) ""0 + {' F(s, x, (s)) ds "'' f' (s + fs2) ds = ,I; 12 + t,13 ~ ~ . . 

x3{t) = 0 + {' F(s, x2(s))ds == 1' 's + -~s2 + J..s;)ds = .!.12 ..r... .J.. 13 + .!1• 
} 0 ~~ l' 2· 3r Z! · 3! "~ 

By induction 01111 one ca11 verify that the general expression for x,.(I) i.s 

I 2 1 3 I 
x.(t) == -1 + -t + ... + ___ 1n+t 

2! 3! {n + l)! (n) 

Bute' - l + .!1 + t 2 + 1 3 • ( 
-. 11 . 21 1 . Ft..,. ... seee.g.EMEA).Soa~11--.oo,wege1x.(t)~e.'-l-t, 

The ~utred solution of(*) ts thercforex(r) = lim.-.00 x.(r) = e' - l - t. lChcck this solution b 
verifymg drrectly that(•) is satisfied.) ~ 

Global Existence and Uniqueness 
~hen analysing a .dy~ic model described by a differential equation, economists often sjmply 
assume that a ~olunon e,usts thrnughout whatever interval is relevanL Is this justified'> 
. _consider, tor example, ~e standard ~owth model of faample 5.7.3 th.at leads 10 the equation 
k - &f(k) - :J..k for the_ cap1tal/la~ur rano. Is there a solution on the whole iaterval [0, oo)? The 
following example provides a suffic1en1 condition: 

C'.ons~dcr the irutial value problem x =< F'(t, x). x(to) = x0 in Theorem 5.R.2, and suppose that 
F and F, are contmuous everywhere. Assume too !liar F is uniformly bounded, i.e. there exists a 
nuniber M suchthatjF(r: .:c)I $ M forall (r, x). TheJJTbeorcm5.8.2 applies withr = min(a, b/M). 
But under thesc.a~sumpt_1ons r can be made arbitrarily large by choosing a and b sufficientlv large. 
Hence. there cxut~ a umque solution x(t) defined on the whole of (·-<XJ. oo), i.e. we have· global -= I 

A much more powerful result (see Hartruan (1982)) is the follO\\.ing: 

!> 8-3 (GLOBAL EXISTfNCE ANO UNIQUENESS) 

Consider the initial value problem 

.i: = f'(t.x), 

Su.p~se ~I F(t: x) ~nd l<~_(r. x) are continuous for all (t, .t). Suppo~e too that thcr~ 
.eXJst contmuous tuocuons a(t) and bl/) such rhat 

j/-'(1,x)I ~ a(r)fxl + bft) for all (r •. t) 

Given an arbitnuy point (10. Xo), there exists a unique solution .r(t) of the initial Vlllue 
problem, defined on (-·oo, oo). ff (3) is replaced by the weaker condition 

x F(1, x) ~ a(t)lxf2 + b(r) for all x and for all 1 ~ fQ 

then the i11itial. value probleJll ha.~ a ur1ique si)lution defined on fto, 00). 

(3) 

(41 
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E~ E 7 Exami1te whcth.:r Theorem 5.8.3 applies lo th<' probkm i- = --x-1• x( l) ""- I. 

Solution: Clearly (J) is not satisfied. But xF(t, .t) = x(-.t3) = -x4 ::: 0, so (4) is sarisftt:d 
with a(t) "" b(t) ~ O. Hence, there exislll a solution on [I, oo). (Ill fact. Ibis separable equation 
bas the unique ~olutiou x(t) = (21 - l)-1/2. This solution is valid only fort > l/2, not for all of 
(--oc, oo).) .• I 

EXAM P Lf 8 CoMidt>r oacc again the growth H1odel of faarnple 5.7.3, with 

k = sf(k)-i.k, k(O) = ko > 0 

Suppose that j'(O) < oo, f<O) = 0, f'(k) --. 0 ask. -> oo. and f"(k) .::: 0 for all k :: 0. This 
implies that f'(k) ::5 f'(O) for all k ~ 0, and the phase diagram is asiu Fig. 5.7.4 with twoequilibri11m 
states, 0 and k'. Define F (k) for all k by 

F(k) == { :j~~)~ ~~k, ! ; g 
Note that fork 2: 0, F(k) equalsk, as given by(*). Also, fork;:: 0, we have F'(k) = sf'(k) - >- ::5 
sf'(O) - /.., whereas fork < 0 we have F'(k) = sf'(O) - /... Furthermore. F'(k) ~ -.1.. for all k. 
Tbereforethccquation k = F(k)sati~fiescondition(5)withc(1) = ma:1:(J,., sf'(O)-J,.). We conclude 
that the cquatjon has a unique solution on (-.x.. oo). 

The functions k1(1) ""O and k2(r) ~ ,I;' are both solutions of(*)· Let k(t) be any solution 
with k(O) = ko E (0, k*). Nore (hat uniqueness implies that no two solution curves can imcrsect. 
otherwise there would be more th.an one solution passing through any point of ime.rsection. Hence, 
k(t) will always lie in the inlexval (0, k*), as in the discussion that follows Theorem 5.7.1. I 

NOTE 4 Condition (3) will be satisfied if there exists a continuous function c(t) oft such that 

IF;(l.x)l.5c(t) forall(t,x) (5) 

Indeed, by the mean value theorem (see Theorem 2.1.2), F(t, x) - F(t, 0) = F;(t, 8)x for some B 
in [0,x]. Hence, (5) implies that IF(l,x)I = IF~(1.IJ)x + F(t,0)1 .5 IF;(r,ll)l lxl + IF(t,0)1 ~ 
a(t)lxi + b(t) if we let a(I) = c(t) and b(t)"" IF(1. 0)1-

NOTE 5 Condition (3) slates thar lil is bounded by a lioear function of 14 The requirement in (4) 
is more complicated. As elaborated in Note 6 below, the explanation is that x.(t) cannot '·e.xplode'' 
unless the productxF(r.x) ""xi= f,(!x2) is large and positive when x(tf is large. If .x(r) 
is large and .i:(r) = f(1. x(1)) is also large, then we are in trouble. However, if x(1) is large and 
.i:(t) = F(t, x(t)) is negative, then x(t) decreases as I increases. 

Condition (3) is actually srronger than (4). To stt why. note first that i.:cl ::: I+ lxl2 for all x 
(because u .5 I + u 1 for all u ). Then (3) implies that 

x.F(t, x) 5 ix.I IF(r. x)I ~ a(r)!xi2 + b(t)lxl 

.5 a(l)l.tl2 +b(t)Cl + i.rl2)"' (,1(1) + h(11)ixl1 + b(t) 

which is inequality (4) ,~ilh a<t) replaced by a(1) + h(t). Example 7 presented a case where (4) is 
~ti~fied, bur 11ot (3). 

NOTE 6 Here i~ a brit:f explanation of why the weaker conditicm ( 4) ensure.s global e.'C..islcnce for 
t:?:. 10 : any ~olution mostsarisfy (d/d1)(x(1)2) == 2.t(t)x(t) ~ 2,1(t).:c(1f + 2blt). By (5.4.6), the 
linear cqu.:itioo j,{t) ,,-., 2a(1}y(/) + 2b(t) wi1h y(/o) = x(to)2 l1as ~ solutioo for all 1 :,: lo, Let 
z(t) =x(1)z- y(t). Thenz(4,) = 0 M<ti(I):::, 2a(1):(1) fort::: to. Uwckr A(t):: 2fa(1)dt, 
then (d/dt)fe·-AVlz(t)I ::: e--'<1l[i(1) -· 2aCi)z(r)].::.: 0 for I~ to- It follows that z(1) :o 0, and ~o 
x(tl :;;. y(t) for all 1 ::: 10. Therefore, x(r)1 does 1101. e~.plode. This makes ii plausible lhal .:c(I) i~ 
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NOTE 7 Suppose we drop the requirement in Theorems 5.8.l lo 5.8.3 tha1 F;(t, x) be continuous· 
bu~ retain all the other conditions. Then a sollltiC)n will still exisi, hut w.1y not be unique. To t.'TI~~ 

uruque~as, ~e following weaker requirement i~ sufficieot; F (1, x) is locally Lipschitz continuollS .· 
w.r.t. x ID A w the seose that, for each ll, .t) rn A, rhe~ e,;iscs a neighbO\irhood N of (t, x) in R2 and 
a con~tam t such tliat IF (r . .r') - F (r. x") I ~ l. l..t' - ..c" I whenewr (t, x') and (t, x") bdong to N. 

1. Show that x = Ct2 satisfies the differential equation ti: = 2x for all values of the constant c. 
But all the corresponding .solution curves pass lhrough the po.i.ot (0, 0). How do you reconcile 
this observation with Theorem 5.8.1? 

2. Use Theorem 5.S.2 to show thar x = t2 + e-•
2
. x(O) :: 0, has a unique solution on tlie interval 

(-a, a) for ever:y positive CO!l$t.ant a. 

3. Use Picard's methoJ of successive approximations lo solve the equation x = .x with x(O)"" l. 
(Hint: Consi<ler the Taylor expansion of e'. See Example 5.) 

~4. Find the unique solution of .r = x(l -x), x(O) = 1/2, defined on (-·oo, oo). Show that neither 
. of the conditions (3 J or ( 4) in Theorem 5.8.3 is satisfied. 

~ 5. Let a and b be arbitrary constam.s. a < b. and define the function if! by 

{ 

··• (t -· a )2 if t :5 a 
'fJ(i) = 0 if a < t < b 

(r-b)2 i(r ?:b 

Sketch the graph of<{, when a "" -2 and b "" 3. Use the definition of the derivative to show 
that r, is differentiable at r "" a and 1 = b. For all choices of a and b pwve that x = 1v(r) is a 
solution of the differential ,:qumion .i = 2,/fxj on the whole real line. F..;,:plain why this shows 
that the requirement i.n Theorem 5.~. t. that F(r. x) is differeotiablc w.r.t. .< cannot be droppt:d. 

6.1 

EXAMPLE 1 

Undemanding of mathematics cannot be rransmitted by painless 
entertainment any more than education in music can be brought by 
the most brilliant journalism ro those who have never iistened 
intensively. Actual conract with the content of living m;irhematics 

i~ necessar1 
-R,chard Couram (1941) 

In Chilpter 5 we studied only first-order differential equations. Yet many economic models 
are based en differenti.:il equations in which second- or higher-order derivatives appear. For 

example, in an important area of dynamic optimization called the calculus of variations, the first­
order condition for optimality invulves a second-order differential equation. (See Section 8.2.) 

Sections 6.1--6.4 of this chapter treat the standard theory of second-order linear equation5 in 
one variable. Next, Sections 6.5 and 6.6 are devoted to systems of two simultaneous differential 
equations in tvvo variables. When there are t\<VO variables, the philse plane techniques covered 
in Section 6. 7 provide useful insights concerning the form of the solutions. and especially their 
,ong-run (asymptotic) behaviour. Section 6.8 discusses stability properties for nonlinear systems 
in the pl,me, which are important in macroeconomic theory. Saddle points, which occur in a 
large number of economic models, are the topic of Section 6.9. 

Introduction 
The typical second-order differential equation takes the foml 

.'i=1'·(t,x,.i) (I). 

where Fis a given fixed function, x == x(tl is the unknown function, and x = dx/dt. 
Compared with Chap!er 5, the new feature is lhe presence of the second derivative i = 
d'2:x/dt'-. A solution of (l) on an interval I is a twice differentiable function that satisfies 

the equation. 
The simpJe .. ~t type of so::cood-ordcr equatiun llppears in the following example. 

Find a l1 snlmiou~ of 
(k is a con8tant) 
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Solution: Bc..~au.~e x = (d /dr)x, direct integration implies that the equation is equiialent 
to :i: = f k dt = k t + A, for some constant A. After integr.iting once more, we sce'.that 

the equ.aciM j~ satisti.ed iff X = !kr2 + At + B. Geometrically, the solution represeots for 
k # 0 a collectioo ofpar.abolas in the tx-plane whose axes are all parallel Lo the x -~i.s.. 1 

Differential Equations where x or t is Missing 

l rl lWO special ,:;asc$ the solution of c:quation ( l) can be reduced tO the Solution of first-.ordc£ 
equations. The two cases are 

(a) x = F(t , x) (b) .t = F(x , x) ·.· (2). 

In case (2)(a), x is missing. We introduce the new variable u = i. Then (a) becomes 

u := FV. u), which is a firsl-order equation. If we find the general solution u(t) of ibis 
first-order equation, then integrating .:i: (1) = u (1) will yield tho general solution x(t) of (a). 

fo case (2)(b), t is not explicitly present in the equation, and the equation is called 

autonomous. Problem 6 indicates how to interchange t and x in order to transform lhe 
equation into one having the form (2)(a). ' 

LE 2 Solve the equation x = .:i: + t. 

Solution: Substitulillg u = i yields u = u + 1. 'Ibis first-order equation bas the general 
solution u = Ae' -t - 1, where A is aconstam (see Ptohlem5.4.3). Hence,.i: = Ae' - t -1. 
lntegrating this ~uation yieldu = f Ue1 

- E - 1) di = Ae' - !t2 - t + B, where 8 is a 
~'Ond arbitrary constant. I 

Solving equation ( I) becomes more difficult if the right-hand side includes t, the unknown 

function x, a.nd its derivative i. In fact, only rather special t:ases have e,:pJicit solutions; 
generally, one ha.~ to resort to numerical 1.olutioos for given initial conditions. Bveo so, it 
turns our that the existence of a solution of (1) can be established for almost all the equations 

that are litely to appe.'11' in applications. In fact, die general solution of tht! equation will 
depend on two arbitrary constaDts, as it did in-Exalllples 1 and 2; that is, the solution is of 
the form x = x(t: A, B). 

In an initial value problem, there are spe,..'i.fied values x0 and .:i:o such that x(to) == x0 

and x(to) =-= iu at a,1 " initial' ' time t = to. l11e two conditions x(10, A, B) = x0 and 

.i(to, A, 8 ) = xo osually detenn ine the constants A und B uniquely. 

E: 3 Solve the initial v,1luc ptoblem x = i + t, x(O) = l, x(O) "" 2. 

Solution: Act:ording lo Example 2, the general solution of this second-<.ml.er equation is 

x = A ,.t ·- !t.2 -· r + R. Letti.ng x(O) = l yields l =· A + B. Mm:eover, i::::: Ae' - ·· t - 1, 

rn :r(O) = 2 implies that '2 = A - · I. Thu.~, A = J and B = -2, ~o the unique solu tion of 
the problem i,; x ~ ;le' - Jt2 - t - 2. I 

SECTION 6.1 I INTRO DUCTI ON 225 

1. Find lh" genentl solutions of !he follQwiJJg differential equations: 

(a) ii = r (b) x = sill t (c) x ·,:: e' + 12 

2 . Solve IJie initial V'Jlue problem :i = 11 - 1. x(O) = l, .r(O) = 2. 

3. Solve [ht! problem (,;ee Example 2) x = x + I , x(O) = l , x (I ) "" 2. (l.n rhis caHe the 
constants are determined hy the value of .t(I ) at two different poinL~ of tin,e.) 

~ 4. Solv;; tbe following differential equations: 

(a) .x + 2:i: = 8 (c) i' - ::i: = ,2 

5. Suppo8e y > O denotes wealth. and u(y) is a C2 utility function wilh u'(y} > 0 and u"(y} < 0 
for all y > 0. Toe (positive) ratio R,. = - u"(y)!u'(y) is called the degree or absolute risk 
aversion , and R11. = y R.,, is c.\lled the degree of relative risk aveTSioo. 

(a) f illd an .::xprcssion for 11 (y) if R.i '" ). , whete ). is a co11stant. 

(b) Find an expression for u(y) if RR= t . where k: isa conswit. Distinguish between the cases 

k = land k i- l. 

HARDER PROBLEMS 

@6. (a) Con~idef the equation x = F(x, .i:), where tis missing. A standard trick for solving the 
equation is to let x be lbe independent variable instead of 1. Let r' and r'' denote lhe first 
aud ScCOnd dt,-ri.vati\•es of I w.r.t. x. Prove that. provided x ,p 0, we have 

. dx I .. dx2 t" 
x = --· = - - and x = --:;- = --. 

di dt i dx dt· (t')' 

so that the original di.ffercotial equation is transformed lo 

(Herc t does not appear explicitly. so cbe mc«hod used to solve case (2)(a) will w<Jrlc..} 

(b) Solve theequarioos (i) x = - xx\ (ii) x = :i 2/x. 

7. Toe partial differ~tial equation u;.,(, . . ~) = u;(1,x) (the "diffu~ion equation"') appears in 

modern finance theory. 

(a) Show that for every <t, the function u(t, x) "" e!0 '·e"·' is a. s•>l11tion of the equation. 

(b) Suppo,;e th.It the cqt1ation b.a.s a solutioa of tb<: form u(x, r) = g(y), where y : xf,./i. 
Show that g(y) then satisfies the equstioa gh(y)/g'(y) = - ! .v . .Show that the solution of 

this e,1uation is g(y) "'' A f e-h\ty /· B, where :I and fl 11r.c constMts. 
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2:. Linear Differential Equations 
The general second-order linear differential equation is 

.t + a(t)x + b(t)x :,: f (t) (I) 

wherea(t), b(t), and f (r) :rre all continuous functions of r 011 ~omc interval I. {n contrastto 
first-order linear equation~, there is no explicit solution of (1) in the general case. However, 

something useful can be said about the snuctu.rc of the general ~olution. 

Let us begin with the homogeneous equation 

x + a(r)i + b(t)x = 0 (2) 

obtained from (1) by replacing f (r) by 0. We claim that if u 1 = u1 (/) and u2 = u2(t) both 

satisfy (2), then so does x = Au 1 + Bu2 for all chokes of constants A and B. In fact, since 
X = Au1 + Bu2 and .t = Au1 + Bii2, WC have 

i + a(i).x + b(r)x = Au1 + Bu2 + a(t)(Au1 + Bu2) + b(t)(Au1 + Bu1) 

= A[ii1 +a(t)u1 + b(1)ui] + B[u2 + a(t)u2 + b(r)u2l 

It was assumed that bod1 u I and 112 satisfy (2), so the two expressions in square brackets are 

bolh 0. Thus, we have proved that !he function .t = Au1 + Bu2 satisfies (2) for all values 
of die constants A and B. 

Suppose then diat we have somehow managed to find two solutions u 1 and u2 of (2). 
Does the general solution take the form x = Au1 + Bu2 for arbitrary ,;onstnnts ,t and B? 
No, in order to be sure that Au1 + Bu2 is the general solution of (2), we must require u 1 

and u1 not to be constant multiples of each other-that is, they must noc be proportional. 
(For a proof, see Section 7. I.) 

Equation (1) is <.:ailed a nonhomogeneous equation, and (2) is the homogeneous equa­

tion associated wid1 it. Suppose we are able to find some parricular solution u• = u*(t) of 

(1). lf x(I) is an arbitrary solution of (1), then it is easy to sec that the difference x(r) -u*(t) 
is a solution of the.homogeneous equation (2). In fact, if v = v(r) = x(r) - u*(tJ, then 

v=x-u•and ii=.i'-it',sv 

ii+ a(t)v + h(t)v "'"x - ii*+ a(t)(.i - u') + b(r)(x - u") 

== .i' + a(l)i + /J(r)x - [ii'+ a(t)u* + b(t)u*] 

== /(1) - f (r) = 0 

Thus, x(t)-: u'"(I) is a solution of the homogl·.neous cquati()n. Bur then, according to 
the argument ah<,ve, xV) -· u•(r) = Au 1(t) + Bu1.(l), wh<.'re u 1(1) and u2 (t) are two 

noopmportional !>olutions of (2). and A and II are arhitr.ary C(lnstants. Conversely, if x is a 
fUJ:Jction such that. x - u• is :1 solution of the homogeneous equation. 1heJJ xi!> a solution of 
1-J...,.. ...,,.~,...J.,.,.._T'n,...,...,. ...... ..,.,,,._,, ,.,. •• ,, .. ;~ .... A 11 : ...... 11 ,.,,.., .. --: •.. ~ ... 1,\.. .. t' ... 11 ..... ,;.~,.. ........ ~1+. 
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·-·-·-.. ·-·----...... ,•----··-·····--~-·-·-------·--·-···------·---· -) 
_.:.~.;.._;.;,;.:....=..:;;~,i,il ! 

I 

(a) The general solution of the homogeneous differential equation 

X + a(t-)x + b(t)x = 0 is X == Au1 (!) + Bu2(r.) 

where u1(r) andu2 (t) are any two solutions thal are not proportional, ,md A 
and B are arbitrary constants. 

(b) Toe general solution of the non homogeneous differential equation 

x +a(r)x +b(r)x = JV) is x = Au1 (I)+ Bu2(t) + u*(r) 

where Au 1 (t)+ B112 (t) is the general solution of the associatedl)omogeneous 
equation (with /(t) replaced by zero), ,md u*(t) is any particular solution 

of the nonhomogeneous c.qnation. 

I 

i 
I 
1 
I 

l 
' I 

I 
! 
i 
I 
I 

L-·--·--------~---··------ ----------·---! 
EXAMPLE 1 Find the general solutions of (a) x - x = 0 and (b) .x - x = 5. 

Solution: (a) The problem is to find those functions tbaido not change when differentiated 

twice. You probably recall iliat x = e' has this property, as does .x = 2,/. But these two 
functions are proportional. So we need to find another function with the property that 

differentiating it twice leaves it unchanged. After some thought, you might come up with 
the idea of trying x = e--1 • Io fact, .i = -e-•, and so .i: = e"''. Because e' and e-r are not 

proportional, the general solution is .t = Ae' + Be-r. with .I\ and. B arbill'ary constants. 

(b) We need only find a particular solution of the equation. Obviously, u(t) = -5 will 

work. Tue general solution is therefore 

x = Ae.' + Be-, - 5 (A and Bare arbitrary constants) 

111 me next section we shall give a general method for solving such equations. 

There is no general meiliod of discovering the two solutions of the homogeneous equation (2) 

that arc needed for die general solution. However, in the. special case when the coefficients 
a(t) and b(t) are both constams, it b always possible to tind the two solutions required. Toe 

next section shows how to do this. 

PR08LfM5 FOR SECTION 6.? 

1. (a) Prove that u, ,,,,. e' and u2 "'' re' hoth satisfy 'i - 2.i + .x "'0. Show fbat 1t1 m1<l 142 are not 
proportic•nal, and use this ro find the gem,rnl solution of rhc equation. 

(b) FinJ the genera.I ~olution of i - 2.i + x ·~. 3. 

2. Show that u1 "'· sin I and u,. = C(•SI both are ~olutions of.~+ x = 0. Whal is the ~,eneral 
,., .. Jnrinn r.f fh .. • .-.,·nu,t1nn? 
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@) 3. (a) Pcove tha1both111 "' e11 and ui = e-·" :ire solutions of i +.i -6x = 0. Wbati~ the general 
solution'! 

(b) Find the general ~olution of i + .< - 6.~ "' 61. (Him: Toe e(!Uation has a particolar ~olution 
of the form Ct + D.) 

4. A srudy of the optima.I ex.haustion of a 111uural re.so=· uses the equation 

.. 2 -a . uz 
X - - - a X + - - X ;::, 0 

1 -a 1-a 
(a ;c 0, a ,ft 1, a ! 0) 

Prove that u1 = e0
' and u1 = e"1IO-tr) are both solutions. What is the general solution? 

HARDER PROBLEMS 

~ 5. Let a f. b be two real nuroben. Prove lbllt the differential equation 

(t +a)(l +b)x + 2(21 + a + b).i +2x:: 0 

bas two solutions of the form (t + k)-1 for appropriate choices of k. Find the g~neral solution 
of the equation. (Hint: Let x ..- (r + k) - 1 and then adjust k until the function satisfies the 
ditforeot:ial equation.) 

3 Constant Coefficients 
Consider the homogeneous equation 

x+ax +bx= 0 (1) 

where a and b arc arbitrary cons tants, and .l = x(t) is the unknown functi on. According 
tO Theorem 6.2.1. finding the general solution of (1) .requires us to discover two solutions 

u 1 (r) and u1 (t) that are not proportional. Because the eoefil.cients io (I} <U'C constants, 
it seems a good idea to try possible solutions x with lhe property that x, .i, and x we 
all constant multiples of each other. The exponential function x = e" bas thi$ property, 

because .i = re" = rx and i = r 2r.' = r2x. Sowe try adjustiogt.bcconstant r inO{dertbat 

x == e" satisfies ( I). This requires us to a rrange that r2e" + o.re.'' + beT1 = 0 . Cancelling 
the positive factor 1:.

71 tells us that e.'1 satisfies (I) iff r i;atisfies 

r2 +ar + b =0 (2) 

This is I.he cha.-actcristic equation of the differential equation ( 1 ). It is a quadratic equation 
whose roots arc real iff ia2 - b 2: 0. Solving (2) by the quadratk formula in this cai;e yields 
the two characteris tic roots 

1- - ···· 
r2 ;.:.; - }.a ··· ,/ ±a2 -· b (3) 
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TI1cre. are three: different cases which are sllllUlled up in the following theorem: 

rH EOREM 6 3 1 ··-···-·-·---------------------------, 

L 

The general solution of 
· .iZ +ax +bx =0 

depends oo the roots oI the characteristic; equation r 2 + ar + b = 0 as follows: 

(I) If !a2 - b > 0, when there arc two distinct real root~. then 

(Il) If ia2 - b = 0, when lhere is a double real root, then 

x = (A + Bt)e" , where r = - ~a 

(III) If !a2 - b < 0, when there are no real roots, theo 

x::: I:''' (A cos {Jt + 8 sin fit), 

Proof: (J) Toe case !a2 - b > {) is the simplest because there are two distinct real 
characteci~tic rootS r1 and r2. The two functions e'•' and ,!'I' both satisfy (1), ~dare not 

proportional. So the general solution in this case is Ae''' + Be'21. 

( ll) If !al - b = O, theo r = - !a is a double root of (2), and u 1 = e" satisfies (1). We 
claim that u2 = re'' also satisfie.s ( l ). (See also Problem 6.) This is because 1i 2 = e'' + tre'' 
and u1 ""re'1 + re' 1 + tr2e.", which inserted into the left-band side of (1) gives 

ii2 + au2 + bu2 = e'1 (a + 2r) + t e" (r2 + ar + b) 

after simplifying. But the last expression is O because r = - !a and r2 + ar + b == 0. 
ThtLs, 1?1 and te'1 are i.odccd both solution8 of equation (!). TI1ese two solutions arc not 

proportiona l, so the general solution is Ac!' + Bte'1 in thi s case. 

(Ill) If {a2-b < O, the characteristic equation has no real roots. An exacnple is !he equation 

Ji + x = O, which occurred in Problem 6.2.2; here a = 0 and b = 1. so ia2 - b = - 1. The 
general solution wa8 Ai.in I + B cost. It should, therefore, coxne as no surprise that when 

!a2 - b -~ 0, the solution of (1) involves trigon()llletric functions. 
De.fine the two functi,, ns u1 (t) = ea' cos fjt and u2 (t ) = e"' sin {Jt, where o: and tl are 

defined in (ID). We claim that both these functions satisfy ( l). Since they are not proportional, 
the gen~a\ st,lution of e<Juat.ion (I) int.bis case is as exhibited in (HI). 

Let us show th.at u1{t) ;,:: ?' cos/fr satisli~ (1). Wi:- find thar u 1(t) :=. ae"' cosJ3r -
f3e'" sin /k Furthcnnorc, ii 1 (i) = <¥

1e«• co.~ f3t--a{Je"'' sin /jt-atle'" sin {Jt -/32
~

1 
Cl'S fit. 

Heoce, u1 + au 1 + bu1 ::: e"1[(a2 - {J2 + aa +b) cos fit - /i('.20' + a) sin f3t). By using the 
Clnt>ri'f-1,.,, lJ~•l n""(' t\f rv •)n,J ~ ()i\i~,.,. (T\ (fln U•O •·-""~ f,1-,..,f- "),v r •"' .,.,., () <"I A~ ,..,1 .Q2 ; ,.., •'' 1 !, ' •• 



i A PTE f\ 6 I 0 ,FFER ENTIAL EQUA TiONS :1: SEC OND-O P..D tR EQU ATIO N'., 

E I 

fa2 - (b - ;\.a 2
) - l a 2 + b = 0. This shows that u 1 (1) "" e"" cos /J t satisfies e<Ju.ition (I)_ ·· 

A similar argument i;hows that u2 (I) = ""' sio fit satisfies (I) as well. • 

NOTE 1 When !a1 - b < 0, i.e. in case Ill , an al1e1113tive form of the solution is x =: 
Ceu r cos ({J t + D). tSee Probk'm 5.) 

NOTE 2 Ifwe use complex numbers (see Section B.3), then if a2 i4 < b thesolut:ioncS of tbc"' 
char:1cteristic equation r' + nr + b = 0 can be written as r1.z = er± i/J, where a = -n/2 ·.­
and {3 = ~ ai / 4 are precisely the real numbers occuning in the so lution in case lH. 

With r1.2 = a ± ifJ, the two complex exponential function.5 en• = e"' (cos f)t + i sin fJ1) · 
and e"".J = ear (cosf3t - i sin /31) both satisfy ( I ), as stated in case (UT). But so does any 

linear combination of these solutfons. In particular, (e''' + e"t')/2 = e"1 cos fl t and (e'l' -
e'2')/2i = e"1 sin .Br both satis fy (I), as stated in ca~e (TII). 

Find the general solutions of the following equations: 

(a) ;i - 3x = 0 (b) x - 4:i' + 4x = 0 (c) x - 6.r + 13x = 0 

Solution: (a) T he characteris tic equation r 2 - 3 = 0 has two real roots r 1 = - .J3 and 
· rz = ./3. The g eneral solution is 

(b) 1be characteristic equation r 2 - 4r + 4 = (r - 2)2 = 0 hHS the double root r = 2. 
Hence. the general solution is 

x = (A + Bt)e1
' 

(c) The characteristic equation r 2 - 6r + 13 = 0 has no real roots. According to case (lll), 

et= -a/2 = - (- 6)/2 = 3 aud /3 = .,f 13 - }(- 6)2 = 2, so the general solution is 

x = e3'(A cos2r + B sin 2t) 

The Nonhomogeneous Equation 
Consider next the ,wnlumuJgeneous equation 

x +ax+ b~ = f (t ) (4) 

where f (t) is an arbilr'ary continuous function. According to Theorem 6.2. l (b), the general 
solution of ( 4) i s given by 

(5) 

We have explained how to find the term Au1 (t) + Bu2(r) by solvin!( the corresponding 

homogenemL~ equation. But how dn we find a particular ~olution u• = u• (t) of ( 4 )'! r n fact, 

there i$ a simple method oj undetennined cw.ffidents th:it works in many case.~. 

If b = 0 in ( 4 ). then the tenn in x is rni~s iug 11nd the suhstitution u = .i: transforms the 
equation into a linear e.quatior, ~)f the fir.st order (sec E~ample 6.1.2 ). So we may a~sume 

EXAMPLE 2 

~-
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(A) f (t ) = A (constan tj 

ln thiscase we check to see if (4) has a solution chac is constant, u.' == c. Theo ,i• = it" = 0, 
so the equation reduces to l>c = A. Hence, c = A(b. Thus, for b -:f 0: 

x ;- a'.i" + b.T "" A has a particular $1)lution u* = A/b (6) 

(B) f (t ) is a polyu.omial 

Suppose f (t ) is a polynomial of dcgrec n . Then areasonableguess is that (4) ha~ a particular 
solution that is also a polynomial of degree n., of the form u• = A,.t" + An - I r• - 1 + · · · + 
A 1t + Ao.We determine the undetermined c0efficients A,., A n- ·I, . .. , Ao by requiring u .. 

to satisfy (4) and equating coefficients of like powers of t. 

Find a particular solution of x - 4.x + 4x = t2 + 2. 

Solution: The right-hand ~de is a polynomial of degree 2. So we let u• = At2 + Bt + C 
and try adjusting A, B, and C to give a solution. We obtain u • = 2At + B. and so u* = 2A. 
Inserting these expressions for u*. ,,•, aud u• into the equation yie lds 2A - 4(2At + B) + 
4(At2 + Bt + C) = t2 + 2. Collecting like temis on the left-hand side gives 4At2 + (48 -

&A)t + (2A - 4B +4C) = t2 + 2. Since this-~ust hold for all t, we can equate coefficients 
oflike powers of t to obtain 4A = I, 48 - 8A = 0, and 2A - 48 + 4C = 2. Solving 1hcse 

three equations gives A = }, B = !, and C = ;. Hence, a particular solution is 

Note that the right-hand side of the give.n equation is t2 + 2, without any t tenn. Yet no 

function of the fonn Ct 2 + D will satisfy it; any solution must include the tCllil ~ t . I 

EXAMPLE- 3 For some differential equations in the theory of option pricing, the independent variable 

is the current scock price rather than time. A typical e.'mmple is 

/"(x) + aJ'(:x ) + bf(x) = ax+ fJ (*) 

Here /(.r.) denotes the value of a ~tock option when the stock price is :x. For !he ca.se of 
a "call option", offering the right co buy a stock at a fixed ''strike price", the constaat b is 

usually negative. Solve the equation in th.i s case. 

Solution: When b < 0, the characte ristic equation bas two distinct roots r 1.2 = - fa ± 

J {-a2 - b, so the homogeneous equation has the general solutiou 

f(x) =: Ae''' + Ber:' (A and IJ are c.:on.~tants) 

To find a particular ~olution u(x) of (-*), we cry 11(.t) ::.:: Px + Q. Then u'(x) = P 
· ,rtA ""' v·, - I\ 1n..,~r1inrr ThC's~. intn fr) ~ives aP + b( Px + 0 ) "" ax + fl, and so 
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bP.t + (a P + bQJ ~ rv: + {3. Hence P :::... a / band Q ,,- (fJb - aa)/t,2 , so a p,mic­
ular solution fa u(x) = a.x/b + ({31> - aa)/b2 . The geoerJl .solution of (*) i~ therefore 

j . r·x '2-' a fib - aa 
(x)=Ae' +Be + bx + ~ , 

(C) I V) = pe'I' 

It sec.ms natural to tr.ya particular ,olution of the forrn u• = A P."1
• Then u• = .1qe1?' a11d 

u• = Aq2 e'11
. Sut>stituting these into (4) yidd~ Aeq'(q2 + aq + b) = pe'l' . Hence, if 

q2 +aq + b # 0, 

ii + a.i + bx = pe'1' has the particular solution u· = p e4' 
q~ +aq +h 

(7) 

The condition q1 + aq + b i= 0 means that q is not a solution of the characteristic equation 
(2)- that is, that e'I' i~ not a solution of ( l). If q is a simple rooc of q2 + aq + b = 0, we 

look for a constant B such that Bteq• is a solu1ion. If q is a double root, then Ct2e'I' is a 

solution for some consiant C. 

(D) f (t ) = psinrt + qcosrt 

· Again the method of undetermi ned coefficients works . Let u' = A sin r t + B cos n and 
adj ust the constants A and B so that the coefficients of sin rt and cos rr match. If f (t) is 

itself a solution of the homogeneous equation, then u• = At sin rt + Bt cos rt will be a 

particuJar solution for suitable choices of constants A and B. 

Find a particular solut ion of x - 4.i + 4x = 2cos 2t. 

Solution: Here it ought seem nattu·al 10 try a panicular solution of the form u = A cos 21. 

Note, however, that !he term -4u gives us a sin 2t term on the. left-band side, and no matching 
tenn occurs on the right-hand side of the equation. So we try uA = A si o 2t + B cos 2t 
instead, and adju~1constant~ A and B appropriately. We. haveu• = 2A cos2r-28 sin 2t and 
u• = - 4/\ sin 21 --4 B cos 2i. Insetting these e-,cpression.s into the equation and rearranging, 

we get SB sin 2t - I\A cos 2t = 2 c.os 2t. Thus, lerti11g B = O and A. = -1/4, we see that 
u • = (--1/ 4) 8in 2t is a particular solution of the equation. I 

The technique dc.~crjl:>ed for obi.aioing patticul~ s,,lotions also app.lics if J(t) i ., a sum, 

difference, or product of polynomials , exponential functions. or ttigouometric functions 

of the type mentioned. For instance, if f (t) = (t1 + l)e3' + sin 2t, one can try u• = 
(At2 + Br+ C)e3' + D sin 21 + E cos 21. Ou the other hand, if f (t) is an entire.ly di fferent 

type of function such a.s t ln r , the mechod of undetermined coefficients usually doc$ not 
work. 

Euler's D iffe rential Equation 
Om< type of equation that t>eca~iottR!ly ()(·cur.< in ec,:,,)(lllUCs is Euler 's differeutial 1..'(!uation. 

I~\ 

EXAMPLE 5 

SECTI ON 6. 3 I CONSTANT (OE FF IC IENTS 233 

One way to pro:ecd is to look for a constant r such th.11 ;c = 1' satisfies the equation. If lhis is to 
won::. insetting x = ,-t' - 1 UDd x :.- r (r - 1)1' "2 into equation (8) give.~ 

11,(r- l)r'-~ + a trr'-1 +bi' = 0, or t'(r2 + (a - l)r +b) = 0 

So :c: -;, t' is a rolmion if 
r2 + (a - l )t + b "" 0 (9) 

·n1e solutions of this equation are 

r i.z ::: - i(a - L) ± ! ,i(a - 1)1 - 4b (10) 

If (a - 1)2 > 4b, equation (9) has two different real solutions r1 and r2, and the general solution 
of (8) is 

x = At'' + 8/'2 (A and B are ru:bia-ary constants) ( I l) 

(Note that r'• and , •2 arc not proportional when , 1 ,ft r~.) 

lf (a - 1)2 = 4b, equation (9) has a dou.ble root r = }(l - a ) . Then u 1 = t' .satisfies equation 
(8), but how dot:.~ one find a1101her solution? It 1urns out that 112 .= (lo 1)1' is ruiother solutitm (see 
Problem 7), a.i:iu so the general solution is: 

x = (A + 8 In 1}r(1- •ii~ (12) 

If (a - J )2 <. 4b, t.bc roots of (9) are coruplex. For i.ostrulce, for the equation ,~ i -'- t .i = 0, 
equation (9) reduces to r2 + 1 = 0, so r1 = - i , r2 = i, where i is the imaginary unit, but il is not 
at all clear bow to interpret t1

• ln fact, consid<-,rob!i, work is needed to show rhat the solution in this 

case is 
x((} "' t" [ A ros(IJ Int)+ B s'm.(/J ln t )] 

where a = ! (I - a) and {J = h !4b - (a =-ir. 

Solve the equa tion ili + ix - x = 0. 

Solution: Equation (9) reduces to r 2 - 1 = 0, so rt = - 1 and r1 = 
solution is x = 111-1 + Bt . 

(13) 

l, so the general 
I 

EXAMP.LE 6 l.o the theory of option pricing one enc.;0unters the equation 

x2 f''(x) + axJ' (:-c) + bf(x) """ ax + /3 

where f (.Y) denotes !he value of a stock option when tbe price of the stock. is x. lf {a -1)1 
> 

41> (which is often the ca.~e in option model~). the homogeneous equation has the ~olution 

f (x) :-:: Ax''+ B x"' 

where r1.2 "' · ~ (" ···· l ) ± 4',1(a ··· ff - 4b. We ~asily find 11'(x) = ctx /(a + h) + {l/ b 
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NOTE 3 Ao alternative way of SOl\'ing (8) is to inlJ"Odoce a new independcur vadable .< :: In, , i.e. 
r '-" f' . Th.cox.,-, dx fdr = (dx / ds)<ds/ dt ) = (ljr)(dxjds ), and differcntiuting .i with rClipect to 
t yields 

d ('dx) d (·d.<) ds ,Fx I 
dt ds . .,. d.r ds d t .:.: d.ri t 

Inserting lbtsc expressions into ( !:I) yields 

d2x dx 
Z?i + (a - 1) ds + bx = 0 

This is an ordinary second-order equation fo( x (I) with ..x>ustaot coefficient~. 

M S FOR SECTION 6 3 

Find the gencml solutious of the equ:uiolls in Problcms 1 and 2. 

1. (a} x - 3x = 0 (b) x + 4.i' + 8.r == 0 (c) Jx + tu =O 

(d) 4.x + 4.x •r X = 0 (e) x+x -6-t= ~ (f) x + 3.i' + 2x = e51 

@n (a) x - x = sint (b) .t - x = e-1 (c) 3.x - 30.x ·+ 75:t = 2t + l 

® 3. Soh·e the following differential equ:ttioos for we specific initial conditions: 

(a} x + 2x + x = 12, 

(b) x + 4x = 4r + 1, 

x(O) "' 0, i(O) = l 

x(;r /2) "" 0, x (;r / 2) = I) 

@ii> 4 . Find a particular sc'llution of the diffcrt!l1tial equation 

i'. + y(p + a(l - ,8}JL - y8" L = - y6•kr - y~ · L0 

and then disc•JSS wb~.n the general solurion o&cillates. 

(;,6* ,fa 0) 

( 14) 

5. Prove !hat the geoeral solution of i + a.i ..,_ bx = 0 iu the case !a~ .• b < O can be written as 
x = C ,,a, cos(jl1 + f)). where C a.ud !) arc arbitrary constant:;, c, """ - ! a, and p = f..; 4/> - a• . 

6 . Comidcr the equation ii + ux -'- hx = 0 when ~(12 - h ,, .. 0, so that chc characteristi~ equation 
lw a double root r " - a / 2. Let x (r ) := u(r)e'' and {'TOV~ that this function is a solution if and 
only if ii =~ 0. Conclude that tbc gc,icral solution is x = (A + Rt)e'' . 

7. Show that if (a-· I)"= 4/,, then u2 ,.,. t]n t)1° ··«i! 2 is a solution of (8) . 

@8. FmJ the ~cn e.r:tl solution\ of the followil18 equations for r > 0: 

(ll) 1'-'i + 5 1.i; + 3x = () 
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<w 10. A businei;s cycle model <luc ro F. Dresch i.ncwpordt~s th<.o equation 

6.4 

p(t) =11 J.'oc[f)(p(r) } - S(p(T)) ] d r (a > OJ 

whet:e p(I) dcnotesa-prk e index at.timer, and O (p) and S(p) arc aggrt\g_ate demaod and supply, 
respccrive-ly. Thus, {•) says 1h:u the ra1e of price incmasc is proportioual to the accumulated 
total of :!ll past cx.:ess demand, ln the ca~c when O{p) = 11() + d; p and S(p) = so + s1p, 
where ;t1 < 0 :utd , 1 > 0, <liffeTCntiate ( •) w.r.r. t in order 10 deduce a scs;0nd-order dilfcrcntial 
equation for p(t). Then find th,; i;cocral ~olutioo of this equ11tion. 

Stability for Linear Equations 
Suppose. the variabl~ of an ect,nomic model change over time according 10 some differential 
equation (or system of differeotial equations) . If appropdatc regulariry and initial conditions 
arc imposed, there is a unique solution of the system. Also, if one or more initial condition$ 
are changed, the solution cbao,ge.s, Au important question is this: will small changes iu the 
initial conditions have any effect on the long-nm behaviour of tllc solution, or will the effec t 
"die out~ as t ~ oo? In the lattt.'T case the system is calkd asymptotically stab le. On the 
other hand, if small changes in the initial conditions might lead to significant differences in 

the b~havioUI of the solution in the long nm, then the system is unstable. 
Consider in particular the second-ordt:r nonhomogcncous d ifferen tial eq111uion 

x + a(t)x + b(t)x = f (t) (1) 

Recall that the g<::neralsolution of (l) is x = Au1 (t)+ Bu2(t )+u•(t), where Au1 (t)+Bu1(t) 

is the genetal ~elution of the associated homogenwus equation (with .f (t ) replaced by zero), 
and u*(r) is a particular solution of the nonhomogeneous equation. 

Equation (I) ts called globally asymptotically s table if every solution ;\u1 (t) + B u1(t) 

o_(the associal(>d homogeneous <!([uution tends 10 0 as r -,- oo for all values of A mu.I B. 
Th,m the C'jfect of the initial conditions "dies out" as t -;. oo. 

Tf Au: (t) + lJu2(t) rends to O as 1 -;. oo for all values of A and B , tbcn in particular 
u 1 (r) -, 0 as t - t oo (choo~e /l = I, B = 0), and u2 (t ) --+ 0 as t - oo (choose A "" 0, 
B == 1). On the other hand, the condition tl1a l 11!(/) and 112(1) both tend I) a~ t tends to 
infinity is obviously sufficient for Au1(l) + Bu1(1) to tend to Oas t--+ co. 

EXAMPLE I Study thestahility of 

(b) i. + 2:r + 5x :.:.: e.' (,C) .t -,· .i - 2x"" .~t
2 + 2 

Solution: 

(a) This is an fa1ler ~quarioD whose geni;,ral ~olutioo i~ x (i) = A r- 1i 2 + 11 r - ~i7. + 4. The 
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(b} The corresponding characteristic t'.'.quati<m is 72 + 2r + 5 = O, with compl~x roots 

ri = -t + 2i, r2 = -I - 2i, w u 1 = e-1 cos2r and u2 == e-1 sin2r are linearly 
indep1m<lent solutions of the homogcncou~ equation. (See (Ill) in Theorem 6.3. I and 

Note 6. 3.2.} Ast --+ co, both u I and u2 tend to 0, si11ce cos 21 and sin 2r arc both less 
than or equal to I in absolute value and e-1 -> 0 a.~ t -,. oo. The equation is therefore 
globally asymptotically stable. 

(c) Here u1 = t?' is one solution of the homogeneous cquarion. Since u
1 

= e' does not 

tend to O a~ t --+ oo, the equation is not globally a~ymptotically scable. I 

A Useful Characterization of Stability 

Recall that in the complex number r = a+ i fJ, a is the real part, and that the real part of a real 

number is the number ilSelf. With these concepts, we have the following char.icteriwtion 
of global asymptotic stability: 

• - . .... -- .-................................................. '"'! 

The equation x +ai +bx= f(r) is globally asymptotically stable iffboth roots 
of the characteristic equation 72 + ar + b = 0 have negative real parts. (2) 

~ - ... - .. - ......... ~ ... - --~ ............... _., ............... -..-.. _.. ...... ,,_. _____ .. ~ ......... _____ , .. ___._ .... __ 

E 2 

E 3 

Proof: Note that eia+i,8), ~ 0 as t --+ oo iif a < 0. So in cases (I) and (Ill) of Theorem 

6.3.1, the result is proved. fo case (Tl), we note that te'" --+ 0 as 1 ~ oo jff 0/ < O, so the 
result follows in this case as well. • 

Th.is result extends ca.~ily to differential equations of order n, as we will see in Section 7.3. 
The following is a special result for the case of second-order equations, when n = 2: 

x +ax+ bx = f(I) is globally asymptotically stable {=? a > O and b > O (3) 

Proof: The two roots (real or complex) r 1 and r2 of the quadratic charactcristk equation 

r
2
+ar+b = Ohaverhepropertyth::itr2+ur+b = (r-r1)(r-r2) = r 2 -(ri+r2)r+7

1
r2. 

Hence a = - r1 -ri and b = r1 r2. In cases(]) and (If) (}fThcorem 6.3.l, global a.symplotic 
stabilir.y holds iff r1 < 0 and r2 < 0, which is uue iff a > 0 and b > O. In case (I.II), when 
r1.2 = a± bi, global asymptotic stability holds iff a < 0, which is also true. iff a > O 
and b > 0. 

• 
For the lasL twocqu.aiions in Example l, it follows immediately frntn (3) thal (b) is stable, 

whereas (c) is unscable. I 

In a paper on growth T.heory, 1he following equation is studied: 

.. i,, . ) • •. 
L! +(ii···· -)v + }.,yv =--blr) 

a a 

\Vhcrc JL. A. V., and a art'· c;()n!-.tar1ls ~nd h1f'\ i\: ::a n.,, ... ,t fnn, .. ,..;,,,, v ........ ~: ..... L - ., .. , ., .. 
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Solution: lbis is a second-order linear cquatiou with constant coefficienis. According r.o 
(3). the equation is stable iff ,, > J../a and .l..y > 0. I 

NOTE 1 (Asymptotically stable equilibrium states) Consider 1he differential equation 

.\:' +ax +bx= c whereb cl 0. Then x* = c/b i~ an equilibrium state, since x(1) = c/b is a 

constant ~oluti()O of the equation. All soluti.011s of the equation will tend to the equilibrium 

state a~ 1 -.. oo iff a > 0 and b > 0. We then say that the equilibrium state x' = cjb is 
globally asymptotically stable. 

PROB EMS FOR SfCTtON 6.4 

6.5 

1. De.term.ine which of the equations in Problem 6.3. l are globally a~ymptotically stable, and verify 
(3) in this cast'. 

2. For which values of rhc constant a is 

x-'- (I - a 2).r + 2ax = 0 

globally asymptotically slabJe·? 

~ 3. A model by T. Haavelmo leads lo an equation of the typ..; 

p(t) = y(a - a)p(t) + le (a, y, a, aod k arc constanrs) 

Solve the equation. Can the .:onstants be chosco ro malcc the equation globally asymptotically 
stable'} 

Simultaneous Equations in the Plane 

So far we have considered finding one unknown function to satisfy a single differential 
equation. Many dynamic economic models, especially in macroeconomics, involve several 

unknown functions that s.1tisfy a number of simultaneous differential equations. 

Consider the impommt special case with two unknowns and two equations: 

••••••••• a.L ... . r. . .,., .£! 

.i=/(1,x,y) 

y = g(f, x, ,Y) 

...... ~ .. ' ,..._,. ... ,.-··-········· 

(l) 
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In economic mod.els that lead to sysiern.s of this type, x = x(r) .ind y = y(t) arc state 
vari.ibles chacac1erizing the economic system at a given ti.me 1. Usually, the state of the 

system {x(to), Yllo)) is known at some initial time to and the future development of the 
system is then uniquely detemrined. The rate of change of each variable depends not only 

on r and the variable itself, but on the other variable as well. In this sense, the two variable~ 
x(t) and y(t) •'interact". Systems of this type may exhibit very complicated behaviour. 

A. solution of (1) is a pair of difforenciable functions (x(t), y(t)) whkh is delined on 

some interval I, and which sati~fies both equations. With the a.%utnptionR imposed on f 
and g, if to is a poim in /', and xo .md yo are given numbers, there will be one and only one 

pair of functions (x(t), y(t)) that satisfie.s (I) and has x(ro) = xo, y(to) = YO· 

\ 
\ p 

\~ 
\ ·-\ ---K 

z(tl 

z(i) 
P Z(I + 1.\f) - 'L(I) 

~ Z(t+j.tj 
___;;-.,,..,:...- 1.( r + M) - :,,(1) 

------ Q y-- lll .•. ------4""':::::._ ___________ • __ ___ 

Figure 1 Figure 2 

NOTE 1 If (x (I), y(t)) is a solution of (l). at time t the .system is at the point (.r(t), y(i)) 
in the xy-plane_ As I varies. the point (x(t), y(t)) traces out a curve K in the xy-plane. In 

Fig. l the vectorz(t) = (x(r), y(r)) points from the origin to the point P = (x(t), y(t)) 

and z(r + At) = (-t(t + ,6.1), y(t + Lit)) points from the origin to the point Q. The vector 
:r.(l + C:.1) -z(t') points from P to Q, and [z(t + M) - z(t)l/ tJ.1 points in the same direction 

if !:it > 0 (and in the oppo~ite direction if .:le < 0). If r is kept fixed and !:it tends to 0, 
the point Q will tend to P, and the vector [z(t + 6.t) -- z(t)]/ C:.1 will tend to the tan~nt 

vedor to th<! curve K at P. We see that 

z(r + 6.1) - z(t) (:c(r + .M) - x(r) y(t + t:.t) - y(t)·) . . = · . -+ (:dt) y·(r)) as t -+ 0 
/::,,/ D,,! {:,( . ' , 

Thus the vector :i(t) = (_i'(t), y(r)), which describes how quickly x(r) and y(r) change 

when t is changed, is a t.tngent vector to tile curve K at P, as illustrated in Fig. 2. 

The general solutioa of c_ l) usmilly depend$ on two arhit(acy constants ,\ and B. and can 

then be written as x == ~1(r; A, B), y = cpi(t: A. B). The two con&tams are determined if 
we specify an initial condition for each variable-for ex.ample, x{t11) = xo, y(to) = y0 • 

How can c>nc find the general solutilm or l I)'' Of course, one cannot expect exact methods 

1owork in complete g<!neral.ity, but explicit solutions can be found in some importan1 cases_ 
One method is w reduce (I) to a second-order differential equation in only one unknown: 

Cse the first e<Jtt,ttion in (l) to ex.pres~ ya<: a function y = h(t,x,x) of 1, x, and i. 
Differentiate thi.s la~r e4ua1jon w.r.t. I and substimte the expressions for y and y in10 the 
;;ccond equa1ioJ1 in (1.). We thL~ll obtain a se<.:ond-order differential equar.ion t0 determine. 
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Find tbe general sulucion of the system 

i ::: 2.x + i y ·-- e' 

y = 4e-'x + y 

Find also the solution that gives x = y = 0 for t = 0. 

Solution: Solving the first equation for .Y gives y = .i:e-r - lxe-1 + l. Dillerenriati11g 
w.u. t yi.:lds ,Y = xe-• - ie-r - 2xe-1 + 2xe"''. Inserting these expressions for y and y 
into the second equation gives ;fr-1 -1.i:e-' + 2.xc-1 = 4xe-1 + ie"' ·- 2.xe-1 + l, or 

x ·-- 4x = e' 

Using the methods of Section 6.3, we find that the general solution for x is 

x = A + Be41 
- !e' 

From y = i:~-, - 2xe-1 + J = (4Be41 
- !e.')e-· - 2(A + Be4

' - }et)e-• + I we gel 

y = -2Ac-r + 2Be3' +; 

If J: = y = 0 fort = 0, then A+ B - ~ = 0 and -2A. + 28 + ~ = 0. Solving these 
equations yield~ A=!, 8 = -!. - , I 

We have si:en how the problem of solving (ml)St) first-order systems of the form (1) can 

be transfom1cd into the problem of solving one second-order equa1ion in only one of the 

variables. On the other hand, any secl>nd-order differential equation _i; = F(t, x. i:) can be 
converted into a system of the form (I) simply by defining a new variable y = i. Then 

y = .x = f'(t, x, x) = F'(t. x, y), and the system becomes 

i =y, y = F(l, X, y) (2) 

Recursive Systems 

Suppose that the two differential equations take the special form 

_i:=f(t,.x,y), y=g(t,y) 

so that one of the two variable~ v:11ics independently of the other. Then the system .:an be 

solved recursively in two ~•.eps: 

(i) Firs1, solve j: = g(t, y) :as an ordinm)' fir!'-t-ol'der differential equation to gel. y(t). 

(ii) second, suhstituie this y ::- ,(1) in the equation .i = f (t . .x, y) to get another first-order 

differential equation in x(t). 

nr , .. ""''",. "simil:.r ""moach work.~ with the oair of eouations .i = .f (t. x). y = gll, .x, y). 
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Solution Method for Autonomous Systems 

When system (!) is of the form i: = f (x. y), j, = g(x,y). ~o that f anclg do not depend 
explicitly on f., there is an alterna1ive solution procedure: Around a point ~ here x ,f, O. we 

can vie w y as a function (lf x with dy/dx = yf.i = g(.t, y )/f(x, .v). Solve this equation 
to give y = ,p(x). Then x (1) is found bp olving :c = / (:t, <()(x.)). Finally, y(t) = ,p(x(t) ). 

t 2 Use the m ethod de.scribed above to liod the solution of the system 

X .:: y 

Y = l /x 
.(.~ ~- o. y > 0) 

that has x(l ) = I and _y(l ) = 2. 

Solution: We see that d y/dx = ,i;/x = y2/ .ry = y,'x, which is a separable differential 

equation whose general solution is y = Ax. Then .i: = y == Ax, with general solution 
x = Be"' . This gives y = Ax == ABeA•. If x( I) = l and y( I) = 2 , then 1 = Be"" and 
2 = A Be"'. We find A = 2 and B = e- 2 , so the solution is ;c = e1.r-2 , y = 2e2t-2 . I 

Linear Systems with Constant Coefficients 

Consider the linear system 

x. = aux + £1 12.V + b1 (r) 

Y = anx + a22Y + b2(r) 
(3) 

Suppose a 12 ,:/:. 0. (If au = 0, the first equation is a simple linear diffe.entia\ equation in 
only one unknown.) Let u~ derive a second-order equation by mod ifying the method used 

in Exarnple 1 . Djfferentiating lhe firs l equati on w.r.t. t , then substituting y from the second 

equation in (3), we obtaiu x = aux + a12(<121-T + t222Y + b2(t)) + t,1 ~1) . Substituting 
a1~Y = .i: -- a, 1x - b1 (t) from the first equation in (3), then ~implifying. we have 

(4) 

This is a second-order di.trcren tial equation wi th constant coofficients. Toe general solution 
is of the form x (t) =- Au; (1) + Bu2(t ) + u'-(t ), where A. and B are arbitrary constants. The 

solution for y ( t) is found from a12Y = x - aux - b1 (r}, and it depends on the same two 
constancs. 

An argume nt similar to the above shows that y mu~t satisfy the diffc.rential equation 

Note that ( 4) and (5) h:wc the saine a.~socia1.ed homogeneous equation. ~<> that their charac­
teristic equations arc identical.1 

t If we solve eq1J11tit>n~ (~) and (5) ~eparacely. we end up witlt four cnnstantS. But thc...-e ionr constants 
canuoc all be. chose11 indepcodently of out'. imothe r. Ouce w~, have Cho.sen the (;On,t~nts for :x. ~3Y, 
th,:.ccmsr.1nts Cory are. completely de.ti\rminect, be.cansc (4) give$ y ,,:· ( 1/ ,i ,.,)(_f - "" r -1..t,\\ 

SECTION 6 .5 ! S1MULTA Nl: OUS EQU ATIONS IN THE PL.C..N f. 241 

In fact, we obtain the following explicit formula~ for !he solution of system (3): 

x (t ) ~ Au:(ti.;. Buz(t) + u'(r ) 

v(I) = P(A, l:l) u 1(ri + Q(A , 8)u2(I) + _!_[ii ' (t) - a11 u·(I} - b:tt)] 
· .• an 

(6) 

wbere~ function;,u1(t), u2(r), Pt.4 , BJ, an<l Q (A , .!l} aredefinedosfollows: ILl.1 and).2 denote 

the roots of the chatacteristic polynomial of equation (4), then: 

(a) If i- 1 amD.1 are real and diffei-et1t <t!ld u 1 (I) = /·11
, t12 (I) = cl

1' . then 

A(A1 - <ltd H(il.z - au} 
P(A , 8 ) "" and Q (A. B)::. --'-~ -"-

a~, an 

(b) If .\, =A·~ isan::udoublerootandu 1(1) ""i·1' , u2(1) = ti'•'. thro 

J..t.4 + B -a11 .{ d Q( A B ) B (J.,1-a,.) 
P(A , B } = an , = ----

a~ au 

(c) If At ·== a + i# and ;_2 = a - if), f, ,6 0, and u 1 (r) "' c'" C-OS /Jr , u.1.(t) = e'" sin,Bt, then 
P(A. B i= (aA + {JB - a 11,\)/ a11 and Q(A. B) = (aB - /jA - r1uB)/ a11-

Solutions Based on Eigenvalues 

With bi (t) = b2(t) = 0, system (3) reduces to the homogeneous system 

Let us sec if by an appropriate cboice of numbers v i, t•2 , and }. we can make (x, y) 

(v1e" , v
2
e~') a solution of (7). Inserting x = 111J..ei r and)' = v2J../ ·

1 
into (7) yields 

Cancelling the factor e)..' gives the equation 

(
1111 a~2 )(v')=),,(v1 ) 
a21 an t:1 t.'1 

(VJ) . . (all ln tbe tenninology of Section 1.5, is a(l eigenvector o f the matnJt A ,,, 
v :i. 1111 

with eigen,;alue i.. . The eigenvalues· arc the , olutions of the equation 

ia11 - i.. 

I .. 2, 

(7) 

(8) 

The ca~ in which A hlls different real cig~1vulues, ,. , and i-1, is tbc simplc.,;r_ Then A has 

· (l'J) (ui) · f (7' ". r.wo linearly independent. e ,g.enwclors ,., Md .. . , ~n<l the genera l solution o . J 1s 



HAPTER 6 I D1H€ R~NT!.'IL ~QUA,IOJIJS II: SECOND-ORD&R EQUATIONS 

where A and B are arbitrary constants. 

'LE 3 Solve the system.>: = 2y, y = x + y by 1he eigenvalue method. 

Ui 4 

Solution: The system cau be written as 

The characteristic polynomial of A is IO~). 
1 

: ;.. I = i..2 
- i. - 2 = (). + 1)()., - 2). 

Hence the eigenvalues are i,.1 = - I and A2 = 2. Corresponding eigenvectors are ( -: ) 

and ( ~), respectively. According to (9), the general solution of ( *) is therefore 

(
x) = .,4e-• (-2) + Be2• ( 1) = (. -2Ae'"' + B

0
e

21
) 

y l. I . Ae-• + Be~' 

Consider a nonhomogcncous system o:t' the form 

i = a11x + a12Y +bi 

j = a21x + a12Y + l,i 
(10) 

where b1 and b2 are constants. This can be transformed into a homogeneous system by 
introducing new variables. The method is illustrated in the next e~ampk .. 

Find the .solutions of the system 

x = 2y+ 6 

y=:t+y-3 

First note that the equilibriuru point (where .:i = y ""'0) i~ (6. -3). Introduce new variabli:s 
z = x - 6 and w = y + 3 thar. mca~urc the deviation of x and y from their equilibrium 
values. Then i = i and ,j, ""'·)',so the system(*) is transfonne<l inw 

i: = 1(w - 3) + 6 = 2w 

w = (;; + 6) + (w - 3} - 3 =::. + w 

Acc-ordi.ng to th~ preceding example, the general solution is ;; ::;-: ·-·2Ar.-• i· R~2• and 
w = Ae .. , + U c2'. The general solution off*) is therefore x = ~ + 6 = - 2.A e-• + lJ el• + 6 
..... A .. _ ... '2 _ .t ,.· I z:,.,:1,t ~ 

SECTION f,.6 I EQLl!l.l!iRllJM POINTS FOR !.!NEAR SYSHMS 

1. Find ilic gene.nil soluiions of the following systems: 

x=y 
(a) 

y =.< +• 
.t "°' X + Y 

(b) . . 
y=,e-y 

x "'2x - 3y 
(.c) 

y=-x+i 

~ 2. Find the unique solutions of the given syHems that satisfy the given initialcoudiriou~. 

(a) :c(t) =a(x(t) + y{I)). y(t) = b(x(1) + y(I)). x(O)""' !, y(O) =} 
(b) i = 2r.>.· + y, y = -2(E + x). x(O).::: I. y(O) = 1 

(c) i=-2y+sinr, j=2x+l-cost. 

@ 3. Find the general solution of the sy~tem 

x=x+e2'p 

p = 2e-2'x - p 

x(O) =-= 0, y(O) = 0 

~ 4. A modd by M. J. Beckmaun and H. E. Ryder includes the following system: 

,r(1) = cr;r(1) - a(t). 
. l 

c,(1) = rr(t) - r/1(E) 

Find the geuernl solution when ,x + l / {! > 2. 
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5. Usingthemctho<lin Example 2, find thesolutioncurvepa~si11gthrollgh (t. x. y) = (1, 1. ../2) for 

l\'2 
i=-·-. 

I +x2 

(XV 
V= --·-, 
· l -t x· 

(t > 0) 

6.6 Equilibrium Points for Linear Systems 
ConsidC'r the liocar system with constant cocfficienti; 

TI1e equilibrium points for this system arc determined by the equations 

a11x + a12.1' + br = 0 

1121 x + any + b2 "" 0 
or 

aux+ a12Y = -b1 

GJ1X + ll21Y = -b-z 

(1) 

(2) 

which result fnlm putting x == y = 0 in (I). Jf [Al i 0, this system ha.~ a unique solution 
(x•, y•), which is c.tlkd a111:quilihrimu point (unu1 equilibrium slate) for Ihe system (1). 
Cramer'& rule telb us that the cquilibri11m point is 

(3) 
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The pair (.x(1), y(l)) ~ (x•, y*) with (i(t), y(r)) = (0, 0) will then~ a soJmjon of (1). 

Since i: = .Y = 0 at die equil.ihriwn point, it follows that if the system is ar. (x•. y*), it has 
always been there and will always stay cbere. 

Find the equilibriwn point for the systern 

i =-2x+ y+2 

y:::: -2y + 8 (x) (-2 l)('x)· (2) .Y. = 0 -2 y + 8 

Find also the geuera.l solution, and examine what happens when t ~nds to infinity. 

Solution: We easily see that IA! ,f O and that (_-r*, y*) = (3, 4) is lhe equilibrium point. 
The solution of the system is found by using the method.s explained in the previous section. 
The general solu1ion turns out co be x(t) ::: Ae-21 + Rt,r2r + 3, y(t) "' Be-21 + 4. Ast 
rends to infinity, (.x(t), y(t)) tends to the equilibrium point (3, 4). I 

In general, an equilibrium point (x·, y•) for (I) is called globally asymptotically stable if 
every solution tends to the e.quilibriutn point as 1 -.. oo. Th11~ the equilibrium point (3, 4) 
in Ex.ample I is globally a.symptotkally stable. 

We showed in Section 6.5 (see (6.5.4) and (6.5.5)) that a solution (x(z), y(r)) of (1) must 
sati.sfy the two second-order equations (tr(A) denotes the trace of A, see Section 1.5) 

(4) 

If /A.I -:j:. 0, these equations have x• and y• given in (3) as their respective equilibrium 
points. Moreover, the characteristic cqua1jon of each of the equations in (4) is the same 
as th<: eigenvalue equation of A. (See (6.5.8).) Using (6.4.2) and (6.4.3), we obtain the 
following result: 

EM 6.6 l ----------·--~--------

Suppose that tA1 'I= 0. 11,en the equilibrium point (x•, y•) for the linear sysiem 

x = a11x + a,u + b1 

Y = a21x + a:z1y + b2 

is globally asymptotically stable if and only if 

tr(A) ""a11 + an < 0 ao<l !Al = <i11 a:z - a 1::/121 > 0 

or equivalently, if and only if both eigenvalu.:s of A have negative rea.l pan. 

----... ··---- ------·-
F: 2 Exiillline rhe stability nf the e<Juilibrium point (0, O) for the system 

i: = y 

y'"" -2x -y 
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Solution: The cnenieient malrix has trace -1 and l!etenninant 2, so according to The.orem 
6.6.1 the system is globally asymptotically stable. In this case all solutions convtcrge tu 
the e4uilibrium point (0, 0) as t --+ oo. It is easy to confirm this statement by finding the 
general solution of the. syswrn. The melho..is explaineJ in Section 6.5 lead to a secoml-order 
equation in x, 

.x + x + 2x = 0. with the solution x "'e ·112 (A cos ~.J7 t + B sin !J7 t) 

By using y = .:i:, we find a similar expression for y. We see from the formulas obtained that 
x(t) and y(t) bmh tend to Oas t--+ oo. I 

Alternative Behaviour Around Equilibrium Points 
In this subsection we give a brief survey of how system (I) behave& when the equilibrium point is 
not necessarily globally asymptotically stable. According to (6.5.6), the general solmion of (1) is 

x(t) "" Au 1 (z) + Bi,2(t) + x' 

y(t) = P(A, B)u,(1) + Q(A, B)u2(t) + y' 
(5) 

where u1 (t) and u2(/) are d.:scribed in (a}-{c) follow.i.ug equation (6.5.6) and (x', y') is the equilib­
riutn point. 

Disregarding the cases whe.re one or bmh eigenvalue.~ are 0, we have the following results: 

(A) lf both eigenvalues of A have negative re,tl parts. then (r', y') is globally asymptorically smble 
(a sink). All solution curves converge co the. equilibrium poil\1 as t --, oo. 

(B) If both eigenvalues of A have positive real parts, then (x •. y*) is a source. [n this case all solution 
curves starting away from tl1e equilibrium point explode aH increases, i.e. l!(x(I). y(t))ll -+ oo 
as r -+ ,::,c. See E~amplc 3(a) below. 

(C) If the eigenvalues are mtl with opposite signs, wilh J..1 < 0 and J...i > 0. then ex•. y') is 
a so-called saddle poinl (The eigenvalues an: real and of oppo~ite signs iff the determinant 
of A is negative. See (C) following equation (1.5.5).) In this case only solutie>ns of lhe form 
x(t) = Ae•11 + x', y(1) = .4().1 - o11)eJ·11 /aD + y• cowerge to tbc equilibrium point as 
t -+ oo. All other solution curves mow away from the equilibrium point as 1 -+ oo. (See 
Section 6.9 for further discu&sion.) 

(D) If the eigenvalues are purely imaginacy c;. 1•1 = ±i/J}. lhen (x'. y•} is a so-called ceTitre. Then 
all solution curve~ are periodic witb the same period. The solution curves are ellipses orcfrclc:s. 
See fa.ample 3(b) below. 

Examine the character or the equilibrium poincs for the following systems: 

(b) 
.i = 2y 

.ii= -x+2y 
(a) 

Solution: In both cases the e<1uilib1ium point is (0, 0). 

.i =-y 

j, = X 

(a) Theeigenv,tlues;m:.A1,1 = l±i, 11ndtl1~generalsolutic>11 isx(t} = A1?' cos1+Uc1 sin r. 
y(I) = { (A . .,.. 8)1;1 cos 1 + { (·--A + Bk' sin t. Both x(r.) and y(l) e:thibit ex.plos.ive 
;)scillati;,n~ unbs A = B = ·o. 
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(b) Here the eigenvalues are >-u = ±i and the gcner:ll ~olution is..i:(1) = A <.:OS t + H sin t, 

y(r ) = A sin t - B cost. For all t we find that x(1)2 + )'(lf = A 2 + B2, so the sol ution 
curves in the xy·phme arc cfrcle, with centre at the equilibrium po int (0, 0). 

1. Check (if possible) the stability of the foU,1wing systems by using Theorem 6.6.l: 

. x ::-. x - 8>• x = .c - 4v + 2 .i = - x - 3y + 5 
(a) (b) . ·· • (c) 

)I= 2x ·· 4.Y y = 2.c - y - :, y::: 2x - 2y + 2 

2. fof what values of the constam a are 1t,e following sys~ms globally asyw.ptorica\ly stable? 

i: = ax - v x = ax. - (2a -· 4)y (a) ·. • ' (b) 
y = X + ay }' = X + 20.)' 

8 3. Find the gefleral solution of the sy~reni 

.i: = x + 2y + I 
j,= -y+2 

(i) by using the S8JllC method as in Example 65. I, (ii) by u.sing the eigenvalue method. l.s the 
system globally asymptotically ~table? 

8 4. (:!!.) Solve the ditferenria.l equation systc.m 

x=ax+2y+ct 

j• = 2<' + <l)' + /J 

where cz, ct and fJ are constanr.s, a ;c. ± 2. 

{b) Find the cquilihriwn {XJint (.(', y') . .md find necessacy and sufficienl conditions for 1.t.) to 
be globally asymp!Dtically st.1blc. 

(c) Let 11 = - 1, (f =- ··4 and /3 = - 1. Detennine n solution curve lhat convo:rges co the 
cx1uilib1"iurn point. 

Phase Plane Analysis 
Toe solution procedures studied in this chapter give explici t answers only for quite. restricted 

and exceptional classes of d iffere ntial equations. Tn this section we sball indicate bow, even 
when explicit S()!utions are unavailable, geomecri<.: argumeJ1ls can sti ll shed light on the 

strucrure of tbe solutions of autonomous systems of differential cquatfons in the plane. 

System (6.5 .1) is call.xi autonomous (lime independent) if f and g do not depend 
c:-.xplicidy on 1, so the equations become 

x = f (x.. y) 
(autonomous system) 

,', - , .,/., '\•I 
( J) 

EXAMPLE 1 
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We assume that f and g are C 1 t'unctions. A solution (x(t). YV)) of ( I) describes a cmve or 

path in the xy-plane. It consists of all points ( (x(t), y(t)) : I E /}, where I is the in1.1;:rval of 
definition. Jf (x (r) , y(t )) is a ~,,lution of (1), then so is (.r (1 + <1), y(t +,,))for any constant 

a (but with a <lilkrcut interval 1' of delfoition). Renee (xlt) , y (t)) an<l (x (t + a), y(t + i!)) 
describe the sarue path:· (This is valid only for autonomous systems.) For the aui:onomous 
system (I), the vector (i(r), j>(t )) is uniquely determined at ~ch point (x (t), y(t)), so no 

two paths in the .r.y·plane can intersect. 
Phase plane a11nlysis is a technique for ~rudying the behaviow· of paths in the "phase 

plane" based on information obtained directly from (1). 
From (l) it follows that the 111.tes of change of x(t) and y(r) are given by /{.x.(r), y (t)) 

and g(x(1), y(r) ), respectively. For instance, if /(x(r), y(t)) > 0 an<l g(x(t), y(t )) < 0 at 
p := (.r(t), y(1)), then as t increases, the system moves from the point P down and to the 

right. TIie dire<.:tion of motion is given by the tangent vector (.i (r). y(t)) to the path ac P as 
illustrated in Fig. 1. and the speed of morion is given by the length oftbevect.or (x(I), y(r)). 

To illustrate tbe dynamics of system (J ), we can, in principle, draw such a vector at each 

poiot in the plane. The family of s u<.:h vectors is called a vector field. or course, in practice, 
one can r.Iraw only a small represe11tative sample of these vector:;. On the basis of the vector 

field one can clraw paths for the &ystem and thereby exhibit die phase portrait <•r phase 

diagram of the system. 
y 

(.((/), y(t)) 

~ {x (r) • . v<rJ) 

\ 
1··- -· .... ·--·-x 

Figure 1 

Figure 2 shows a vector field for the syste m studied in Example 6.6.2: 

.i = Y, )' = - 2x - y 

y 

Fimtffi 3 
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The lengths of the vectors have been proportionally reduced, so 1hat the arrows wilt not 

incerfcre with each other. Bul the length of a vector still suggesrs the speed of motion. Note . 
that (:i. y) = (0, 0) only at the point (0, 0), which is the equilibrium poim. 

A closer study of the vector field suggests that the paths spi.tal towards the equilibrium 

point (0, 0). The speed of mQtion decreases llS one gees closer to the origin. Figure 3 shows 
the particular path that Stans at the point ( - 3, 0), and spirals towards (0, 0). We know from · · 
Example 6.6.2 that s.incc (0, 0) is globally asymptotically stable, all paths for this linear 
system, wherever they sta.11, tend to the equilibrium point (0, O) a.~ t ~ 00. I •. 

In general, a point (a, b) where f (a, b) = g(a, b) = 0 is called an equilibrium point (or · 
stationary point) for system (I). Because i = y = 0 at an equilibrium point E, if the 
system is at E, then it always will be (and always was) at£. 

Theequi]ibriumpoinis of (1) are the points of intersection of the two curves f (x, y) = O 
and g(x, y) = 0, which are called the nullclines of the system. 

To draw a phase diagram of {I), begin by drawing the two nullclines. At each point on 

the nullcline f (x, Y) = 0, the i component is zero and the velocity vector is vertical. It 
points up if y > 0, down if y < 0. 

At each point on the nullcline g (x, y) = 0, the y component is 0, and the velocity vector 
is horizontal. It points to the right if i > 0. to the left if .i < O. 

2 Draw a phase diagram for system ( *) in Example I. 

Solution: The nullclines and che direction of motion on paths crossing the nullclines are 

shown in Fig. 4. Note that the nullclines for (to} divide the phase plane into four regions or 
sectors, denoted by (I), (11), (ill), and (IV) in Fig. 4. 

y =0 { 

\1 .. (II) \I " t. 
.i ,,,o 

I ~ I / 

I K' .... :,: 
'X 

.f i\ (Illj 

I \ (IV) 

I \ 
., 

Figure 4 figure 5 

lnsectors(I)and(II),.v > O,so.i > O,whereasinSecrors(Ill)and(IV),y < Oandsox < O. 
On the other hand, in sectors (I) and (IV), 2x + y > 0 and soy < O, whcrea~ in Seeton: 

(II) and {HI), 2.x + y < 0 and so y > 0. (A convenient check that you h:-we determined the 

direction of the. aiTows correctly is to pick a point in each of the four sect{1rs and calculare 
(x, y) ar each of tbe-~e points. For example, (2, 2) is in sector(I) and (i. j): (2. -6). The 

point (-2, 2) is in sector (II) and (i, y) = (2, 2). In sector (ill) the point (-2. -2) has 
(i,y)"" (-2. (,). FinaUy,at (2, --·2) in sector(IV)wehavc <x. v) = (--? _,\ \ 

EXAMPLE 3 
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In Fig. 5, the direction of motion on a path at a point in each of the four sectors is indicated 

by anows. In accordance witll common practice, a separate arrow is drawn for each of the x 
and y directions. We usually lll3.k.e all the arrows have the same lc11gth. (If they were drawn 
wich their correct lengths, they would com:spond to the vectors (x, 0) and (0, y). It follows 

that the actual direction-of the path through the point would correspond to the sum of these 

two vectors.) I 

In a model of economic growth, capital K = K(r) and consumption C = C(1) satisfy 

the pair of differential equations 

K =aK-bK2 -C 

C = w(a - 2bK)C 
(.+,) 

Here a, b, and w arc positive constants. Construct a pha~e diagram for this system, assuming 

that K ,:;; 0 and C :;; 0. 

Solution: 'lbe nullcline K = 0 is the parabola C = aK - bK2, and the nullcline C = 0 

consists of the two lines C = 0 and K = a/2b. In Fig. 6 !he two nullclines are drawn. 
There are three equilibriwn points, (0, 0), (a/b, 0), and (a/2b, a2 /4b). 

C 

aZ/4J (TI) 

! 

(I) 
a2/4h 

/ 
1( "'0 

C=O 

a/2b a/h 
.. K }( 

Figure 6 Figure 7 

In sector (I), C > aK - bK2 and K > a/2b, so K < 0 and { < O. ln sectors (IT), (Ill), 
and (IV), we have K < 0, C > 0, then K > 0, C > 0, and k > 0, C < 0, respectively. 

The appropriate an:ows are drawn in Fig. 7, which indicates some paths consistent with 

~~~ I 

These examples show how useful information about the solution paths can be obtained 

by partitioning the phase pla.oe into regions tu indicate whether each of the two variables 

is increasing or decreasing. ln particular, the partition will often suggest whether or not 

a cerr.ain equilibrium point is st::ible, in the sense that paths starting near the equilibrium 
point tend to that point as t --~ oo. However, to de~nninc whether an cquilibrillm point 
really is stable or not. a phase diagram analysis should be supplemented with tests based on 

analv1ical methods like those set out in the subseauent se.ctions. 
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5 FOR SECTION 6 . 7 

1. Perform a ph.,se. plane analy~is of the following systems and then find their explicit soludo~. 

x= Y 
(a) 

i=•+v (b) ., • 
y=X . j, '""X-y 

i = X -4y 
(c) 

j, = 2x- 5y 

2. Perform a phase plane analysis of the syi;tem 

x=x(k-ay), Y""Y(-h+bx), X>O. y>O 

where a, b, h, and k are IJ(lSitivc constan1s. This is the famous lmka-Volterra model froin 
mathematical biology. See Example 7.5.2. : 

3. In an e~~nomic model, K = K(t) denotes capital, C = C(t) consumption, while a, ,t, and t 
are pos1uve cons1ant~. with a < l. Assume th~t . · 

(i) K = A K"' - C 

Perform a pha~e plane analysis of Lhis sy~tem when A = 2, a = 0.5, aod r = 0.05. 

: @) 4. (a) Draw a phase diagram and some lypical path~ for the autonomous system 

i=-.r, y = -xy -y2 

(b) Solve th~ system with x(O) "'.' -1, y(O) = l. (Hint: You need to solve a Bernoulli equation. 
See Section 5.6. One of the mtegrals cannot be. evaluated.) Find lhe limit lim (x(r). y(r)). ,_,,.~ 

5. (a) Perform a phase plane analysis of the following system, where x > O and y > O. 

i "=X(y -x -- lnx- l). y = l-x 

(b) Introduce 1J1e transform z ::c: y - In x, and show that ( *) becomes 

::=2-z. 

P~~rm a pha5e. plane analysis of this sy$tem. (Vv'hcn:as ~tability of the equilibrium poinl 
(~. !) = (I. 2) 1s not clear from the diagram in (a), the corresponding equilibrium point 
(z, y) = (2, 2) is "ckarly" stable in the diagram in (b). This example is due 10 Conlisk and 
Ramanatl1au, Review of Ecotwmic Studies (1970).) 

@> 6. COllllider the :system 

f1:er,· is (0, ?> an equilibrium point. (1n fact, (0. II) is an equilihrium i1oint for every value of/>.) 
Ptnd tl1c uwque solulion of the sy~tem th,u p:isses through the poim (1, 1) for r "._. O. Sh,>w tha1. 
the corrcspondi1Jg path does not converge to (0. O). 
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6.8 Stability for Nonlinear Systems 

In this section w~. study the stability theory for the autonomous system 

x = f(x, y) 

y=g(x,y) 

251 

(1) 

where f andg areC1-functions. Anequilibriumpoint(a, b)ofthcsystem (where f(a, b) = 
g(a, b) = 0) is called locally asymptotically stable if any path starting near (a, b) tend~ 

to (a, b) as 1 -+ oo. An equilibrium point (a, b) is called globally as)mptotically stable 

if any solution of (1) (wherever it starts) converges to (a, b) as t -+ oo. (A more precise 

definition of stability is given in Section 7 .5.) 

To examine whether (a, b) is locally asymptotically stable, we have to consider how 
solutions of the system behave in a neighbourhood of (a, b). To this end, consider the linear 

approximation of the functions f(x, y) and g(x, y) about (a, b). If (x, y) is sufficiently 

close to (a, b), then (see Section 2.6), 

f(x, y) ~ j(a, b) + f{(a, b)(.x -a)+ Pia, b)(y -b) 

g(x, y) ""g(a, b) + g; (a, b)(x - a)+ g~(a, b)(y - b) 

Because f(a, b) = 0 and g(a, b) = 0, we have f(x, y) "'" f{(a, b)x + f1(a, b)y + b1 
and g(x, y) ~ g;(a, b)x + g2(a, b)y + b1, where b1 = - f 1(a, b)a - f2(a, b)b and b2 = 
-g~ (a. b)a - s&(a, b)b. It is therefore reasonable to expect that in a neighbourhood of 

(a, b). system (1) ''l:>ehaves" approximately like the linear syst~m 

x = f{fo, b)x + J;(a, b)y + h: 

y = g\ (a, b)x + g;(a, b)y + bz 

Note that (a, b) is also an equilibrium point of system(*), because the definitions of bi 

and b2 imply that f{(a, b)a + J".J.(a, b)b + b1 = 0 and g;(a, b)a + gi(a, h)b + b2 = 0. 
According to Theorem 6.6.1, this linear system is globally asymptotically stable if and only 

if the eigenvalues of the matrix 

A;,. (if (a, b) f2(a, b)) 
. · g1(a,b) g;(a,b) 

(2) 

both have negative real parts, or equivalently, if and only if A ha~ negative tr.ice and positive 
delenninant Since(*) '"behave.,;" approximately like (l) near (a. b), it is a rea~onable con­

jecture that in this case (a, b) is a locally a~ymptotic:ally ~table equilibrium point. for system 

(1). This coujecture is indeed correct, as the noted Russian mathematician A. M. Lyapunov 

<lernoustr.ited in the late 1890s. (For a m()re modem proof, sec Co<ldingtou and Levinson 

(1955).'1 
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: ~: po~ey:~~·Na: dv~ i~e C1 fonction~=d kt (<J. b) be an ~::libriu~=~=~,t 

the sysrem 

.i = f(x,y), y=g(x,y) 

Let A be the Jacobian matrix A= (ifla, b) · !;(a.b))· 
g 1(a,b) g;(a, h) 

H -
tr(A) = f 1(a, b) + g;(a. b) < 0 

and 

I 

I 
IAI = J{(a, h)g(i,(a, b) - j 2(a, b)g;(a, b) > 0 I 

i.e. if both eigenvalues of A have negative real parts, then (a, b) is locally asymp· I 
toticaUy stable. . j 

_J 

NOTE 1 If the ~igenvaJues ).1 and A-2 of A in Theorem 6.8.1 arc real with ).1 < ;.2 < O, 
then all the solution paths d1at converge lo (a, b) as t ..... oc, become ''tangent in the limit" 

to the line thro11gh (a, b) with the same direction as the eigenvector corresponding to ).
2

• 

· See Theorem 6.9. l for the case ). 1 < 0 < J..2 . 

E 1 The system 

E. 2 

.i = f (.r., y) = -3.t - 2y + 8x2 + y3 
.V = g(.x, y) = 3x + y-3x2 y2 + y4 

has (0, 0) as an equilibrium point. Prove that it is locally asymptotically .~table. 

Solution: Here /{(0, 0) = -3, / 2(0, 0) = -2, g1 (0, 0) = 3, and g~(O, 0) = 1, so 

tr(A) = -3 + l = -2 •c. 0 and JAi = -3 - (-6) = 3 > 0. By Theorem 6.8.1, the 
equilibrium point (0, 0) is locally asymptotically stahle. I 

(Price adjustment. mechanism) Con.sider the following extension of Example 5. 7 .2 to 
rwo commodities: 

i> = H:(D1(p, q) - S1(p, q)). 

Here p and q denote the prioosof two different commodities, Di(P, q) and S;(J>. q), i = 1, 

2 are the demand and supply for the two commodities, while H 1 and H2 are lixed functions 

ofonc variable. Assume that H1 (0) "" H2 (0) = 0 and d1at H; > 0, H2 > 0, so that H
1 

and 

H2 are both strictly incrca~ing. This implies that if there is excess demand for eommoditv 1 
so that D1(R, q) - St(P, q) > 0, then p :, 0, and thus die price of commodity 1 ~iii 
increase. Similarly for rnmmodiry 2. 

Suppose (p0
• q 0

) is ,m equilihrium point fi>r system (*). Hy our assumptions on H 1 
and H2, we have D1(/\q11

) = s,lp'1.q0). D2(p0,q0) "' S2(p0 ,q0). 'fnus, ar price.s 

l' and q
0

, demand is equal to supply for each co11Uno<iity. ·111e .~tahility properties of the 
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equilibrium can be examined by appealing to Theorem 6.8.1: rhe equilil>riumpoinl (p0 , q0 ) 

is asympcotically srable for system ( *) provided 

iW ')S ;JD ;JS 
H{(0)(-

1 
- .'......~) + H2(0l(~ - ___:2) < 0 

.• ap ap aq aq 
(a) 

1v1d 

All the partial derivatives arc evaluated at (p0 • q0), and in (b) we have cancelled the positive 

factor H;(O)H~(O). Normally, oDJiop and oD2;aq are negative, while oSif-.Jp aodi:IS2 /clq 
are positive. (1f the price of some commodity increases, then the demand goes down while 

supply goes up.) Because H; > 0 and Ji~ > 0, we cooclude that (a) is "oonnally" satisfied. 
In order to determine the sign in (b), the functions involved must be further specified. 

However, the left-hand side depends on "owu" price effects-how p affects Di and Si, and 

how q aftects D2 and 52-whereas the right-hand side depends on "cross" price effects. I 

Olech's Theorem 

We end this section with a brief look at a special result on global stability of an autonomous system 
of differential equations in the plane. (See Olcch (1963).) 

T EOR.EM 6.8.2 OLE CH} ·--·--------- 1 
Consjdcr 1he following system, where f and g are C 1 functions in c:?2, 

.t = f(x, y), y = g(x, y) 

·1·bri . • ·· A ) (' f{(.t, y) and let (o, /,) bcancqu11 umpo10c. 1..ct (.r., y = . . 
g,(x, y} 

that the following three condition~ are all satisfied: 

J:.(x, y)) 
• , anda.s~ume 

g~(x, y) 

(a) tr(A(x, y)) = f{(x, y) + g2(x, y) < 0 in all of iR2 

(b) IA(x,y)I = f{(x, y)g;(x,y)-· J7.(x,y)g1(x, y) > Oin a\JofR2 

(c) f[(x. y)g2(.t, y) IO in all ofR2 or /j(x, y),( (x, y) ~ 0 in alt ofR2 

Then (a, b) is globally a.,ymptoticatly stable. 

I 
J 

In contras! to the Lyapunov lheore.m, whit'h give, local stability. conditions (a). (b ), and ( c) i.ti Okch 's 
theorem are requir~d to hold lhrougbou, ~1. not only at rhecquilibrium point. But then ch.:se s1rungcr 
"'globaJ" condition~ give glohal ,tabilily. for an economic application, see Problem 5. 

AMPLE 3 Use Thcon~m 6.8.2 to prove that (0. 0) is a globally a.~ympmlically stahte equilibrium foe 

X"'-. .f(x,y)'-'- 1-ex-y, yc,·g(x.y)c:-y 
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Solution: Hcr-e/1(.~ • .v) = -~•·Y, JJ(x, y) = «•-·.', g;(x.y) "" O.andg2(x,y} = -1. I, follows 
imme<.liarcly that conditions fa). (b), and (c) in Theorem 6.8.2 are all sa.tistied, so rhc t'.(juilibrilllu 
point (0, 0) is globally a.symptotically smblc. I 

1. Show th~t (6, 6) is a localt.y a.syrnptotically srnblc equilibrium point for the system 

.i-..: /(x. y) = y-x, _;, = g(x,y) c:. -x2 +8x-2y 

2. Determine (if po&sible) the local asymp1otic 8tability of the following sy8tems at the given 
statiooal"y points by using Theorem 6.8.1: 

(a) 
.i =-x+ fy2 

at (0, 0) (b) 
.X::. X -3y + 2x2 + y2- xy 

(l, I) 
y=2x-2y y = 2x - y - (!'-Y 

at 

• 1 :i:=2x+8siny 
(c) 

X = ---c:· -y 
(0. 0} (<l) (0, 0) 

j, =X -l at at 
j,=2-e"'-·3y-cosy 

3. Use Theorem 6.8.2 to show that (0, 0) is a globally a~ymptotically s1able equilibrium point for 
thesyskm 

i=y, y=-ky-w2x (k>O,u>-#0) 

4. G. Heal has ~tudie<l the system 

q = a{p- r.(q)), p = b(D(p) - q) 

where q is the amoutu ~old of a commodity, p is iis price per unit, c(q) is the average cost 
function, and D(p.l is the demand function. Here a a!ld bare positive constants and D'(p) < O. 
Prove that an equilibrium point (q", p") (where p• = c:(q") and D(p') = q•) is locally 
asymptotically stable pro"ided c'(q•) > 0. 

@ 5. A business cycle model by N. Kaldor uses 1he system 

Y ,~ 4(/ !_Y, K) - S(Y, KY}, K '" I (Y. K) (ex > 0) 

where Y is national income, K is capital stock, I (Y, K) is an investment function and S(Y. K) 
is a savings ftmctioa. Assume chat I{ > 0. /~ < 0, s;, > O. Sg < 0, and Iir .. _ SK < 0. 
Use OJeclJ '& theorem lo prove that an equilibrium point for ( *) is globally asymptotically stable 
provideda(I~ - Sy)+,,. < 0 and /~S~ < sK,r· 

@6. Suppose K =·a K!1) denotes the capiral stock of an economy :md P "'P(1) deuore~ th,, level of 
pollution at time 1. TI1c dc~clopment of the economy is de.~crihed by the sy~rem 

Tile c::on~lllnt." satisfy 1hc conditions .r ,;; (0, I). er E (0, 1). /j > 0, y > O. and fJ > 1. Find the 
cqoilibrirtm point (K', P") in the. open first quadrant, and chox:k (if possibk) the stabiliry of the 
point by using Tht:orem 6.S. \. Hnti an c~plidt <·.tpl\:Ssion for K. (t) when K(O) ~· Ko ;~ O. aud 
elCamine it\ J imit a.~ t -·• ex). 

SECT!ON 6.9 I 5ADD1.:: POINTS 255 

6.9 Saddle Points 
Dynamic economic models ofteu have equilibria that are not usymptotically stable. In some 

c:ISes a special kind of behaviour near ;m equilibritlm is encountered: two path.~ approach 

the equilibrium point ti-pm opposite directions as 1 ·-~ oo. These two paths together with the 
equilibriwn point itself fonn a curve that has a tangent at the equilibrium point. AH other 

paths that. come close ro the .:quilibrium point will move away again. The precise result 

is this: 

Suppose that f and g are C 1 functions and let (11, b) be an equilibrium poim for 

i: = f(x, y) • j, = g(x. y) 

f{(a, b) ') he t:he Jacobian matri.'t, and suppose that 
g2(a, b) 

IAI = J;(a, b)g1(a, b) - f2(a, b)g;(a, b) < 0 

or, equivalc~tly, that the eigenvalues of A are nonzero real numbers of opposite 
si.gns.1 Then there exist an open ball (i.e. an open circular disk) B with (a, b) as 

its centre and a curve C in B pasging through (a, b), such that: 

(1) Through every point on C there passes a solution (x(r), y(t)) that remains 

on C and converges to (a, b) a.~ t -+ oo. Every solution through a point that 

lies in B but not oo C will soom:r or later le:ive 8. · 

l (2) The curve C is tangent at (a, b) to the line througb (a, b) with the same l,. 

l direction as the eigenvector corresponding to [b<? negative eigeni..:aluc of A. 

! Such an equilibrium is <:ailed a saddle point.1 

i ~ !.....---··---.. -·. ·······--·-·-··-·-··------···-·----.. -------------~----·-·-··-·--··-----· 
NOTE 1 The solutions guaranteed by Theorem 6.9.1 could have their s1arting points very 

close to the equilibrium although the rnlutioos are defined on an infinite time interval. "This 

is why we refer to the theorem as a local re.su It. In many economic models one needs a global 
version of the theorem (see e.g. Scicrstad and Sydsicter (1987), Theorem l 9, page 256). 

NOTE 2 If the syscem is linear with constant coert1cicms, 

x == aux+ a12y + b1 

y = aux + azu + b2 
with 

then there i~ a uuique equilibrium point, which is a saddle point. In this i:ase the paths 
that approach the equilibrium point will run along the straight line corresponding w the 

eigenvector associated with the negative eigenvalue. (S~ Example I.) 
··----·---·----···---····-

'! See (C) in Section 1.5. 
.I The paths of the sy;rem rcst:mbJe the paths ll"lkt:n l:>y ,t. drop of walt:r falli 1111, on a horse saddle. Th~ 

<lro~l of water will wnverge. to th~ centre. of the saddle if ii. liit~ predsdy 011 the ridge of the saddle, 
hu, <»ill fall rn ,h,. 1m)1ind ii it hits in a diffe.rent place. 
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Consider the following system wi1h equilibrium (0. 0): 

i = 2y, y = 3x - y 

With j(x. y) = 2y and g(x, y) = 3x - y, the IILlttix A in Theorem 6_9.1 is(~ _:). 

Because the detenninanl of A is equal to -6, the equilibrium is a saddle poim. The char­
acteristic polynomial of A is.>.. 2 + .>.. - 6 = (A - 2)(.>.. + 3), so the eigenvalues are -3 and 

2_ An eigenvector associated with the negalive eigenvalue -3 is ( - ~ )- Figure 1 shows a · · 

phase diagram in which the two paths converging to the equilibrium point are indicated by 
dashed lines. Both lines are in the direction of the eigenvectOf- I 

Figure 1 

Consider system(*) in Example 6.7.3, with 

k = aK -- bK2 - C, C = w(a - 2bK)C 

One equilibrium point is P = (a/2b, a2 /4b). Here the matrix A evaluated at Pis 

(
a·- UJK 

A= 
, -2wbC 

-1 ) ( 0 
w(a - 2bK) = -wa2 /2 

Thus IAI = -wa2 /2 < 0. so (a/2b, a2 /4b) is a saddle point. 

<: 
t \ 

a1 /4b 

Jt--~---" 
:, "' Q: -----..l___ K 

: Ko a/2b a/b 

Figure 2 
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The evolution of the system depends critically on the values of K (0) = Ko and C(O) = 
Co. ln Fig. 2 we assume that Ko < u/2b. 

If C(O) = Co is small, the path starts at a point like Q in Pig. 2. Then, as l in<..'Teases, 
K(t) steadily increases. On the other hand, C(t) is increasing until K(t) has reached the 
level a/2b, then C(t) starts d«.Teasing. If C(O) "" Co is bigger, so that the path starts at a 

point like R, then consumption increases, whereas capital first increases and then decreases. 

rt is not hard tti imagine that, for some stare point between Q and R: the path converges to 
the equilibrium point P. This behaviour is confinned by Theorem 6.9.1. I 

Other Types of Equilibrium Point 
Lyapunov's tbrorem (fheorcm6.8.J) and the saddle point !heorem(Theorem 6.9.1) show that in some 
importanl cases tho: limiting behaviour of a nonlinear syslem aear an equilibrium point is 8imilar IO 
the behaviour of the line.ari7.ed system. In the two theorems the eigenvalues of the Jacobian matrill 
both bad negative real parts, or were real with opposite signs. respectively. 

If the eigenvalues have positive real pans, solutions that start close to the equilibrium point move 
away from ii, aod the equilibrium point is a "source". 

lf the eigenvalues are purely imaginary. or 0, no dcfinile statement about the limicing charactef 
of the solution can be made. For details we refer to the literature. 

PROBLEMS FOR SECTl0N 6 .9 

1. (a) Show that the equilibrium point of the following system is a saddle point: 

x=-fx+y, y=y-2 

Find also the eigenvalues of the as~ociaccd matrix A in Theorem 6.9.1, and an eigeavec1or 
corresponding 10 the negative eigenvalue. 

(b) Draw a phase diagram in which the two paths converging 10 the equilibrium point are 
indicated. Find explicit expres•ions for these two paths. 

~ 2. Find the equilibrium poinl and check if it is a saddle point: 

k = f(k)-ok-c, c = -c(r + t'i - /'(k)) 

Assume that c and rare positive COILstants, /(0) = 0, J'(k) > 0, f"(k} < 0. f'(O) > r + 8, 
and f'(oo) < '5. 

~ 3. (a) Consider the follomng system of differential equation~: 

x =x(y-x/2 ···'2), j, = y(I -· y/2x) 

Find the unique equiJjbrium poinr. (x,1, JI<,) in S ,.,·. !(.•, y} : x > 0, y > OJ . .ls the 
equilibrium point (xo, y11) asyrup(otically st~ble? ls it a saddle point'? 

{b) Draw a pha.,e diagram for the system and indicate. the heha:viour of some integral curve,; in 
thP. rPPlnn ~ 
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~ 4. (a) Consider the following system of first-order differential equations: 

i=y2-x 
y == 25/4 - / - (x - 1/4)2 

Filld all lhe equilibrium points of the system an<l dassify them. if possible (i.e .. for each of 
lhcm dererminc if it is locally asymptotically stable. a saddle point, or neither). 

(b) Drow a phase dia!,Td.!ll for the syste.m, and indicate some possible integral curves. 

DIFFERENTIAL EQUATIONS Ill: 

HI G lr-i ~~R-@ RD ER 
EQUATl0NS 

There can be no qu~stion, however, that prolong~d commitment 
to mamematica/ exercises in economics can be damaging. 
It leads to the acrophy of iudgemem and intuition. 
-Johr1 Kenneth Galbraith (1971) 

This chapter discusses extensions of the theory developed in the two preceding chapters. 
Most of Sections 7. 1-7.3 present rather simple generalizations to nth-order equatior.s of 

the theory of second-order equations that was discussed in Chapter 6. More specifically. Section 
7.1 presents the main theory for general linear equations. Then Section 7.2 concentrates on 
the case of cor.st,mt coefficients, after which Section 7.3 focuses on stability conditions. Next, 
Section 7.4 introduces systems of differential equations in n variables, and briefly discusses 
methods of solving them based on eigenvalues. or on an n x n matrix function called the 

resolvent. 
Thereafter, Section 7 .5 gives more formal definitions and results on stability of nonlinear sys­

tems. This section also shows how to use Lyapunov functions to decide whett>er an autonomous 
system is stable. A famous ;ipplication is to the Lotka-Volterra model where a suitably construc­
ted Lyapu11ov function is useful in determining the stability properties of the model. 

Section 7.6 generalizes ar.d extends the existence and uniqueness results of Section 5.8 to 
vector differential equations. Results on the dependence of the solutions to changes in the initial 

conditions are also recorded. 
Finally, Section 7.7 give5 a brief introduction to some types of partial differential equations. 

which occasionally arise in economic appliciltions. 

7.1 Linear Differential Equations 
A differential equation of the nth order can usually be written in the fonn 

d".t ··( dx J"-lx) . . 'n-·ll -· = l· r, x. ·d-.. , ... , ---··
1
- == 1' (1, .x, x, ... , x1 ) 

dt• t dr•-
I I) 

Here F is a given funclion of n + 1 variables anJ x = x(t) is the unknown function. 

Sometimes we shall use the alternative notation x (kJ for Jic x/d.l·. 
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If F is a linear fimczion of x and of its dcriv-,nives w.r.t. 1 up 1.0 and including those of 
order n - I, we ustl<llly write the equation as 

d"x t1•-1x dx 
-- + a1 (t)--- + · · · + a, •. 1 (t)- + an (r)x = f(t) 
dr• di"-1 dt (2) 

where a1 (1), ... , a,,(t), and f (1) are fixed continuous functions on (-o;;:, oo). 

The associated homogeneous equation is obtained wb~n the right-hand side t.s O: 

d"x d"- 1x dx 
- +a1(1)--- + · · · +a.-1(1)- +a,,(t)x =0 
dt" dt"- 1 di (3) 

Suppose that u1 (t), ... , un(t) are n solutions of (3). Then it is easy to verify that any linear 

combination C 1u1(t) + · · · + c.u,.(1) also satisfies (3), for all values of the constants c 1 . 
. . . , c •. (For 11 = 2 Ibis was verified in Section 6.2.) Already for the case n = 2, however, 

we know that lhis is not necessarily the general solution, e.ven if the n functions u; (t) are 
all different. 

As in Section 1.2, say I.bat the II functions ui(t), ... ,u.(r) arc linearly dependent jf 
there exist constants C1, ... , c., not all 0, such that 

Equivalently, at least one of the functions can be written as a linear combination of the 
others. Alternatively, if u 1(t), ... , u.(t) are not linearly dependent, they are called linearly 

independent. Then equation ( *) is satisfied for all I only if C1 = ... = (\ = O. If n = 2, 
linear independence is equi val em to the condition that the two functions are not pwportionaJ. 

Jo the next section, we consider the special case when the functions a1 (f), ... , a. (t) are 
all constants, i ndependem of l. Except in thi.~ case, there is no general method for finding the 

general solution to (3 ). The following theorem exhibi1s the structure of lhe general solutions 
to equations (2) ai1d (3) (for the case n = 2 these resuhs were discussed in Section 6.2): 

(a) The homogeneous equation (3) has the general solution 

X = x(t) = C1111 (l) + · · · + c.u.(t) 

where u 1 (r) .... , u.(t) are any n linearly independent .solutions of (3) and 
C1 ....• Cn are arbitrary Cl>nstants. 

(b) The nonhomogcnc::ous equation (2) has the general solution 

x = x(t) = C1u1 (r) + · · · + C.i,.(t) + u"(r) 

where C1 u,(t) + · · · + Cnun(I) is the general solution of the correspond· 

ing homogeneous cqua1.ion (J) and 11" (l) is any particolar s•>lutiou of the 
nonhomoge.ncous equation (2). 

-·-··--·-~---·--··-· - ... ·---····~''""'"···--·--,, ....... _, __ ,,._ ....... , __ . __ •..... 

(4) 

(5) 

f 
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The proof of Theorem 7.1. l relics on the followi.11g e.·<istence amt uniqueness thcol'crn 
(see Theorem 7 .6.2 for a generalization): 

THE.ORE,t-.1 7. I 2 

Suppose rbat a 1(t), ... , a 0 (1) and /(1) are all continuous functions on (-ex), oo). Let 

."(.Q, x~1
), ••. , 4•-:J be n given numbers and let lo be ao arbitrary number. Then the 

differential equation (2} ha., one and 011ly one solutiou x(t} on (--oo, oo) that satisfie~ 
the conditions 

x(r,;) = xo, 

This result bas an importam corollary: 

THEOREM 7. 1.3 EXlSTENC E- F N LINE.ARLY INDEPENDENT SOLUTION S) - .. ···-···, 

. I 
Suppose that at (r), ... , a,. (1) are continuous functions on (-oo, oo). Then the I 
homogeneous diilerenrial equation (3) has n linearly independent solutions. 

L-~~~~~~~~~~~~~~~~~~~-' 
Proof: For i = l, ... , 11. Theorem 7.1.2 yields a (unique) solution lli(I) of equation (3) 

such chat fork = 0, ... , n - l we have u JA\o) = 1 if k = i - L and u}*) (0) = 0 otherwise. 
(Here, um) = u, the '"()th derivative" of 11.) We shall prove that u 1 (1), •.. , 11n(t) are linearly 

independent. 

Let C1, ... , Cn be constants andputw(t) = C1u1(t) + · · · +C,.un(I). Then wC•}(O) = 
C1ulk\O) + · · · + Cnu?\O) = Ck+1 fork = 0, ... , n - I. Now, suppose the constants 
C 1, ... , C,. are such that w (t) = 0 for all 1. Then w and all derivatives of w must also be 

identically 0, and we gel C1 = w(O) = 0, C2 = w(O) = 0, ... , c. = u/"-1 l(O) = 0. 
Hence, the only choice. of constant~ that makes w identically zew is C1 = · · · = Cn = 0. 
It follows that u J, •.• , u0 are linearly independent. • 

Proof of Theorem 7.1.1: (a) Suppose tha1 u 1(t), ... , u,.(r) are n linearly indt>pendent solutions 
of (3) a.o.d let x(t) be an arbi1rary solulicm. Wo: h3ve 10 pmve the exi~tence of constants C;, .... C. 
such thatx(t) = C,u1(t) + · · · + C.u.(t). (l) 

121 
ln··l; 

Assume that the solution curve for x "' x(;) pa~:lt'S through (lo . ..to). and let x0 , x~ , .•. , Xo 
be given numbel'S. Suppose we could prove the existence C1f constants C1, •••• C. such that 

C1u1 (Io)+···+ c.u.(41) = .tu 

C1ii·1 (to)+ .. ·+ c.u.(10) = xf 

C1u\""
1
l(t,1) + · · · + c.,.~ · ll(tQ) "- .xg" n 

(i) 

Then t!J~ functions C 1u1 (1) + · · ·-+ C',.11.(t) and x(1) wo,1Jd have 1hc sa.inc ~,tlue ~tio and, moreover, 
thcv woultl have the same. values for the first n - 1 deriv11tives at IQ. lly Theorem 7. 1.:'. rhe two 
sol~tions woul<l 1:oiocide and the proof wonld be complete .. 



APTER 7 I DIFFERENTIAL EQUATIONS 1!1: HrGHER-ORDEH E.QUAT!ONS 

" . 

By Cramcr·s rule, a suffident condition for (i) to have a unique solution C1 •... . c. is that the. 
Wronskian determinant 

W(to) =- (ii) 

\ ur-li(ro) u~•-ll(rQ) 

is non.zero. We shall prove that if any n solutions u1 (t), ... , u 0 (1) of (3) make the Wronskian 
determinant W (to) equal to zero at any point ti), these solutions are linearly dependent. 

Indeed. if W (t0 ) = 0, lhen the columns of the Wronskian are linearly depende11t according to 
Theorem 1.2.1. Therefore there exist numbers ).1, ...• ),,., , not all equal to 0, such that 

AJUJ (ro) + · · · + i...u.(to) = 0 

.l..1u1!ro) + · ·. + i...u.(ro) = o 

),1u)°-11 t.to) + · · · + ) .• u~•-1\ru) :o: 0 

(iii) 

Put i(r) = .l..1ut (r) + · · · + ).,u.(t). Then .i:(r) solves (.l) because it is a linear combination of the 
solutions u;(r). Moreover, the equations (iii) imply that.i(ro) = 0, x<1l(to) = 0, ... ,£<11

-
1l(t0) = O. 

By Theorem 7.1.2 there is only one solution of (3) that satisfies these requirements for all t. Toe 
function that.is equal to O for all t has this pro~-.crty, and so O = x(r) = A1u 1(r) + · · · + j,,.u.(1) for 
all r. This confirms that u 1 (1) .... , u.(t) are linearly dependent, and so completes the proof. 

To prove (b), let x(t) be an arbitrary solution of (2) and let u'(r) be any particulm: solution of (2). 
Then it is o:asy 10 see (by subs1in11ion) that x(t) - u•(r) satisfies the homogeneous equation (3). So 
there must exist constants C1 •••• , C,, ,md a set of linearly independent solutions u: (r), .... u.(t) of 
(3) such that x(l) - u*(r) = C1u1 (t) + · · · + c.u.(t). The re~ult follows immediately. • 

Variation of Parameters 
We briefly describe a method for finding the solution of a nonhomogeneous linear equation once the 
general .solution of the homogeneous equation is known. The good news is 1hat ii works (in principle) 
whatever is the function f (t) in (2). The bad news is that it. is usually quite laboriou&. 

Suppose u1 •.•.. u. are n linearly independeot solutions of the how.ogeneou8 equation (3). let 

X = C1 (1)u1 + · • · + c.(t)u. 

where !he functions C 1(r) •... , C,(t) are chosen to satisfy then - l cquaiion.s 

G'1Ul111 + ... + c.(rJu., = o 
C1(1)1•1 + ... + c.1r)u. = o 

c:: tt)u\··-1) + ... + c.(1)11;:•-21 = 0 

By repeated differentiation and sub.stitulion, one verifies eventually that the func1ion defined by{*) 
si1tislies the non homogeneous e.quation (2) provided th.at 

i.'1 (t)u;"-1' + · · · + (\ lrJ"~:-n = f (r.l 

Thus we haven equation.~ which, hecause the function& u1, ... , 1,. arc linearly in<lcpendent, can 
be used to dct,>nnine C:'r (1) •... , C0 (1) a~ functions of r. TI1ese we can int~grdlC lo rind C1 (r), ... , 
C.it), including an arbitrary rnnsta!lt for each. 111en ( .. ) gives the, geruoral solution of (2). 
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Solution: hi tbis case 11 = 2. It is c..'lSy to find the two linearly independent solutio~s ~1 = ,:' _:uid 
u.2 == e~' of 1he co(responJing bomogeneo11& equation. W;.: in~st therefore ch~se c.: (t I and l,2ll) 

80 that x "" Cs (r)e' + C2(r Je.21 is a solution. The n:lcvanl cquanons for deteflilllllng C1 (r) and C2(1) 

are here 
C1(t)e1 + c\(1)e2' ""0 

(\ (t)«' + (\(r)2t?' = t 

The first of th.:.sc equations gives C: (1) '"·' -e1 <\(t), which io:se.rte<l inro the second equ~tio~ gives 
Ci(t)e.2, :.: t, or C2(t) = t(,·-21 • Integrating by parts, Ci(t) = f re-2r dt "" -! ,.,-·2t - i~--' + B. 

Then Ci(I) '" -e'C2(i) = -re-', so C1(t) .,, ·- f te-' dr = re~'+ e-' + .1. ln~ertmg rhe~e 
expression& for C1 (1) and C2(r) into(*), we obtain the general soluuon 

x == Ae' + Be
2
' + f' -~ J 

P ROl!LEMS FOR SECilON 7 . 1 

7.2 

1. Find the general solution of x· - 2x -_i + 2x ~ 10. (Him: e', e-•. and e.2' are solutions of the 

homogeneous equation.) 

2. U St~ variation of parameten; 10 solve x - x = e.-,. 

~ 3. Solve the e.quation .i + :x ~ If t. 1 > 0. (You may not be able to evaluate all the inte.1,'IalS.) 

The Constant Coefficients Case 
The general linear differential equatjon of order n with constant coefficients takes the form 

J•_t d"-1x d:x ... 
- +ai··-- + · · · +a,.-1- +a,.x = j(t) 
drn dt•.,·1 dt 

The associaccd homogeneous equation is 

anx an-·lx . dx . 
- +t11-- + · · · -t'an-1- ·ra.,x = 0 
dt" dt•-1 dt 

According to Theorem 7.1.1, the general solution of (1) is of che form 

x = x(I) = C1u1 (1) + · · · + C,.u.{I) + u*(t) 

(1) 

(2) 

where the functions u1 (1), ... , ur.(l) are II Ii.nearly independcntsolurions of (2). the numb.:rs 

c
1
, ...• C,. arc n arbitnu-y constants, and 11•(1) is any particular solution of (1.). 

Solutions of the Homogeneous Equation 
Guided hy the results in Chapter 6 for the ca-,e 11 = 2, we try to find. solutions of •.2~ Qf the 

form x = e" for appropriate values uf .-. Substituting x = e'1 inw (2) and cancdlrng the 

positive factor e", we obtain the characteristic equatiou of (2) for (1)): 

(3) 
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where p(r) is the characteristic polynomial. By the fundamenl.al theorem of algebra, 
equarion (3) has exactly n r<•ots, real or comple.'I:, provided that each root is counted accord.i ng 
to its multiplicity. 

Suppose fir.\'l rht..11 equation ( 3) h1i~ n disrinci real ro01s r:, r2, ...• r". Then er'', e"'', 
... , e'•' all satisfy (2), and one can prove that these n functions are linearly indcpendeut. 
So the general solution of (2) is 

The general method for finding n linearly indc~ndent solutions of (2) can be described 

as follows. First, find all roots of (3) and notice the multiplicity of each of them. A real root 
r with multiplicity 1 (i.e. a .~imple root) gives !he solution 

e" 

A real root r with multiplicity p yields the p linearly independent solutions 

A pair of complex roots r = u: +ii:], r = a - ifJ with multiplicity 1 yields the two solutions 

e"' cos /jt, e'" sin tJr 

(Complex solutions of (3) appear in complex conjugate pairs.) 

A pair of complex roots r =ex+ i/3, r = a - ifl, each with multiplicity q, yields the 2q 
linearly independent solutions 

This procedure always finds" solutions of (2) that arc linearly independent. It is illustrated 
in th~ following example. 

Find the geueru.l solution of the equation 

d 5 x d 4 x ,13.x d 2.x dx 
-- +5-+ 12--+ 16-+ 12-+4x = 0 
dr5 d14 dt3 dt2 dt · 

Solution: In this cons1roctcd example, the characteristic polynomial is 

< 4 • ., 1 2 
p(r) = r· + 51· + 12r' + l6r· + 12r + 4 = (r · + 2r + 2) (r + 1) 

The charactetis1k tquation, p(r) = 0, has the. simple real root r1 = -1, and the two 

complex mors r2 = -· 1 + i and r3 = -- I - i, both with multipliciry 2. The general solution 
of tl:te given equation i.< therefore 

where A and Di .... , Di :u·e arhitrary constants. 

fXAMPLE 2 
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Finding a Particular Solution 

In order to find the general solution of the nonhomogcncous equation ( J i, it rernains to find 

a par1icular solution u* = 11 *(r) of (1). If f (r) is a linear combination of terms of the form 

e"'. ,m, cos bt. or .<in ht ( *) 

or products of such terms, then the method of undetermined coefficients developed in Sec­
tion 6.3 for rht: case n ::: 2 will lt:atl us EO a p.irticular solution. Consider a simple example. 

Find the general ~olution of 

asx d4x d3x d2 i dx , 
-+5-+ 12-+ 16-· +12-+4x= 1·+t -· I 
dt5 dt4 dt3 dt2 dt 

Solution: The corresponding homogeneous equation was solved in Example l. It remains 

to find a particular solution. The form of the right-hand side of the given equation suggests 

pulling u· = At2 + Bt + C. We try to adjust the coefficients appropriately. We get u• = 
2A, + B. u• = 2A, and higher order derivatives arc 0. Substiruting into the given equation 

yields 32A + 24At + 12B + 4Ar1 + 4Br + 4C = t 2 + t - 1, or after collecting t<!nns, 

4At2 
;- (24A + 4B)t + (32A + 12B + 4C) = t2 + t - 1 

Thisequationissatisficdforalltwhen4A = l,24A+4B = 1,and32A+l2B+4C = -1. 
Hence A=}, B = -i, C =~.and so 11*(t) = }i1 - ir +; is a particular solution. I 

The method of undetermined coefficients dep,mds on our ability to guess the general fonn 

of a particular solution. The method IL~ually fails if the right-hand side is of a type different 

from those mentioned above. However, variation of parameters, as discussed in Section 7. I, 

IIlllY still work. 

P.ROBlc.MS fOR ECTrON 7,2 

1. find the general solutions of the following equations: 

d'.:c J 3 .:c ,l2x 
(b) - - 3 -- ..:. -· ... 4x = 2t ... I 

dr4 - d13 · dr2 · 
(a) x· + 3x + 3i ·+ X ::::: 3 

(Hint for (bj: r4 - 3r3 + r 1 + 4 = (r2 + r + l)(r - 2)2 .j 

@2. Fin<l .t = .:c(I) if x(O) = 0, .i(Oj = l, x(O) = 0 and i' -x - :i: + x = Ste-'. 

@ 3. In a model due 10 T. H:iavelmo, a function K = K (r) sarisfies the equation 

k """{r1K + )11.)li' + (Yto' +Yi)tLOe'" fo' e.-"" K(t),fr 

where y1• y2• YJ, K, a,µ,,,. andµ, are constants. Deduce. a third-order differenrial cquarjon for 
K = K (1). find the conditions for the characteristic equation of th¢ 1hin1-ordt,r C(111ation to 
have thrc·l, different real rooL~. Prnve that tho:; solution in that cast: ha~ th.: srn,cturn 

K(t.) ~ C1.i'' 1 + C1e"'' + CJ 
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.3 Stability of Linear Differential Equations 
Global a~ymptotic stability for general second-order linear ,:quatioos was defined in Sec­

tion 6.4. As a direct gcnerulization we say that equation (7.1.2) is globally asymptotically 

stable if the general solution C1u1 (I) + · · · + C.11n (t) of the con-e~ponding homogeneous 
equation tends to Oas l ~ co, regardless of the values of the constant~ C 1, •.. , C,,. Thus 
the '·effect of the iniria! conditions" dies out as I tends to oo. 

If we put Ci = l and C; = 0 for i ~ ). we see, in panicular, that uj{t) - 0 a~ 
1 - oo, and tltls holds for all j = 1, ... , n. On the other hand, these rcquircmenLS are 
surely sufficient for the equation to be globaJly a~ymptotically stable. 

Constant Coefficients 

Consider the case with constant coefficients 

d"x d···1.t 
-- +a1--+···+a x ... J(t) dtn dzr.·-I " (1) 

and let u1 (t), ... , ttn{t) bi:: then linearly indepeudeot solutions of the a%ociated homogen­

eous equation obtained by the proced1.1re described in Section 7.2. Each 1'j(I) corresponds 
to a root rj of the characteristic equation. To simplify notation, put ri =a+ i/3. According 

to whether rj is real (p = 0) with multiplicity I or multiplicity > 1, or complex {/3 ,fa O) 
with multiplicity I or > I, the corresponding solution" i is one of the following functions: 

In each case, u i -+ 0 a~ 1 -,. oo if and only if ct < 0. lo see this, here is a detailed argument 
for this property in the case where u i = tr e'" cos fJt, with r as a natuml number, while"' 
and f3 are real nurnbers. As t -,. oo, so ,r -,. oo. Bi::cause cos /31 does not cend to O as 

t -~ oo for any value of /3, the condition a < 0 is necessa,y for "i to tend to Oas t-+ oc. 
On the other hand, ifc; < 0, tht:n e" < I and thus a = e.-" > I. Hence, r' e.'" = r' /a' -+ O 
us r -+ oo. (See e.g. EMEA, (7 .12.3).) Because lco~ pi I :::: I, we conclude that "i -,. Oas 

t - oo. The condition a < 0 i~ therefore necessary a.s well a.s sufficient for "i to tend to 0 
as t -" oc. 

~ 7. 3. 1 _ ............... - .............. · ... · ·- .... -·-- --··-···-·-·---·-· -·· -· .-........ •···· ... ·-··-· --.. ·-···-"< 

A n~essary and suffi.::iem condition for 

d"x d"-1x 
- +a1- .. -· + ··· + a,,x "'"f(r) dr• dr•-1 

w be globally :tsymproticully stable is that every root of the characteristic equation 
r" .!. a1r11

·-
1 + · ··+an =()has a negative real pari. 

f 
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To check. if (1) is globally asymptotically staole, therefore, it suffices to !ind the roots of the 

characteristic equation. These depend only on the cocfficierits a1, a2 •...• 11 •• 

The case n =· 1 is e.isy. The charncteristic equa1ion ;,f i + aix = f(t) is r + fLJ ""0, 
so the characteristic root is r = -a1 . Thus the equation is globally asymptotically stable if 
:ind only if a1 > O. For11 = 2 it was prowd in (6.4.3) thatx +ax+ bx= f(t) is globally 

a~ymptotically stable if and only if a > 0 and b > 0. On the ba~is of these ro.~ults it i~ c:asy 

to lind a necessary conditioD for l 1) to be g!ohally asymptl)tically stahlc: 

If { l) is globally asymptotically stable, then a,, ... , a. are all positive (2) 

To s~.e this, note that the c:haracteri~tic polynomial p(r) = r" + a1rn-\ +···+a. can 

be decomposed inlo it~ first and second degree factors, i.e. factors of the form r + c for 
real roots of the equation p(r) = 0 and r 2 + ar + b for complex conjugate pairs of roots. 

If all zeros of p(r) have negative real paits, then those of r + c and r 2 + ar + b must 
have negative real parts. Soc, a, and b must be positive. As a I)roduct of polynomials with 

positive coefficients, p(r) has positive coofficients only. 
Except for the casc:.s n. "" I antl n = 2, the condition that a1, .. . , a,, are all positive is not 

sufficient for stability of (I) (see Example 2 below). We state a theorem that, in conjunction 

with Theorem 7.3.1, provides necessary and sufficient conditions for equation (I) to be 

globally asymptotically stable:1 

Let 
r" +a1rn-l +···+an 

be a polynomial of degree n with real coefficients. A necessary and sufficient 
condition for all roots of che polynomial LO have negative real parts is that all the 

leading principal minors in the following n x n matrix are positive: 

a1 a3 il5 0 0 
1 a2 a-1 0 0 

0 
A= 

a1 03 0 0 

0 0 0 lln-vl 0 
On-2 011, 

The: klh ..:olumn of the matrix A is the vector 

whc:re (lk is on the main diagonal, ,iu = I., and a; = 0 if i < 0 or i > n. 

J 1 ~-.,.lino nri11rin~1 mino~· Are derin.:tl io S('ctjou 1.7. For a ornof. see Gantmacher ( 1959}. 
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For n = 1, 2, 3. 4, the matri,\ A is given by 

(I ~). n a~ 0 

·1 ( a/ ,~). 
a3 

0 (a1), a, a1 (4 

a1 
fJf a:; (J 

03. 
1 a2 a4. 

respectively. By coml:>ining Theorems 7.3.1 and 7.3.2 we can obtain: 

(a) .i + a 1x = f (t) is globally asymptotically stable <===> a1 > 0 ·1 
(b) i + a1x +a2x = f(t) is globally asymptotically stable 

{;;;;;:} a1 > 0 and a2 > 0 II 
(c) x· + a1.i + a2.i + a3.x == f(r) is globally asymptotically stable 

~ a1 > 0, a3 ~-:~~ 

(3) 

These equivalence~ are in accordance with our earlier results for n = l and n = 2. For · · 
n = 3 the requiremcncs in Theorem 7.3.2 are: 

a1 > 0, 

which is equivalent to (c) in (3). 

6 ] = (a1a2 - a3)a3 > 0 
a3 f 

Prove that the equation x' + 3.i' + 1x + 5x = e3' is globally asymptotically stable. 

Solution: Here a1 = 3 > 0, a3 = 5 > 0, and a 1a2 - a3 = 21. - 5 =Hi> O, so that this 
third-order equation is globally asymptotically srable. I 

Pruve that the equation ·x· + x· + x + .i + x = sin t is not globally asymptotically stable. 

Solution: lb.is fourth-order equation is globally asymptotically stable if and onlv if all the 
leading principal minors of the last matrix in (*) arc positive. But we find that -

Hence the equation b not globally asymptotically st.able. 

S FOR SECTION 7 -;3:r-,,---:--...,,....---.-::----------.--,.,----

1. Check glohal asymptotic ~,ability for Problem 7.2.l(a). 

~ 2. Use (3) to stow that illc- equation :x: + 4i -!· 5.i + 2.x = O i~ globally a.sy111pwricallv &r.abll~. 
Confirn.1 the result b-y finding rhe gl,nernl ~olution of lhc equalion. (Hir.t: Rccall thai intrgtT 
roots of rJ1e charnclt."IJstic eql1a1ion iliv·ide the .:<J11sra111 term 2.) 
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7.4 Systems of Differential Equations 
A nonnal system of n first-ordC'r equations in n variables tah:.s the fom1 

(1) 
dxn dz== f.(r.x1, ... ,x,,) 

______ P.,.LU.. Transform ihe following second-order system into the fom1 (I) 

Solution: Introduce new unknowns u1, u2, u3, and u4 defined by u 1 = xi, u2 = .i1, 

u3 = x2, and U4 =xi.Then the system is transformed into the first-order system 

which is in the fonn (I). 

. . . d"x ( d.t dn-·lx) 
EXAMPLE 1 Provcthatthe11th-orderdiffen:ntialequat1on dr" = F r,.x, dr'···· dr•-l. can be 

transfonned into a normal system. 

Solution: Deline y 1 = x, }'2 = dx/di, . .. , Yn = d"- 1x/d1•-1• Then the given equation 

takes the fonn 

YI == Yl, )12 = Y3, Yn-1 = Yn, Yn = F(t, YI, Y2, · · ·, Yn) 

This is a normal .system of n first-order equations. 

The examples ahovc indicate that general systems of nth.order differential equations can 
usually be rcdt1ced to the normal form (I). Therefore, in studying systel0$ of differential 

equations. not much is Jost if we restric, anent ion to normal .~ystems. 

A solution of (1) is a set of functions .xi. = x1(t), ... , x,, = x.(t) that satisfy all the 

equations. Geometrically. such a solt1tion describe.~ a curve in ~". Tue parameter t usually 
denotes time, and as r varies, we :.;1y that the sysrem "moves along" the curve. TI1e vector 

x(t) = (_i 1(1), ... ,x.(t)) is the v,d1,1city vt•c;tor associated with x(t) = (x1(t), .... xn(t)). 

'I.lie space with ccx1r.dinates :t1, ...• .Xn is called the pha!>e space associated with system (1). 

In the case 11 ::::: 3, as t varies. the vector x(1) = (..i:1 (1). x2(t), x3(1)) u·accs Olli a curv"' 

in R3, and 
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tends w the vector :ic(t) = (i'.1 (r), .-c2(t), x3(1)) a~ a limit as ~t -> 0. A~ in 1he case 11 = 2 

in Section 6-5 tscc Fig. 6.5.1), :ic(t) is a tangent vector to the curve. 
Let J,'(r, ::ll'!(t)) denotc the vector with components ;; (1, x(r)) = .ti (t, X! (t), ... , x~(t)), 

i = l, ...• ,z.. Then ( 1) can be written in the concise form · 

x = F(t. x) (2) 

In economic: models that lead to systems of the type ( I). the functions _( 1 (t), ... , x,,(t) 

are state variablt:!S characterizing the given economic syMem at time t. Usually the state 
of the systel'.ll at some definite time to is lrnown, so x(to) = (xi (to), ... , xn(to)) is given. 

Now, according to the existence and uniqueness theorem for(]), if f. and ilf;/'axj dre 
continuous for all i = l, ... , n, j = 1,, .. , n, than there is une and only one vector of 
junctions .q (r), .. _, xnU) 1ha1 satisfies ( 1) a11d has 1/te prescribed values fort = ,0 (see 
Theorem 7.6.1 ). · 

ID the case of (I), the general solution usually depends on n arbitrary constants. 

Xn = ,p.(r; Ci, ... , Cn) 

For each choice of CL, ... , ·C,. the solution (kscribes a curve in !Rn. 
In Example 2 we showed that an nth-order differential equation can be tnmsformed into 

a system-of firsl-order equations. Sometimes one can find the .solution of system (l) by 
going the other way around. The method wa.s illustrated for the case n = 2 in Section fi.5, 

Linear Systems 

In some modds the functions Ji, ... , fn appearing in ( l) are linear, (lr it may be an ac..:eptable 

approx.imation 10 treal them as linear. Then the system is · 

(3) 

By a method similar to that applied to tht:! ca~e n = 2 in Section 6.5, the problem of solving 
(3) can be transformed into the problem of solving one ,ith-order linear differential equation 

in one unknown function. say x1. When x1 ha~ been found, we can also find x2, ... , Xii-· 

Let x, i and b(t) be the three column vectors with components x1, .... Xn, .i,, ... )n, 
and b1 (t),. - . , b,,(l), respectively. Let A denore the matrix (a;j(t))c11 xn)· Then (3) can be 
written in the matrix for.01 

x = A(t)x + b(I) 

A particularly important case occurs wh.:ll all the functions au (t) are constanK Then 

i = A..x + h(I) x, ""anx1 + · · · + ll;n.(n + b;(r), i = L .... n 

In 1be same way that we derived {6.54) from (6.5.3), we deduce faun (5) an nth--0roer 
, __ ,, ..... ,~.:..;,l u 
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Their characteri$UC equations coinci(k with rhe eigenvalue ~u.a.tion for the matrix A. as 

we saw in Section 6.5 for the c.:ase n = 2. On the basis of Theorem 7.3.I we deduce the 

following result: 

,i =Ax+ b(1).1s globally asymptoticaUy titahle *"'* 
all the eigenvalues of A ha.ve ocgativc r.:a! part~ 

(6) 

Global asymptoti..: stability of ,i "" Ax+ b(t) means, in paiticular, that the general solution 

of i = Ax tends 10 the 7.A)ro vector O a:; t -+ oo, regardle$S of the initial conditions. 

Solutions Based on Eigenvalues 

The system 
i=Ax +b (7) 

can alternatively be solved by using methods from Ii.near algebra, as shown for 11 = 2 in 
Section 6.5. Suppose first th.at b = 0. We search for numbers). and Vt, l-'2, ...• Vn such that 

the vector function x = ve;., = (t11e•1, v2e1·' • •.• , t>nt'.;·') satisfies x = Ax. Wi.th x = ve
1
·' 

we have i = i,.eA'v. so J..e;..'v = A(ve;·') = e;..' Av. Cancelling the common factor e·'·'. yield~ 

Av=;..,, (8) 

Hence any nonzero solution vis an eigenvector of the matl'ix A with eigenvalue i,. 
TI1ccase where A has II differeut real eigenvalues, A1, i,2, ... , ).n, is the simplest. Then A 

bas n linearly independent eigenvector~ Vt, v2, ... , v., and the general solution ofi =Axis 

Suppose that x0 is an equilib1ium point for (7) in tht:! sense that Ax0 + b = 0. If we define 
w = x - x1>, ·then w measures the deviation ofx from tbeequi.librium state x0

• Then w = i. 
which inserted into (7) gives w = x = Ax+ b = A(w + x0) + b = Aw+ A:x.

6 
+ h == Aw. 

In this way the nonhomogeneous system (7) can he reduced to a homogeneous system_ 

NOTE 1 The solutiou of lhe scalar initial value problem _i = ax, x(to) = x0
, is x 

e"<1-tolx0. It is templing to conjecture that the more general initial value problem li: = Ax, 

x(to) = x0 has th,;: solution x = eA(i-rolx0 . This is correct if e to the power of a 1natrix. is 

properly defined. In fact, it' A is an n x 11-matrix and 1 is any number, we define 

Ar 12 
1 1

3 
3 e =I+ tA + -A + -A + · · · 

2! 3! 
{9) 

One can show that this series converges for all t. and 1hat (d/J1)eA1 AeA'. Since 
(d/dt)(1/''c) = AeA'c = AtcA'c), it follows that e.AI c js a solution 1.0 ic = Ali' for every 

constant vector c, and only S\>h1lion~ of this kind arc possible. 
Moreover, one canshnw that (eA') ··1 = e-Ai and thal.eA(,.,.,) :..: e."'eAs_ Note. however. 

,1,., "A.r-;-B, i~ '"" .. (nial to "'"' "-B, unlc.ss AB = BA. 
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The Resolvent 
We shall explain bow one can (in pri.uciple) ~olve the general linear eqoaticm system (4}. Consider 
fi.r.<t the hor.nogeocous sy.stem 

x = A(t}1' 

For any fixed to an..t for each j = l, .... n, this equation ha,, a unique vector solution Pj(t} :.: 
(P11(r) ..... Pn;(r))', t E R. $atisfying P;(to) = e;, where e; is the jth standard unit ve.ctor in R". 
(Existence and uniqueness follow from Theorem 7 .6.2 below.) The resolvent of(,.) is the II x n matrix 

( 

P\I (t) · · . Pin (r)) 
P(r, to) "" : ·.. : 

Pol (t) . . . p..,.(r) 

(10) 

whose columns are the solutions P; (I). Con~idering each column separately, this matrix evidently 
satisfies P(r, to)"'' (didl)P(r, ro) '"'A(r)P(r, to) and P(to. ro) = I •• where L, i~ the unit matrix of 
order n. The solution of(*} 11.,;th x(to) = x0 = x?e1 + · .. + x~e. is obviously x(1} = xfp1 ((} + 
· · · + x~p.(r) = P(t, to)x'l. 

For the nonhomogeneous equation ( 4). one can then derive the following: 

i = A(r)x + b(r), x(to) = x0 ~ x(I) = P(t, to)x0 + i' P(t,s)b(s)ds 

To show that this x(r) is a solution, we observe from Leibniz's foro\ula lh:tt 

::i(i)"" 1'(1, to)x0 + P(r, t)b(t) + £' P(I, s)b(s) ,Js 

=- A(r)P(l,to)x0 +1' A(t)P{1,s}b(s)ds + b(1) = A(r)xlt) +b(t) 
~\ 

(11) 

The rna!rix P(t, s) denote.5 the resolvent at time t when the initial poim of time is s. Because all 
the components of each vector P;(r) are unique, it follows lhaE P(1, to). P(to, r) = I, so P(1, to) has 
an invecse- More generally (also by uniqueness), P(t, s) = P(r, r). P(t,s) for all t, s, and t. In 
particular. P(t, s) ;:; P(1, 11))1'.P(s, row 1• 

If A(t) is the coostaut matrix A. then P(r. s) = P(r - s. 0) = e'\fi-,) for all t ands. Hence. 

i = All+ b(t). x(r0) = x0 '*= .x =o P(t, 10)11° + 1' P(r -s, O)b(s) ds (12) 
'O 

Note finally !hat ii P(1, s) is the resolvent of i = A(r)x, then t 1-, P(s, r)' (the transpose of P(s. t)) 
is the cesolvent of the cc1uation 

i(r) = -A(t)' :i(I) (13) 

To prove !hat r i-. P(s, t)' satisfies (13),. first differentiate P(r. s)P(s, t) J
0 

w.r.t. r to ob­
tain ((o/8t)P(r, s))P(.s, r) + P(r. s)(iJ/ilr)P(s, I) = 0, which implies that A(r)P(t, s)P(s, 1) + 
P(t. s)(il/ilt)P(s, t) = 0, or (3/<ir)P(s. r) = -P(r. sr1 A(t) "' -P(.s, t) A(r), i.e. (ii/iir)P(.s, r)' = 
-A(t)' P(s, r)'. 

S FOR Sf TION 7 4 

@ 1. Find the general solutjou of the following system 

i1 :~~ -.X1 + X? + .X3, .f). ~ ..ti - .X2 ··t• X3, i:; = XJ + .t11°· X,; 

ny eacb of the, following tilf('<: methods; 1 i) solve a rhir<l-order diUcrrmial equation for .t1: 

(ii) find the eigenvalues mtJ eir.enve.;tots of the com•.sponding matrix A; (iii) ftn<l the resolvent. 

I 
t 

7.5 
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Stability for Nonlinear Systems 

This section gc-.neralizcs the stability theory of autonomous sy.stem.s in d1c plane to the more 
general au1onomous s~stem 

X; =ftlXt,•··,Xn) 

(l) 

in n dimensions. We assume that J1, .•• , J~ are all C I functions. 

A point a= (a1, .... an) is called an equilibrium point for (1) if 

f1(aL,···,an) =0, J.(a1, ... • a.) =0 

Note that x1 = x1 (l) = a1, ••• , x,. = Xn(l) = a,. is then a solution of the system. If x 1, 

... , x. are state variables for some economic (or bfological or physical) system. and (I) is 
satisfied, then a is an equilibrium state. 

An equilibrium point a is stable if all nearby solution curves remain nearby. The point a 

is locally asymptotically swble if each solution curve that starts near a not only stays near a 
but, in addition, converges to a. We now define precisely the concepts of stable and locally 
asymptotically stable equilibrium point~: 

DEFINITION QF STABILIT 

The equilibrium state a= (a;, ...• a,,) for system (I) is stable if for each 1, > () 
there e:dsts a c5 > 0 (lbat ge11ern.lly depends one) .such that every solution x(I) 

of (1) with llx(ro) - all < 8 for some to is defined for all I > I() and satisfies the 

inequality 

llx(t)-all < 1; forall 1 > 10 

If a is stable and, in addition, there exists a So > 0 such that 

llx(to) - all < .So ==:, lim Hx(t) - all == 0 
1-+0C 

thtn a is called locally asymptotically stable. 

An equilibrium that is not ~table is called unstable. See the illustrations of these concepts 

in Fig. l. For an example of an equilibrium state thi1t is stable, hut n,)t asymptotically stable, 
see the UJtk...1-Volterra model in Example 2 hclow. 

Theorem 6.8.1, c,o l<,cally a.~ympm1ically srahlt- equilibrium points for sysi:ems of au­

tonnmou~ eq11a1ions in the plane, ha.~ a natural extension w r1 dimensions (s(·c Hirsch 
,,.r ~~ ,..,fl{\.,t\\ 
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Figure 1 

v---... ---------
Let a = (ai , . . . , a,, ) be an equilibrium point for system (1) an<l let A be the 

I 
I 

( 

o/1(a) ~!(a!J / 
A= 0~1 OXn l 

~~n(a) , ,. ( ) 11· QJ , u. 11 a 
8x1 axn ; 

Jacobian matrix. 

If all the eigenval ues of A have negative real p artS, theo a is locally asymptotically j 
__:ble. :.::t one eigenvalue of A '.: positive real p~~:: is unsta~ 

(2) 

NOTE 1 The condition that all the eigenvalues of A have negative real parti. is suffici,mt 
but not necessary for a to be locally asymptoci~lly Stahle. For instance. i = -x3 ha~ the 
general solution .x = C(2C2

1 + 1)- 1,1:2. with a= 0 as a locally asymptotically stable point. 
But the matrix A ha.s the eigenvalue f' (O) = O. 

NOTE 2 Let x = a be an equi librium point for the scalar equation x = F(x). The matrix A 
in (2) is then the 1 x 1 matrix (F'(a)), and the only eige,walue c,f A is ),;, F' (a ). Thus, we 

conclude f~om the theoreo1 thatx = a is locally asymptotically stable provided F'(a) < o. 
and x = a 1s unstable provided F'(a) > 0. Thi~ accords with the resl.llts in (5.7.2). 

Lyapunov Functions 

l.t,t a = (a 1, · .. , an) be an equilibtium point for sy~tem ( I) mid let V (x) be: a CJ function 
defined in an open neighbourhood Q of a . We call v <x) pos itive definite in n if 

V(a) = 0 l!Jld V(x) > O for all x in n with x ,f, a 

Thu$ V(x) is positive defini1e inn if ic ha, a Wlique minimum at a . with minimum value o. 
Let x(t) = (x 1(t) . .. . , x.,1/ l) be a solu ti1Jn of ( I). Tiie dc:.rivati,·e of 1/(x(r)) w.r.t. r b 

!_ ) _ ,!!..... i.lV (x (t )) dx; ~ iJ V (xu)) _ . 
. ,, Y!K(l) ··- L, - -:1 -. - -:,: = L, --;:-. -J,ix(1)) = VV\x(t)}. f (J (t)) (3) 
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Deline V (x) = VV (x) · f(x) ::: I:7~1 V/ (X) f( (x). If V is posilive definite amt V (x) <. O 
for all x in n , then V (x) is called a Lyapunov function for system ( I). Jf in addilion V (x) 
is -::: 0 for all x :f a in n, then V (x) is called a strong (or s trid) Lyapunov function for 
the system. 

.-THEOREM7.5 7 lLYAPUNOV) .............. ----·--··---·----,-------· ... -.... ~---·, ... -.,.~ - - .. --"--- . f ... 

! . 
' > 
1-----

Let a = (a1 , . .. , a,.) bean cquilibriumpoint forsystem ( I). If1hereis a Lyapuno\• 
function for the systt m iD an open neighbourhood n of a, then a i~ a st.ablt 
equilibrium point. If there is a strong Lyapunov function for the system, then a 
is locally asymptotically stable. 

___ , ..,,,. .. --.... 

Proof: Choo~e 1: > 0 so $lllal\ tha.t ii = { " : (l.x - a ii .s t: } S:: n. Let V (Ji:) be a Lyapunov function. 
The boundary A = j ,c: l:t -aU = ,:}of B is compact. anJ since V is continuous, V has a minimum 
value a over A. Because V (:X:J is jl()~itiv.; dc:6oite, a > O. By continuity of V. we can choose a S > O 
st1ch that V(l<) < a for all x in the ball C = fx : Ux - all < 8). Th.en 8 5 ,,- and C S B. Also, 
by definition of a Lyapunov funccion, V eaonot incn-.ase along 311)' solution curve. So if a solution 
curve for (1 ) starts at a point 1'() in C. then tb~t solution curve c--.m oever meet..6,. Hena; any solution 
srnrtiog in C uever le:tVes it. Thus a is st.able. 

Now suppose that V is a strong Lyapunov function. We wlllt to prove thal if x(r) is a solution 
starti.og at a point. x(O) = X.) in C, lhm x(r) -,. a as t ...,. oc. £vicleotly, t' (xct)) couvcrges to some 
limit v• ::; O. By the mc11n value lhcorcm, fur t:ach k = 1, 2, . . . thore e~ist~ a It in (k, k + 1) such 
that V (x(tk)) = V (x(k + 1)) - V(x(k)). By corupacroess of B, a subsequence {x(ti)l convt·rges to 

SOOJe point x' in iJ. Tllking limits in the l:lst equality, we get 'V(:c") = v• - v• = 0. But x* = a is 
the only point where V = O. Hi,oce. 0 "" V(n) = V(x' ) = limi V(x(fl

1
)) = liro,-,"' V(x(c)) = V' . 

For a conlradictioo, assunie thatx(I) doe-snot converge to a. Then for some s there exists a sequence 
{l) such that t 1 -> oc and l(Je(lk) - a ff .::: e for all k. By l'Ompactness of iJ the sequence (rt} 
has :i. subsequcocc {sil = {li) such that {x(s;ll converges to a point x.. in B. Then Y(x.) 
Jim/ ... "" V lX(s1)) :: fl, so x. = a, cootradicting !lx(si) - a II ::: f: for all j. • 

NOTE 3 Actually, a proof is needed of the fact that a soluti<m starting at Xo at t = 0 can be 
extended to a solution dd)ned for all r > 0. (See e.g. Hir.sch e t al. (2004).) 

According to c,ur previous terminology, an equilibrium poinl ror (l) is globruly asymptot­
ically stable if every solution of (1) (wherever it starts) converges to a as t tends to oo. 

A slight modification (lf'the proof ofTheorem 7.5.2 yie lds the following result: 

THEOREM 1 5-, - -··· --. 
i 

Let a = {o1, ... , a,,) be an equilibrium point for sy~tem (I ). and a,sume 1hac ! 
! there cxis1s a strong Lyapunov funct ion V Cx) for (1) that i~ denned in all of n• i 

and b ~uch that V(,c) - .:,o as lliri! ·• oo. Then a is globally a~ymptotically ! 
st~ble. 



·~·'"""':"·~··· ·· ·~ 

1.A,P.TfR, 7 I DIF F(R ENTIA L !: QU A TIO NS tit . HIGHfR- ORDER EQUATiON S 

F 1 

2 

Proof: Consi,Jer a solution with x(O) == X-O- LeL B = fx E R" ; V (x) ~ V (Xo) }. T he set B • 
is boonded becau,c V(x) > V(xo) when Uxll is sutlicicnrly large, and iJ is closed because 

Vis continu ous. Hence, Bis compact. Now proceed as in the::second paragraph ofthepruof • 

uf Theorem 7.5.2. • 

Prove th.at V (x , y) = x2 + y2 is a Lyapuno v fwiction for the sys tem 

.i = -- X - y, }' = X - y 

with equilibrium point (0, 0). Prove that (0, 0) is globally asymptotically stable. 

Solution: V (x, y) is clearly positive definite_ and V = 2xx + 2yj = -2x2 - 2y2 < 

0 for all (x , y) f= (0, 0), so V is a Lyapuuov function for the system. In fact, V is a 
srrong Lyapunov function, defined O",er the entire plane, and V(x, y) = x 2 + y2 -;. oo M 
U(x, y) II = .Jx2 + y2 -+ oo, soTheorero7 .5.3teUsus that (O, 0) is globally asymptotically 

stable. I 

Consider the celebrated Lotka- Vo!terra pre.da1or- prey modd 

x = x (k - ay) , y = y(- h +bx) (i) 

with a, b, h , and k all pos itive constants. Here x is lhe populatio n of prey (say rabbits) 
and y is the population of pre.&,tors (say foxes). The rate o f rabbit population growth is 

a decreasing function of the fox: population, but the rate of fox populati.on growth is an 
increasing function of the rabbit population. 

Note that tbt--re are two equilibrium point~, (0 , 0) and (xo. Yo) = (h /b, k/ a). By studying 

a phase diagram it is ea.~y to see rhat (0, 0) is not stable. (See Problem 6 .7.3.) 
To check for stability of (xo, yo) , consider the function 

H (.r:, y) = b(x - xo ln x ) + a(y - JO In y) (ii) 

We claim that L(.t, y) = H(x. y) - H(xo , Yo) is a Lyapunov fu nction for (i). (To understand 
how to arrive at this function, see Problem 4). Note that L: = b(l - x0 /x) and L~ = 
a( l - )'o/Y), so (xu, Yo) is a stationary point for L. Moreover, L'.:x = bxo/x2 > 0, L;y = 
ayo/y2 > 0, and l ~

1 
= 0, .so L is strictly convex for all x > 0, y > 0 . It follows that 

(xo; Yo) is th~ unique minimum point for L. But L(xo. Yo) = 0 , so L(x, y) is po$(livc 
defini.ltl . Moreover, wi th xo = h/b, y0 = k/ a, we obtain for all x > 0, y > 0, 

L = b(l - ~~)x + a(I - ~)y 
X y 
xo }'O 

"' b{l - - )x(k - ay) + a(l - - )y(- h +bx) = 0 
X y 

(iii) 

We conclude from Theor.:.rn 7.5.2 r.hat (.x:0 , Yo) is a stable equilibrium point. 
ln fact, (Hi) implies th.at L(x, y) is .::onstant along solution curves for (i). One can 

prove thal the corves l,(x . y) = constmt are clo;,ecl curves. The populations of predator 

:llld prey will t herefore osd llatc cyclically. For further disco.ssion ,)f this model sec Hirsch 
et al. (Z004), C hap. 1.1. (S.:e aim Fig. A6.7.3 in the answeu;ection .) 
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PR OBLEMS FOR 51:<:TIO N 7 5 

1. Prove that (O, ll) i$ a locally asymptotically stable poi11t for each of the followi11g systems. Is it 
also globally asymptotic.ally stable? 

(a} x =- y- x3, ·· y "' x - yl . (Try V(x, y) = x1 + yi.) 

(b) x ::-. - l x + f y , y = ~x - iY· (Try V(x , y ) = 12x1 + 12xy + 20yi .) 

(c) Test the stability of (h) by using 11icorcm 7 .S.l as well 

2. Cousidu the following differential cqu.uiou f(l( P > 0: 

p = a(b/ p - c), where a, b and c are positivi: constants 

Find the oquilibrium poim and prove th~t it is locally ll$ymptotical!y stable by using Theorem 
7.S.2. (Hint: V(p) =: (p - b/c)1.) 

3. Consider the system of differential equations 

:(1 :: u~(x., .. . ,x,.) , i = L .... n 

where u(x) = u(x1, • • • , x.) is C1 in an open set 11 about O = (0, .... 0). Suppose: u(x) has a 
global ma1Cimum at o aod thal Vu(:i) # O wh.co x 'f. 0. Prove tbal O is locally asymptotically 
stable. ( flint: Put V(x) = r,(O) - 1<(x) nnd use Theorem 7.5.2.) 

·@!) 4. (a) Consider a system of differential equations of the form 

Eliminat~ t from lhe system to obtain 

d y Y i:,(.x )g~(y) atpoimswhcrc x ;6 0 
dx = i = fi(x )f;(y ) 

(,r) 

Deduce that Hix , y ) = j(g1(x )/fi(x))dx - j(h(y )Jg1 (y ))dy is coostaot along each 

solution curve. 

(b) Show that for the Lotka- Voltcn:a system (i) in Examplc 2, H(x , y) is given by (ii) in 

faan1pk2. 

@!) 5. Consider the following gt:nerufo.ation of U1e Lotka-Volcerra system: 

where a, b, Ji. Ir., S, ruid t: are pos itive constants, with bk > he. (In particul:u, ~e rabbit 
population grows logistically in theabscn<.,:rnf foxes.) Verify thar ..co = (,1h .;-~S)((ab+ot·) . Yo.= 

(bk _ li r.)/ (ab + ~;;) i~ an equilibrium point. P(CIVC t~lat Ux, .Y} defined in E~ampk 2, wi~ 
(Xo. Yo} as given in rbe pre~entc.:isc, is a Lyapu11ov ft111ct1on with L "' - d,lx - x:iJ - a!.(y - Yo) 

along a solution Cllr'/C. C=lusion? 
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'.6 Qualitative Theory 
The local and global ex.is1e11ce and uniquene~s theorems l,f Section 5.8 can be generalized to S~ICiils 
of differential equations in II variables, n:i;urdcd as vector differential equations in n dimensions.. 
The rnotiva.tioo and th,, examples that were presented for the scalar case an; important aids toward.$ 
understanding the general theorems. 

CoillSider rhe initial value problem 

i: = F (t, x). x (ro) = Xo 

Suppose twit the elements of the vector F(t. x) and the matri:1: F~(t. x) are continuous 
over the (n+ 1)-dimensiooalrectangleI' = { ( t , x): !1 -1<,I !:; a, llx- ~11 :; b },and let 

.+£ = = HF(r. xH. 
c, . .J;)er 

r = min (a, b/M) 

Then (1) b.as a unique solution x(t) on (tu - r, to +r) 3.ntl ll :1(1)- Xoll ::: bin lb.is interval. 

. M 7.6 2 GLOBAL E'XISTENCE AND UNIQUENESS) .1--------..... 

Consider the i.llitial value problem (l). Suppose that the e lerne.nis of the vector F(t, x) 
and the matrixF~(1, x) are continuous functions for all (1. x), anti suppose that there exist 
cootinoous scalar functions 0(1) and b(r) such that 

UF(1,x) II :5a(r)(l s:ll + b(I) fonll (t,x) 

Givc.o. an arbitrary point (lo, x0), there exists a unique solution x(r) of ( I), defined on 
(-oc, oo) . lf (3 ) is repla,'C(l by the require1Uent 

X · F(t, X) ::, a (t ) (I Xll2 + b(I) for all X ftOd all t ~ to 

then the initial value problem (1) bas a unique solution del\ned on {to, oc). 

'(!} 

(2} 

(3) 

(4j 

The notes h> Theorems 5.8.2 and 5.8.3 for tl\e scalar case are relevant ali;o for Theorems 7 .6.1 and. 
7.6.2. (For proofa of these theorems and of Theorem 7.6.3 below, see Hartman (1982}.) 

NOTE 1 Condition (3) is satisfied if. for all (t, x), 

~up IIF',(t , ::r) YII ~ c(t) for some continuous func1io11<:(1) 
1,1., , 

Dependence on Initial Conditions 
How do.-.s the soluti,,n of h <lifforcntial equation r hange when the initial c:onditic,nschange:1 A precise 
,:e$ult i$ fonnu.1 ated in the nt:.>tt t.hcorew. We nee.:! to spell QUt w me crucial assumptions: 
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(B ) For each (r, :r) in A there exist a .o.umher r > 0 a;nd an in~rv&I (a , b) th:u. contains 1, with 
(a , b) x B(:t:; r ) £ A. and a consUUlt L such that for all x', :x·' in H{x: r ) and forall fin (a, b) , 

liF(r, x') - F(t, x") :! ::: f-l!x' - x''l; (}' is l<>cally Lipschitz continuous w.r.t. x) 

( COrl INUOUS DEPENDW E OM INITtA[ CONDITION 1-·--, 

Con~ider the vector differential equation i = l<'(r, x), whslre F(t, x) sati~ties both (A) 
and the Lipschitz condition (B). Suppose that x ( I) is a solution of the equation on an 
iuterval [a, b] with (t, i(t)) in .4. and let i0 E (a. b), x" = i (co). Then there exists a 
neighbourhood N =s (4) - a, io + a) x B('i?; r ) with r > 0 and a ~· 0, such that for 
every (41, ~ in N there exists a un ique solution through (ro, rl) de.fined on [a . bl whose 
graph lies in A. If this solution is denoted by :1(1; ro, x0), then for evcr:y r in [a, bl the 
function (r0 , x_'l) '°' x(t; r0 , x_'l) is continuous in N. lfl!' and F~ are continuous in A., then 
:t:(t ; to , x0) is a C 1 function of (to, x0) in N, and 

ox(t; ~. i:°) . - ) 
- -~ = PV,41 

i 
! 

' 

I 
i 
I 

I 
, c, ,· -o) I 
nX ; O, X P( • ) - • 0 , --- -- =- t,ft) · F(to,x) I 

ilf(l 

i = F'x(I, x(r)) l 

(6) 

(7) 

(8) 

(9) 

where then x n matrix P fr. io) is the resol~t of the linear differential equa~·on ' 

'---------- -·--- ·-- -· 

. : 

Let us test Theore,n 7.6.3 on a simple exampl<0. 

Consider the sy~cem .i1 = 2x2, .:i:2 = x1 + xz, which can he writwn ns j = F (r, li:) if we put 

'( ) ( 2x~ ) .l' i,x = + . x, A'? 

Couditions iA} and (.B) in Tbc.orcm 7.6.3 are satisfiod everywhere for this linear system. 
The general solution of i = F(1, 11) with x1 (to) = x\1 and x 2(/o) :: x~ is 

Xt ;-;; J(.~r- xf)el0e-'+t(.r?+24)e-2t,Je21 , X2 = -i(x?- x~)e'lle-'+}(x?+2x¥)e··~ae2' (i) 

We $CC that .q and xi are C 1 functions of (to . xf. xf) . 
In the pn>.scnt ca,e, the left-hand side of (7) is the following 2 x 2 llllltrix (evaluated at (xi. x~, lo) 

rather than at (x?, .if t.J)), 

(
ilxifil.r? ox:iil4 ) (. }e"e-• ~ i,?-llQe~ -jc<>,.-• + ie-2:uc-2') (ii) 

ilx!/ilx? i/xi/ 8x~ = -1e'oe·• + t11- 1•oe21 Jeio.,-1 + ~.,-z,.,c7, 

Notice thiit. l>ecau.,e F(t, x) is lin<'3r iu x, rhe di fferxntial equation in (9) is identica l w i "' F(r. J<:) . 
TI1us we sec that. the right-hand side of (7) is the resolvent of :i. = F(x, 1). Accordi..og to (7.4.l.0). 
the rwo columns of f'(r. 10 ) are obtai.ucd from ( i) hy pulti.og x~ ,~ x 1(to) = l.,<~ :s· xz(t0 ) = ll, aod 
x? = -< 1 (to) := 0, x~ "" x2(ro) = I, respectively. flence, 

(iii) 
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Be.:ause the matrices in (ii) and (iii) are identical. (7) is con.firmed. 
Using (i), the kf!-han<l side of(8) evaluated at (to, xf. xf) is 

( /J.ti/flro) ( ; (xf - .rf)e"'e-i - ~(xf + b:])e-~'~r') 
, i!x1/iJro. "" -}ex? ·-xf)e'"e-< - jtx? + 2xJ)e-'-OJe2' 

The right-hand side of(K) is ·-P(I, /11) · F(to, x0
):::: -P(r, to}· (x0~fx

0
). Using (iii) we see ihat 

I 2 • 
!his matrix product is equal to the column vector in (iv). Thus (8) is conlirmed. 

1 

7.7 A Glimpse at Partial Differential Equations 
ID an ordll!ary differential equation, the anknown function depends on a single variable, 
and the equation involves the ordinary derivative of that function. In a partial differemiaI 

equation, however, the unknown function depends on two or more variables. and the eqm
1
": 

tion involves the partial derivatives of that function. When such an equation involves only 

derivatives of the first order, it is said to be of first order. For example. the general partial · 
differential eqoation of first order in two variables has the fonn · 

F (x, y, z. oz/i)x, oz/uy) = 0 (I) 

where 1. = z(x, y) is I.he unknown C 1 function. Here arc two simple examples. 

Find che most general C 1 function z = z(x, y) satisfying i)z/oy = 3x2y - y2. 

Solution: First, we keep x constant, and integrate 3x2y - y 2 w.r.t. y. The most general 

. function of x and y whose derivative w.r.t. y equals 3x~y - y2, is 3x1jy2 - fy3 + c. 
But when x is variable, note that C could he an arbi1ra1y function of x. TI1us, the general 
solution is z = ~x

2 y1 ·- !y3 + <p(x), where <p(x) is any C 1 function of x. I 

Find the solutions of z: + az~ = 0. 

Solution: Provided that z~ i= 0, lhe equation can be rewritten as t.~ /iy = -a. Economists 
should recognize this as saying that the marginal rate of suhstitution between x and y is equal 

to lhc constant -a. This suggests chat the levd curves of z(x, y) should be straight lines 

of slope u, and so rhat the generJI solution is z = g(ax ·- y) for an arbitrary differentiable 

function g. indeed, using the chain mle, z: = ag'(ax - y) and z~ = -g'(ax - y), so 

i: + az: ::.~ 0, so any such function does satisfy the equation. The ~chaique set out below 
shows that this i;; the general snlution. I 

Quasi-linear Equations of First Order 

Consider the general q11asi•linear pwtial dif)~n:ntial e.qua1irm of first order, 

. oz , ) Cl H ' P(.,. v 7)-·· -'· ')t t y 7 - ,-, n(x y ,1 .~, .; , - Ox 1 ~ . • ~ ... ih~ . '-., (21 
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where p""' P(.x, y, z}, Q = Q(x, y, z), and R = R(JC, y, l.) are all defined in an open ,;et 

P. ill 3·space, and we assmnc that P f- 0 in Q_ 

The problem is t(I find all functions z = z(x, y) that ~atisfy (2). The graph of such a 

function is called a solution surface or an integral surface for (2). 

In ordl!r to tind the general solution of (2), Lagrange proposed the following recipe: 

(A) Solve the following pair of ordinary differential equations, called the char· 

acieristic eq11arions: 

where x is the independent variable. The solutions of this simulta.neou.s 

svstem can be written in the fonn y = cp1(x, Ci, Cc), z = 'P2(x, Ci, C2), 
.;here c1 and C2 are constants of integration. Solving these. equations for 

C 1 and c~ yields 

u(x, y, z) = C1, 

(13) Then the general solution z = rp(x, y) of (2) is given implicitly by the 
equation 

¢(u(.c. y, z), ii(x, y, z)) = 0 

where cJ> is any difforeotiahle function of cwo variables, provided that z. 
occurs in equation (5) (otherwise the equation cannot define z as a function 
of x andy). 

i 

! 

l 
! 
1 ___________ ... _,, .. __ _ 

···-·---·-··-·"----··-·---------.. - ... --...... -- .. ··~-.. --' 

(3) 

(4) 

(5) 

If p = o somewhere, one can use dx/dy = P/Q and dr./dy = R/Q as char~teristic 
equations instead. The recipe usually gives all solutions of (2), but problems anse when 

P(.t, y, z) = O and Q(x, y, 1.) = 0 simultaneously. 

. oz y ilz y 
f'X~MPI c 3 (a) Find the general soluuon of ox + ~ oy = ~ (x -,f 0, z i= 0). 

(b) Find the ooly solution sati~fying the boundmy condition z(3, y) = y. 

Solution: (a) The equa.tions in (A) are, with P = 1, Q = Y /x, and R = Y /-;;, 

d_v y 
d-;; :7 ;· 

The fir~t equation is separnblt', with solution y "" C1.t. Inserting lhis ~xpress~on}~t~ t~e 
second equation gives dz./dx = C1x/z, so z dz.= C1x dx, and h.:ncc }z·'"" !C1x ·e- ~( 2· 
,,l, ... .... ,... l r -,.,1-. .. - 1l-..-..... , •. + .... r; ........ 1:,.~ ...... , .~ .............. ,. ... ; ...... , \ 
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C1 = y/ x, C2 = i -xy 

The guner.tl solution z(x. y) of the given equation is then defined iniplici·t1y bv the . · 
, equauon 

<P (y/x . z2 
- .ry) = 0 

where cl> is an arbitrary ditrerentiablc function. 

If 4>2 :j: 0, we .:an e.>:.prcss z2 - xy as a C 1 funct.ion ~, of v Ix so that . 2 _ x y - (' ·/ ) 
• ·• .~ - ({) yx, or, 

z
2 = x y + 'l)(y/x ) 

Any .function z .= z(.t, y) that satisfies the latter equation cor some c' ' fu · ·. 
1 

1 ' nction <p is a 
so uuon of the given equation. 

(b) The boundary condition require.~, geometrically, that the integral surface intecse~s·· 
the plane x - 3 alona the curve '" I ·3 

- . -2 - "' , ' z =y: ,ncn zr .. , .)')=y, then i (3,y) 2 = y2 aod(*) for 
x _ - 3 yields y - 3y+<P (y1 3)'.oryi(y/3) = y2 - 3y, i.e. ,p(u) = (3u)2-3(3u) = 9112_9u. 
where u =:= y/ 3. Hence. a solur,on ,:(x , y) that sa1islies the boWldacy condition must satisf . 
the equauon z(x, y)2 = xy + 9(y/x)~ - 9y/x. ~ 

Suppose z = :: (x , y) has constant elasticity a w.r.t. x, i.e. 

X ilz 
; ax = a, (x ¥ 0, z 'I: Oj (i) 

Whatdoe.~ tlte method above tell us about ;:(x , y)? 

Solution: lfwe compare (i) wilb (2), we sec that P = x / z Q -0 R - S th · 
in (A) wke lhe fomt ·• - · • - a. o e equation.~ 

dy 
dx = O. 

d .. ~ 
....::. =a.::. 
d;r :x 

Hence y :: C z - C a C C 
<I> , _0 _ 

1 • -, 2x • or 1 ~- Y, , "" zx-" . The soh,Lion of (i) is therefore 
(y , zx ) - 0 . lf <P2 :f:. 0, we get zx O = ,p{y), i.e. 

(ii) 

where 'Pi,~ an arbitrary differentiable function. (Bc:ca usc the el:isticic•· ofxa ... tr x ·. d ( ) · · I , . w. • . 1s a an 
<P Y ,s m< epeudent ofx, it is clcatthm when z is given by (ii). it hr,s elastic iry a w.r.t. x .) I 

These examples indicate _that the ~Ct of' S<>]ulions of a gillt!D partial di tforenriaf equation is 
ofren t'-nom~ous . For ord,nary differential cqua!ioas the gc11eral solution ckpt'nds on one 
or more arbitrary comwmts , , .,· h I · , . accorvmg to w ct wr (he equatmn is ,.,f fir..t or hi Ah •r d 
Howeve . fo . h . &''c or er. 

. 
1

: ian~ s uc equa.11011.thc difforen1.solutionsarc a1Jfo11crions nfthe.samctypc. For 
p<lma/ 1Ji.ffert•ntu.1l equatit:>M like { J) "' · lJ · / l · 
, .• 1 ,,. ,..N; ,... · · · · • ,Jptcti Y t I?. ger.era m lut1011 dcpendt 0 11 all arbitrary 
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Why the Recipe Works 
Lei us give a brief cxplan.1tio11 of why the n:cipe works. The functions P, Q. and R it) (2) can be 
reghl'dcd as tbe components of' a vector in R3 . As (x . y , z) varies, the function 

(x, y. ~) .... ~ ( P. Q, R) = (/' (x , y. z). Q(x , y. z), R(x, y, ~)) ( +-} 

is called the vector field of the dillerential equation ('.!}. For simplicity, ·we shall a:.sume that P, 
Q, un<l R are C 1 func tio ns defi ned tbrc.•ughoul Rl, and that ( P, Q. R) :t, (0. 0 . 0) everywhere. The 
(direction of the) vecoor ( f'. Q. R) at a p0int in R:1 is callc<l the characteristic dircdlua,,tthat point. 

lf z = <p(.x , y) is the equation of a surfuccin Rl , then the Vo!ctor (az1ax. a:/iJ.v , - 1) i~ orthogrmal 
to ilS tangent plane (se.e Note 1.1.1). The scalar product of this vector and ( P . Q. R) b 

az ilz ) . . .lz ilz 
(a.~· ay' -1 ·\P,Q. RJ = Pa; + Qil}' -R (u ) 

Hen~e. z ::::: <P(X. y) is a soluti.ou of eqoati,)r:, (2) if and only if the cbal:acterfatic dire(;QOJl r. P, Q. R) 
is tangent to the graph of ,p at every point. 

If t 1-+ (.t(t) , y(t) , z (t)) is a parametric representation ofa curve yin !fl), then the 1ungent vector 
to y is (x(I ). y (tj, i (r)). (See Section 7.4.) The curve y is called a chafaderistic for equation (2) 
if the tangent toy at every poin t bas the saJJ1e direction llS the ve.:cor ( P. Q, R), i.e. if there is a 
nouzero function a SU(;h that 

(x(r), j·(t), U/)) = a (r)(l'(x(t). y(t) , z (t)). Q (x (1). y(t ) , ;.(I)). R(x(c). y(1) , i (r))) 

for all r. After a suitable ch:l.llge in the par.1metcr r, we can assume a(t) ;,,. l, so that (.i;, y, i ) :: 
(P , Q. R). 

It follows fmm th<: e:,;istcnce and uuiqueooss theorem (Theorem 7.6.1) lhat e,·cry point of R3 has 
exa.:rly one characteristic for (2) passing through it. Fnrt.ltennorc, if .: = ,p(x . y) is a solution of 
(2) und x0 -= (x0 • y11 , U>) is a point on the grapb of ,p, lh<>n the rntire ch<l!ll~teristic tlu·ough x0 lies 
in the graph of rp. To sec why, !ct y : t >-+ (x (t) , y(r), 1.(1)) be a parametric reprereotation of the 
characteristic i:hrough x0. We CM a.~sume that y(O) "' x" . Let V (t) = z(t) - ,p(x (t) , y(t)) . Theo. 
V (0) :o ~ - ~ (.xo . Y<>) = 0, aod the derivative of V is 

V(t ) "' i(t) - "'; c.~(t). y(t)lx(r) ·- ip2(.x(r) , y(r))j>(t) 

= R(x , y , z) •• \01(x. y)P{,,r, y,z) - q,;(.~. y ) Q(x , y , ~) = 0 

where we have suppressed the paramett,'T tin the second Line. But then V must IJe. a constant function 
with V(1) ,., V(O) == 0 for all r. So y (1) belongs to the graph of 1p for all t. 

Hence, the graph of a solution of (2) is a union of charaetcristics for th.: equation. For eumple. 
if rp(x , y) solves (2} an<l we find all characteristics through the poiulS (.to, }' , </l(.ro, y}) as y varies, 
then the graph of rp consists of the union of the~e as y varit:s over R. On the other hand, if 1/t(x , yj 

is a function \vhosc gr.iph is a uuioo of ch.!ractcristics for (2). then al every point on !he gcaph. the 
characteristic dircc.tion is 18Jigenc 10 1be graph, and therefore ,fr is a solutio,, of (2). 

Tb find the char:icicrisrics of (2), we oee<l to solve !he differential equations 

x "" /'(.x, y. 1.), y = Q(x, y. ;:), z"' R(x , y. :) {6) 

If P ,f. 0, we .:an efitniJiate t aud USt',X as a free variable i.t.1stead. TI1cn dyi<lx = y/i. "' Qi P and 
dz jdx. = i./x = R f P , precfac.ly the equations (3) in rhe recipe. for CVCI)' pair of constants C1 and 
C.2, each vf th~. two eqt,ntions in (4) is the equation of a surface, ancl th~ i.oterst:cti-111 of 1hese surfac.::$ 
is a charactc.ristic of equation (2). (Solving (4) for y and z gives back y = i/'J . z = ,pz.) At each point 
x0 == {xo, )n, 1.o) of •his diarartcristic the vc.:tor (/'(x~ . Qtx"). R(x0)) is ran~ nt to the curve. and 
1herefore tang(:nt to ~11ch of the sorfaces u.(x , y. t.) "" C! ~.nd v(x, y . ,.) = C2. This i.mplies ch~t . 

(l•(x1'). Q(x0) , R(:i ')) · 'vu(x0) , . (P (xll). Q(,t"), R(1°)) · v'vtx:'') :c· 0 (n*) 
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If we k.::ep Ci fixed, say, and vary the consiallt C1, we would expect the re.suiting f;unify of 
d1aractcris1ic cuncs to ruak.e up a surface, which would tlien be a solution surface for (2). More 
generally, we could vary CI and C2 simulrancou.sly in a proper manner. One way to dCl so· i.s to 
demand that they satisfy an equation <t>(C;, .C2) = 0, where .P is a C 1 function with a non.zero 
gradient. This leads to the equation (5). 

Suppo~e <li(u, 11) is such a function. and let F(.t, y, z) = ¢(u(x, y, z). 11(x, .Y,Z)). Then (.5) is 
equivalenr to the equation F(x. y, z) == 0. Straightforward calculations give 

V F(x, y, z) :., cti;(u, v)vu(x, y, i) + ¢>2(11, 11)V11(x, y, ;::) 

Hence, using ( **-*) gives 
(P, Q, R) · 'v'F(x.y,z) = 0 

which means that the surface F(x, y. z) = Ois thegraphofasolutionof(2), provided F3(x, y, i) ,j, 0. 
This shows that the recipe does indeed lead to solutions of the. partial differential equation (2). 

It can be shown that the recipe yields all &olution~ of (2), provided that P and .Q are never 
simultaneously equal to 0. 

A More General Case 

Consider the more general problem offinding all funcrions z = z<x1, ... , x.) of n variables 
satisfying the general quasi-lineaf p:utial differential equation 

oz az az 
Pi - + P1.- + · · · + P,,- = Q (7) ax, ox2 OXn 

Here P1 .... , P., and Q are functions of x 1 , ... x. and z. 
le turns out that me method used above for solving (2) can be gcoernlizcd. We solve (7) 

in the following way: Assume that P1 'F O and find the general solution of the system 

dz Q 
-·=-

in the form 

Xn == 1P'n(X1; C1, ... , c.) 
z = liln-+-1 (.i:1; C1 •...• C,:) 

Solving (if possible) for C 1, .... C,., we obtain 

U1 (XJ, X1, •.. , Xr., :) :: Ct, ... , u.(x,. Xz, .•. , Xr., z) = c. 

(8) 

If <t> is an arbitrafy differentiable fuoction of rt variables, and at least one of the functions 
u 1, .•• , u,. involves;;, then the general ~olution of (7) is given implicitly by 

<P(u!(X1, .... Xn,.::), ... , u.(x1, ... ,Xn, z)) = 0 

i.e., a solution z = z(xr, .... x.) of this equa1ion is a .~olution of (7). 

Solve the equation 

(t1 :p 0) 

(9) 

(i) 
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Solution: Herc 

dz XJX2.t.l 
~ =--- =X2.t3 
dx1 Xi 

The first two equations· give us 

Inserting these into the lhirr.l equation in (i) yields dz = Ci C2x; dx1. Hence, :: + C3 
fC1C2xl, where C3 is an arbitrary constant. Putting C4 = 3C3, we obtain 

(iv) 

Solving (ii), (iii), and (iv) for C1, C,, and C4, we obtain 

(v) 

The general solution oflhe given equation is therdore <P(x2f x1, .q/xr, x1x2x3 - 3z) = 0, 
or, if ¢ 3 f: 0. 

where rp is an arbitrary C 1 function of two variables. 

For further discussions about these methods, see e.g. Zauderer (1989). 

PROifLEMS FCJR StCTION 7 7 

<ill) 1 . Find the general solutions of 

a,. J 2 X 
(a) - = x + xv - e • ' 1>x . . 

,(Jz 2 oz, 
(c) x·- + v - = z· 

ax . &y 

2. Find the general solution of tbe panial diffcrcorial equation 

y > 0, z > 0 

@ 3. (a) Find the general sol11tion of the partial differential equation 

a~ az 
X ·-- .. y-- · .. cc X. .t > (), y > 0. t > 0 ox ily 

1_l1} Ftnd a solution z = f(.t, y) of(•) such rhat f(x. I)= x 2 for all x. 

4. Finrl all function~~ = z(x. y) 1h,,1 satisfy El, r. - Uyz .., .... (Hece El,~ dcno1.e.~ the p:irlial 
, .. 1 ...... 1-;.~;t-o, ,,,f •. ,., .- t ,... w~hl'n ";~ ,...,.,u~·l•,n• ,,nA J;lpon,;,..,<> ,F,,... .. l::'l ,. \ 
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5 . l n utility theory we oncouncer the following probkm: Find all fonctions U = U (x1, x 2) with 
the pcoperty that the r.ttiu between the mariinal utililie.s w.r.t. x1 anti x2 depends on (s,1y) .t, 
only. Tiius we must soJ\'e the equation · 

where f is a given function. Sol vc this problem. 

6. Euler's lh.eorcm on homogeneous function.s states that: = z(x . yi mistics tl1c equation 

az ilz 
x - + v- ""nz ox . iJy 

if and only if z{.t, }'} is homogeneous of degree ,., i.e. z(>-xJJ) = ).."z(x. y) for aJI scalars 
).. > 0. (See e.g. EMEA.) Make U$c of the method described above to confirm tbc "onlv if' part 
of I.his result. • 

~ 7 · In a pmbJen, in the theory of production, McElroy studies the equation 

Jx Bx v, - · + t'l-· · = u ·(x) 
ilv1 ilV? 

where t(x) is a given po~itive function and v1, v2 , and x are positive. Prov<! that llJe solution of 
the_equation can be w_citten in the fonn x == F(8 ~1;1, i,2)) where g is homogeneous of degree 1, 
wbile F 1s an mcreasmg fu.nction. (J'hu_s x is a homorhetic function of 111 , 1~. see e.g. E.l'\1EA, 
Section 12. 7 .) 

8. A m~del hy W. Leontief requires finding the mo&t general functlon z = F(x1, x2, x3 ) satisfying 
the differential equation 

a~ <l t 
- = f (x 1, x~) - l f a given fu11,;tion) 
OX1 OXt 

Prov~ that the general solutioo is z = G (.p (.t 1• r.2) , XJ), where G is an arbitr:iry <lifferentiiibk 
fun<--Uon of two v:11:i.lblcs, ruid ~(x,, x2) is a Certain dilft'J'entiabfo function of x 1 and xi. 

CALCtJLUS OF 
VARIATIONS 

We are usually convinc,>d more easily by reasons v,e hilve found 

ourselves than by those which have occurred TO others. 
-Pasczl 0670) 

This chapter gives a brief introduction to the classical calcuius of variations. The next two 
chapters deal with optimal control theory, which is a modern generalization of the classical 

theory that offers a unified method for treating very general dynamic optimization problem~ in· 
continuous time. Control theory is nov, used by a large number of economists, even when they 
face a problem that can be solved with the calculus of variations. Economics students interested 
in dynamic optimizat,on problems should therefore make a serious effort to learn the basic facts 
of 0ptim;;I control theory. It is cons:clerably easier to understand the modem methods, however. 
if one knows somethi :19 about the prior calculus of variations theory. 

The calculus of variations actually has a rather long history. Some of it~ main re5ult~ were 
e$labiished by Euler and Lagrange as early as in the 18th century. Smee then the subject has 
formed an important part of applied mathemati<s. In ecor.omics, some of its first applications 
were by Ramsey (1928) to an optimal savings problem (see Example 8.11). and by Hotelling 
(1931} to a problem of finding the optimai extraction of a flc\tural resource (5e(' Ex;imples 9.1.Z 

and 9.8.l). 

Section 8. 1 presents a version of tnE' Ramsey model, whose purpose was to give a simplified 
answer to a problem of crucial importance: how much shouid a nation save? It al:',O states the 
simplest general problem in the calculus of variations 

Section 8.7. presents the Euier eQuatior,. while Section 8.3 gives its rather easy and very in­
structive proof. Eve, easier is the proof of the sufficiency of the Euler equation when appropriate 
concavity conditions are impo~ci. 

Section 8.4 u~s the Euler equation to ch¥actcrize the solution to the ilall1sey probiem. 

Section B.S i, wncr.rned with difffm~nt type~ of tf,rminii conditions tit.it are ottcn prt>Sf.•nt 
in c·conomic probhims. To determine the optimal sc,ution. a transver$,1lity condition cit thr end 
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The Simplest Problem 
We begin by introducing a problem from optimal growth theory that is closely related to 
Ramsey's pioneering discussion of optimal saving. It forms the basis of much recent work 
in macroeconomic theory, as discussed m the textbooks by Blanchard and Fischer (1989) 

and Barro and Sala-i-Martin (1995). 

• (How much should a nation save?) Consider an economy evolving over time where 
K = K(t) denotes the capital stock, C = C (t ) consumption, and Y = Y(t) net national 

product at time I. Suppose that 

Y = f(K), where f '( K) > 0 and J"(K)::: 0 (i) 

Thus net national product is a strictly increasing, concave function of the capital stock alone. 

For each t assume that 
f(K(t)) = C(I) + K(t) (ii) 

which means that output, Y(t) = f(K(t)), is divided between consumption, C(t), and 
investment, i: (t ). Moreover, let K (0) = Ko be the historically given capital stock existing 

"today" at t = 0, and suppose that there is a fixed planning period [O, T]. Now, for each 
choice of investment function k (t ) on the interval [O, T], capital is fully determined by 
K(t) =Ko+ J~ K (r)dr , and (ii) in turn determines C(t). The question Ramsey and bis 
successors have addressed is bow much investment would be desirable. Higher consumption 
today is in itsel£ preferable, but equation (ii) tells us that it leads to a lower rate of investment. 

This in turn results in a lower capital stock in the future, thus reducing the possibilities for 
future consumption. One must somehow find a way to reconcile the conflict between higher 
consumption now and more investment in the future. 

To this end, assume that the society has a utility function U, where U ( C) is the utility 
(flow) the country enjoys when the total consumption is C. Suppose too that 

U'(C) > 0, U"(C) < 0 

so that U is strictly increasing and strictly concave. (This assumption implies that when 
society has a high level of consumption, it enjoys a lower increase in satisfaction from a 
given increase in consumption than when there is a low level of consumption.) Now, as is 

common in this literature, introduce a discount rate r to reflect the idea that the present may 
matter more than the future. That is , for each t c': 0 we multiply U (C(t) ) by the discount 
factor e-rr. However, Ramsey himself criticized such "impatience", so he put r = 0, in 
effect Anyway, assume that the goal of investment policy is to choose K (t) fort in [O, T] in 
order to make the total discounted utility over the period [O, T] as large as possible. Another 

way of formulating the problem is: Find the path of capital K = K (t) , with K (0) = Ko, 
that maximizes 

for U(C(t))e - ' 1 dt = for U(f(K(t)) - K(t) )e- rz dt (I) 

Usually, some "terminal condition" on K (T) is imposed- for example, that K(T) = Kr, 

where Kr is given. One possibility is Kr = 0, with no capital left for times after T. This 
problem is studied in Example 8.4.1 . I 
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Example 1 is a special case of the simplest general problem in the calculus of variations. 

This takes the form 

1'1 
max F(t , x,i)dt 

f-0 .• 
subject to x(to) = xo , x(ri) = x 1 (2) 

Here F is a given "well-behaved" function of three variables , whereas to, 11, xo, and x1 
are given numbers. More precisely: Among all well-behaved functions x(t) that satisfy 

x(to) = xo and x(/1) = x1, find one making the integral in (2) as large as possible. 

Geometrically, the problem is illustrated in Fig. 1. The two end points A = (to, x0 ) and 

B = (1 1, x1) are given in the tx-plane. For each smooth curve that joins the points A and 
B, the integral in (2) has a definite value. Find the curve that makes the integral as large as 

possible. 

So far the integral in (2) has been maximized. Because minimizing the integral of 
F(t , x, .i:) leads to the same function x = x(t) as maximizing the integral of -F(t, x , i), 

there is an obvious relationship between the maximization and minimization problems. 

The first known application of the calculus of variations was to the "bracbistochrone 
problem". 1 Given two points A and B in a vertical plane, the time required for a particle to 
slide along a curve from A to B under the sole influence of gravity will depend on the shape 

of the curve. The problem is to find the curve along which the particle goes from A to B as 

quickly as possible. (See Fig. 2.) 

X 

to 
Figure 1 

B 
A 

B 

Figure 2 

One's first reaction to the problem might be that it is easy, because the straight line joining 
A to B must be the solution. This is not correct. (Actually, the straight line between A 

and B solves another variational problem: Find the shortest curve joining A and B. See 
Problem 8.2.6.) In 1696, the Swiss mathematician John Bernoulli proved that the solution 
is a part of a curve called a cycloid. This starts out steeply so that the particle can accelerate 

rapidly, acquiring momentum in both the vertical and horizontal directions, before the 
curve flattens out as it approaches B. Using elementary physics one can show that the 
bracbistochrone problem reduces to the problem of minimizing an integral of the type 

appearing in (2). 

1 The word "brachistochrone" is derived from two Greek roots meaning "shortest" and "time". 
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1. The graphs of ch,; followi!lg r:wo fuocrions 

(i) x =-= (e1 - 1)1 (ii) x .-:. x(t) = e1+-- - e. 1- ' 

both pass 1}11"(.,ugh rhc points (O.O) and (l , e1 - l ) in the t:t·pla11c. Compute tbl! value of 
J (x) = J.i l.x.l- + .i2) d1 in each case. Which function gi~s J(x) the lower v-.ilue? 

The Euler Equation 
The simplest vari .1tional problem is this:~ 

max 1'' F(t ,x, x)dt subject to x(ro) = .°fO, x (t1) = xi (1) 

Al.ready in 1744 the Swiss mathematician L. Euler proved that a function x(r) can only s<,lvc 
problem (1) if x ( .t) satisfies the differential equation 

<!_: - !_(iJF) ,.. O (2) 
ox di ax 

called the Euler equation. !·fore oFJax denotes the dt.'livative F2(t , x, x) of F (t, x,.i) 
w.r.t. the second variable, wherea~ /JF /o.i denotes F3(i, .t, i) . 

Replacing F with - F uoes oot change (2), so the Euler equation also represenl~ a 
necessary condition for solving the corre.~ponding minimization proble.m. 

Note that inequation(2), the term (d/d r)(ilF(t, x, .i)/Bi) denotes the total derivative of 
rJ F /ai w.ct. t, allowing for the dependence of oF /rJ:i on all three variables which depend 
on t. Assuming that x = x(t) is C 2 , one finds fhat3 

d (/JF(r,x, i)) ,PF r/1- F . ,PF .. - = -- + - - ·X+ -- ·X 
dr . ax ar ax ax ax a.i ax 

loserting thfa into (2) and rearranging, the Euler equation becomes 

32 f' .. <12 F . 'iJ2 F iJ F 
- -· X-'--- ·t+-- - - "'Q ax ox . ox ax . . a, oi iJx 

(3) 

Altcmalively, equation (3) cun be written m; Ff.x + F32i + Ff1 - I-1 = 0, so we sec that 

the Euler equatio n is a <lifferontial equa1fon of the second order (if F33 ¥= 0). 
The Euler equ..-1tion gives a necessary condition for optimality. lL is not. in general, suffi­

cient. By analogy with static optimization prob le.ms, it is natural to expect lhat appropriate 
concavity (conve;,,;city) requirements on F (l. x, .i) will ensure optimality. In the ucxt s~\ion 
we shall prove that for the ma~mi:r.ation problem (I), concavity of F(t . .t, i) w.r.t. (x, .t) 
is suflicicnt, while conve.xity o f F(z, .t, :i: ) w.r.t. (x,i) is sufficient for the corresponding 

rairlimization pm bleru. 
- - -- ----.. - --
2 In th.: next secticin we specify th~ regularity con<liti,,ns to he imposed on F M rl x(r). 

~ According to <he: ~hain mfo we have. ;(,G(r,(1), ,;(r), w((J ) :.:: G\u + G~i, ,1 G3w. Equarion (•) 
r .• l• ......... ..,, , 1,u .: .. . .... ,. .. . ,. L'' •. _ "' ••.. v .... A ,,, ... .;. '\ 
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.. 2 

Solve the problem: max I (4 - 3.~2 
- 16i - 4i~)e-' dr, x (O) = -~- x.(2) = {. 

lo · 
Solution: Here F(t, x. i ) = (4-3x2 - I6x - 4.i'1 )e-' ,so BF /8.t ::-. - 6xe- 1 ,lndrJ F/o:i: :::. 
( - 16 - 8.x)e."'' . Using Equation (2) require$ findiug ld/dt)[( - 16 - 8.i')e - 1

). The product 

role for differentiation gives 

so the Euler equation reduces to - 6xe·-r - l 6t•-1 + 8."e- 1 
- 8ie-1 = 0. Cancelling the 

non.z.ero common factor sc-1 yit:lds 

x - .i - ix = 2 

This is a linear differential equation of tbe second order with consume coefficient/< (see 
Section 6.3). The characreristic equation is r 2 - r - i = 0, with roots r1 = -1/2 and 

ri = 3/ 2. The nonhomogeneous equation (*) bas a particular solution - 8/ 3, so the general 
solution is x == x(t) = Ae-!• + Bi' - 8/3 where A :m<l B are arbitnlry constants. 
111c boundary conditions x (O) = - 8/3 an<l x (2) = 1/3 imply th.at O = A + B and 
A,····1 + Be3 ·= 3. It follows that A= - 3/(l,3 - e-1) and B = - A, so 

3 1, 3 l , 8 x =x(r) = - - - - e-1 + - - -e• - -
eJ - e--1 e3 - e- 1 3 

This is the only solution of the Euler equation that satisfies the given boun<lw:y conditions. 

The function F(t, x. x) = (4 - 3x1 - 16.x - 4x2)e-• is concave in (.x , x), as a sum of 
concave functions. We conclude that we have found the solution of tbe problem. I 

EX/\ MP LE .2 Cun$ider the si.tnple macroeconomic proble m of tr)'ing to steer the state y(t) of the 
economy over the course of a plaiming period [0, T] toward the desired level y, independent 
of t, by means of fhe control u(t ), where y(t) = u(1 ) . Because using the control is costly, 
the ubje.ctive is co minimize the integral J;[(y(r) - y)2 + c(u(t))2] dt wilh y(T) = y, 
where c is a positive constant. 

It is more convenient to define x(t) as the difference y(t) - S, betwc.en the original state 

variable and tl1e target lt,vcl S,, so that the target value of x h 0. Then u(t) = x(t). This 

leads to the following variational problem: 

1' 

min [ (.x2 + c{Z) dr, x (O) = xn, x(T} = 0 
lo 

where x.3 is Ilic in itial deviation from the target level. Find the optimal solution x·(t). 

Solution: In !his case U,e integrand is 1-·(1, .t.x) = x 2 + c:i: 2, so i) FJ;Jx = 2x and 

a F /;/.'c = 2cx. The Euler ,...quilt.ion is 2x - (d /dr)(2d.) '°' 0, or 

.'r - (1/c)x = 0 

The i;e11eral solution is 

.T =: Ae" + Be-r:, where r .-, 1/.)c 
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EXAMPLE 3 

~Ille initial condition x(O) = x0 aud the terminal condition x (T) '"' 0 yield the two eqn .. 1tions 
.II + B ""xu aod Ae'r + Rc-,r o: 0. The$e two equations in A and B have the solution 
A = - xoe- ,T /(e' r - e -r·r) and 8 = x0e'r /Ce'T - e-'7 ) . It follow.s lhal the only possible 
solution is 

x •(t) = ~-- [er(T-·<} ..• e-r(T·-<)] 
e'T _ e ···rT 

The function F = x 2 ..;. cx2 is convex. in /.c, x) (as a ~um of et"mvex functions). so the 
solutil.ln to the problem ha~ been found. I 

Important Special Cases 
Jf the integrand F(t . x . . i-) in (I) docs oot depend on .t , then the E.uler equation roduces 
t<) (d/dt) l-1 (1, x, .i) = 0, so Fi (t, x , .i) = C for some consu.u,t C. This is a first-order 
di.tfe.reotial equation. 

ln many variational problems in ecollOOlics the integrand F (t. x, x) in (I) i~ of the form 

F (x, .i), so that t does not enter explicitly. II is then po~sible to reduce the Euler equation 
to a ijrst-order equation. The trick is to calculate the total derivative of the expression 
F (x , x) - i oF (x, i)/iJx: 

!..[J-"(x.,i)-x JF(x, x)] =xiJF +;?F - x. ~: -x!... oF =x[aF _!... (-~!.)] (•) 
d1 · ax ilx ax a; dr ax ax d i ax 

It follows that if the Euler "{JUation is satisfied for all r io (to , ti], then lhe expression in 
( *) is 0. 'That i~. the derivative of r - xD F /"dx must be O for all r. In this case the Euler 
e.quatioo implies that 

( C constant) (4) 

for some constant C. This is a first-order differential equation which, in geoeral, is easiec 
to handle than I.he (second-order) Euler equation. Because. of the possibilicy that x = 0, the 
Euler equation is not quite ~guivalent co (4). Every solution of the Euler eqW1tioo is clearly 
a solution to (4) for sorne constant C. On lh.e orhec hand, for each value of C, any solution 
of (4) that is not constant oo any i.oterval is o. solution of Lhe Euler equation. But if .i "" 0 
on sowe iuterval . then x may not solve the Euler equation. 

It follows from(3) lhaLtheEuler equation associated l\"ith 1•(.x, x) has .1 000.stant solution 
x = k on some interval if and only if f~ lk, 0) = 0. Hence, if f ;(x, 0) f: 0 for all x, then 
the Euler equation is equivalent to equation (4). Equation (4) is then called a first integral 
of the .l:.qler. equation. 

Consider Example 8.1.l with no discoUllting. so that r = 0. 11lc objective (1) then 
becomes J: U(C(1))dt :=: J[ U(f(K (t)) ·- K (t ))d1. f.n this case the iu.t.cgrand is F = 
U(C) "' U(f(K) -- K). sc, Fi: = - U'(C). Hence eq_u11tion (4) reduces to 

U(C) + K U'(C) = C (c is a constant) 

One usually assumes tl111r .f' > O and U' ;., 0, so E~ "' V' (C)f'(K) > 
equivalent lo the l:nlcr e.quation. 

(i) 

0, and (i) L~ 
I 

SE:( :ION 8 . 3 I w l-!Y H IE tu,_tR tQU Al!ON IS N£ CL S$1\1'( Y 

1. S,ilvethcprohlcm m.ax. ((4xt - ;r.2} d1 • .r.(Oj = ~. x(lj , ·,2/3. 
lo 

2. Solwthcprobkm mi~ fo\ i +P) Jt . .x (O) = 1. .c(l i =0. 
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1
,, 

@3. Find tbe Euler equation associated with J(.r.) ,-·. F (I, 2, i. ) dt when 

8.3 

'¢ 

(a} F(t, x , x ) ,·= x2 + i 2 + 2xe' 

(C) F (t, x , i ) = [ix -i)! + _.l)e- •' 

(b) F(c, .t, .i) ,., _ ,;-•, 

(d) F(1. x • .i) = 21x + 3.xx-+ t.i:1 

@) 4 . Solve the problem min L' (x' + 2tx;r. + .i2) dt, x (O) = 1, x( l ) = 2. 

5 . St\lVctl>e problcO\ m.in fo1
cxi + ,x +1.rx .;.. i 2

)dt, x(O) =0. x( l) = l. 

@ 6. The part oi rhcgrnphofU1efuncrionx = x(r} th~tjoinS !be point~ (to, Xu) and (11 . xi) h~ length 

p vca by L = { ' .,/J + .i2 di . find the xv) thnt minimizes l . Comment ,,n the an~wcr. 

8. li.Y. Wao considers I.be prol>lem of .finding a function x = x(t) tb«t maximiws 

-r fo [ N (.i(ti) + .i(t)/(x (r))]e-r: d e 

where N and f are given C1 functions,r and T are positiveconstants,x (O) ":CO, andx(T) "' x.r . 
Ocdoce the Eulec equation, !N'(.i} = r {N'M + f(x)J. 

Why the Euler Equation is Necessary 
In the previous section we showed bow to use the Euler equation to find st>lutiou can~idates 
tt.i variati<mal prob le=. In this section we formulate and prove a precise result lll w!Jich the 

rcgu l11rity conditions on F and x are specified. . . . . 
The Euler equation plays a siJ.nilar role in !he calculus of vanauons a.s ~c faru1liru- first­

order conditions in .~talic oplimi1.ation. The main re,5ult is summed op m the following 
thc<,rem. Toe cnsuiD.g proof is very instructive and should be srudicd carefully by students 
who wane an in~;ght into dynamic optimiza.lio1L' 

• we as~u~-ln the pro<.•f that the adu1i~sihlc f,mctioo~ ar~ C2. Tb.i:i ensures th~r. the '.im~ (lt:rivativc 
(d l dt) f '.(r. x,x) ~s wcll ilcliJ1cd. A IIK'I\: claNI~te argument (see G,,lfan~ and k ~ (1963)), 
;,11:iw; a',cla~d re$ult to be pro•c,1 f<1,-Suming orJy that tl1e 2d1ni,r.ible-funcouD-< lift. C. 

1
. 
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Supp<>sc that Fis a C2 function of three variables. Suppose thacx• (r) maximi:l<:s 

or minimizes 

1
,, 

J(x) = to F(r.x,i.},Jr (1) 

amoog all admissible functionsx(r), i.e. all C 1 function.~ x(t) defined on [to, ti] 
that satisfy the boundary conditions 

x(t()):: Xo, X(/J) = X1. (xo and x1 given numbers) 

Then x• (t) i.s a solution of the Euler equation 

JF(t. x, x) _ i...(aF(t,x. x)) = 
0 

ax dr . ax 
(2) 

If F(t, x, x) is concave (convex) in (_l, x), an admissible .t*(1) that satisfies the 

Euler equation solves the maximization (minimization) problem. J 

..... --............ ,.. ....... ,, ... _,_, __ -···-····· . :•-····· ....................... .-·.--._,,.,,.,.._,. ___ .. _... ................................. _, __ ,,._ .............. -----~ 
Proof: To prove that die Euler equation is necessary. we need only°comparc the optimal solutio,1 
wilb. members of a special cla~s of functions. Suppose. x• = x"(r) is an Ofltimal solution to tbe 
maximi1..ali,m problem, and let µ,(1) be any C2 func1ion thal satisfies µ,(/0 ) = JL(I1) = 0. For each 
real number Ct, define ape.rlurbed functionx(1) by x(1) ""x·(r} + aµ(r). (Sec Fig. 1.) 

r x·(:H aµ(t) 

f----·-------- / _/ ______ 71~: 
1 //-~· ' I' : 
t

----U x·c,) , i 
~ : 
! ! 

. : .... __ .,. __ ____J_____. 
1 

t0 ,J : 

Figure 1 

Noce tl:,ac if a i~ small, the fur,etion x(.1) i.~ "ne.ar" the function x"(r). Clearly. x(r) is admissible. 
because it is C2 withx(tu) = x•(1~)+aµ(1n) = x0 +er -0 =-<o andx(t1) = x•(t;) +a1,(1,) = 
x1 + a . 0 = .(1 . If die- function ,,(1) is kepi fixed, then J (x• + 111 I') is a function l fr,) of only the 
single scalar a, given by 

T(o:) .,, f" F(r .. ,.(1)+a11.(1). x"(t) +aj,(r))dr 
J,o 

(3) 

OhviousJy f (O) ~ J(x'). A!sl>, t>ec;,u~c 0/1.hc hypothesis lhat.t'lt) is optimal. J(x·)::: J~,· +er,,) 
:ind S<) /(0) ?.: lea) for all a. He.net\ lhe f1mcti,)n I has a ma.timurn at a "' 0. Bec~usc { is a 
differcnti:1blc function and a '·" 0 is an im,;rior point in the domain of J, one mui:t have l'(O) = 0. 
(Ohvi.<)usly. cJ,ls equario11 mm1 hold for the minimiratl<>n problem as well.) Thfa coud:ition allows 
one 10 d,:<luce the Eulc,- equatio,1. 
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Indeed, looking a! l3), nOlc tbat !O cakula.tc /'{_,r) requir..s <lifferemiating under the integral sigu. 
We apply formula (4.2.1) to obi.tin 

f\a) = 1'' .f-F(t, x'(t) +aµ(r) . .r"(t) + a{tV))dt 
... rt} 30' 

At.:eoniing to ti,c d1a.i.n mlc, /.;F(r, x'(t) +a1•!.I), .x·(r} + ui:.ir)) = F~ · µ(t) + F:, · 11.(1), where 
F~ atld F; arc evaluated tll (1. x"(1) +a1,(1) .. r'(;} + a1i.(1)). For a = 0 this is (t. x*(t), .i''(r)), w 

1
,, 

f'lO) = [ Fl<t. x'(t) . .i'(1)) · 1,!n + F;<i. x·(r). x·(1)J · JL(t) 1 dr 
It, 

or. in mono comp<1Ct notation. 

/'(O) = -. -µ.(1) -1- -. 1"t(t) ,it 1" [/lF' llF' J 
., ilx a.r 

where the asterisks indicale 1bat the derivatives are evalualcd a1 (r, x •. x·). 
To proceed fur1her, iutegiacc. the second te,111 of the in~grand by par~, ro obtain 

--;-i,.(t)dr :, l -.-. µ,(r)- - -. 11.(r)dt !.,, aF· '''(aF') 1'' d (!IF') 
,,: ax 1.. ox i,i dt . /1.t 

Inserting lhis ,:esult into (i) and rear:ranging the t.<.·fTtls gives 

1
1
: [ap• ,J • oF')] (;ir,·· (&F' .) I' (0) "" - - -(-. µ-(I) dt + ·-:--·) µ,(11) - -:-:-·- /LC.4",} . .. ax di ' ax ' ax t=•, ii., l=to 

(i) 

(4) 

H,)wever, lhc functionµ. satisfies µ(to) "'µ.(11) = O. so thi.: last two terms of (4) a:re 7.ero. Hense. 
the first--0rd~r conditit•n 1"(0) = 0 r<:du~es to 

f''[o"· d(aF")] --- - - --:- /!(1)dr = O 
·'<> /Ix dr /lx. 

(ii) 

In the argument l~ading to this result, p,(r) was ajixe.d function. B u1 (ii) must be valid for all functions 

1,(r) that are cz on [to, 1i] and that arc Oat 10 and at 11. It stands to reason 1hen tb:ti the brackelcd 
expression in (ii) must be Oior all r in [to, 11]. (Sec Theorem 8.3.2 below.) It follows that .,'(t) 

.satisfies lhe Euler equation. 

To prove that solving the Euler equation gives a sufficient conditfon, suppo~~ that F (r, x. J) is concave 
in (x . .i). Suppose toothatx• "'.t'(t) satisfie., theE11lerequatio11 a~ well as th~ boundary conditions 
x'(ro) ""x~ and x·(1,) = .x1. Lei x = x(r) be an arbitrary admi~sible function in the probkni. 
Because F(t, x . .i:) is concave i11 (x, x), Theorem 2.4.1 implies that 

• Dl,.(t,x·,x•) • ;)f(:,x• . .x•) . .• 
F(_t.x.i)-[l(i,x·,x) :,-·J.,--lx-.< )+---~-(x-.t'} (iii) 

Using the Euler equation, reversing the inequality (iii) yields (with simplified notation) 

• aF• • OF•,.,. . 
F ·- F:::. -;;--(x - x) + -. \.t - x) 

flX OX 

[d(iJF•'J iJF' d[Jp• . J ,.· dr. Ti) (x' -.x) + -ff{.:i:" -.c) = di iji(x' -x) 

(ilt) 

!k.cause (iv) b valid for all tin (la, td, int<:grat.ing yields 

(F" - fl dt 2:. , , -.-.-(x" -· .r), di ,.,.. -(..r" -· x) 1,, 1'' d r ,If'• l ['' /l F• 
~ ro h,f l dx j ltl O.t · 

(5) 
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Howe~cr,U1e f.urt<.:tions x '(t) and x(I) holh satisfy the boundary condiriuns: x'(to) = X(l-0) (= xo} 
and x (/1) ~, .<(11) (= x,). S01he last Cllprcssion in (5) is t:Cjual to 0. 1t follows that 

{

1 

[Hr, x',i') - F(r, x, :i)]d,:;:: O 

for c.very admis~ible fur1c1ion x = x(t). Tiiis confum.s that x'(t) sohes th" maximi7.atioo problem. 
The corresponding result fur the ,ninimiz.arion problem is easily derived. • 

F?r the interesccd reader we nows.how how equation (ii) in 1he proor above implies the. Euler equation. 
F,rst we need: 

Suppose that f is a continuous fum,,'lion on [to, 11], and that f~1 f(r)µ,(t)dr-= o for 

every functionµ, = µ,(t) that 1s C2 in this inlervnl and satisfies µ,(to) = 1,(r1) ,., O. Then 

Proof: Suppose there exists a numl:ter .< in (t.i, ri) such that J(.r) > O. We cons!Juct a function 
I'- which is C

2 
i~ (ro, 11) and satisfies µ(tr,) = 1,(11) "'0, as wdl as J.'' f(t)Ji(t)dt ,. O. Jndee-.d, 

bc.;luse f L<contmuoll$, thtlre mu.st be animen<al (a, fJ) withs in (a, fj) ~ (to, t 1) such that f(t) > O 
for all t m (a, {J). For all rm [ro. tc] detine (see Fig. 2) 

/L(I)"" l O iff r/: (a, {J) 
rp(t) if t E (a, fl) 

wl1crc '()(t) =- (I - aP(/3 - 1)3. 
X 

I .t<•) 
I ...... / 

-1 /)\''' 
t~tl-J4i··\,·,-·-r 

I \___, 

figure 2 

B(:<Cause (a. fj) !; (to, tr), we have µ(to) = µ,(11) = U. Moreover. 9}(e) = ,r,'(i) = <p"(t) "" Oat 
r =~an~ t = /3. Then µ(t} ""µ'(r) ·"' µ,"(1) ,~ 0 arr = a and,,,., fi, aod it bec.omcs obviou~ !hat 
µ ,~r)is ~·everywh~~- Now f(r)-µ(t) > Oi.11 (a. /l}, whilc/(t)·/l(t) = Ooua.idc(a, p). Then.:fore 
f,_ f(tJµ,(r)dr ·.= !« f(t)Ji(l)dt > 0. So the hypothese< of the theorem imply that /tr)~ O for al! 1 111 [to, 111. S~nularly, one .::an show 1hat f(t)?: 0 tor all I in [to, 11]. Toe.refore, /(1) .,. O for all 
t in (10, re). By continuity itfo!Jowsthar /(I) = 0 fot all I in [to, 11]. • 

To apply this theorem to (ii) al:>ove .. put l(r) ,, (;IF' Ja.r)-td/dt)(iJF' /,3.i). \\.1th cmr as<umptions 
on F and x ,.,. x(t), the function f is continuous on f10, 1i), and so f (1) "" Ofor :,111 in [to. Id which 
reduces 10 the liuler eqwr.ion. · ' 
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N01E 1 Suppo~e that in the standard variational prohlem the requirement 

h(t,x,i)>O (,o) 

i~ in1posed ~ an extra condition, where h is a given C I function of three variables. In order 

to be admissible a funcnon x(1) must then sati~fy h(r, x(1). :c(t)) > 0 for all 1 in [10, fr}. 
A simpJ.: case is one in which it is a.<su1J1ed thatx > 0. If x • (r) solves the variational problem 

(8.2.1) with{*) imposed, 1beo x•(1) bas to satisfy the Euler ..-.quation. l.n fact. because of 
the continuity assumption, h(t, x(r), i(t)) mu~t be po~itive for all x(r) sufficiently close ro 

x•(t), and the re.suit follows because the Euler equation was derived by comparing the value 

of the objective functional only with the values for function~ close to .r•(r). Note that in 
this case the function F in (1) ne~d only be defined and C2 for triples (1, x, i) that satisfy 
h(l, X, .r) > 0. 

Suppose that for all 1 in (ro, 11] !he function F(t, x, i) is concave in (x, .i) forall (x, .i:) 
satisfying h(t, x, i) > 0, 21Jld thar h(r, x . . t) is quasi-concave in (x, x). Then an admissible 

x• (1) satisfying the Euler equation is optimal. 

NOTE 2 A varilltional problem does nor necessarily have a solution. For example, io the 

Ramsey model of Example 8. I.I, it is obvious ihat with realistic production functions the 
required 1erminal capital stock at the end of the planning period can be. set so high that I.here 
is no admissible &olution. Problem 3 includes another exampk where an optimal solution 
docs not exist. 

Note. that the exisren.:e of a solution to a variational prnblem can often be established 

even if the. concavity or convexity i:onditions in To.eorem 8.3.1 are not satisfied. (By analogy. 

many non-concave functions of one variable have a ma.ximwn.) We refer to Section 10.4. 

PROBLEMS FOR SECT ON 8.3 

1. Show that there is no solution to the problem 

maJ< fo\.,2+i2)dt. x(OJ=O. x(l)=O 

(Hint: Let x(t) = a(t - r1 }, compu!t: the integral. and let a _,. oo.) 

@ 2. (a) Write down the Euler equation associated with tile problem 

maJ< foT U(i:- ie.'')dr. .x(O) =x~. .,(T) = 0 

whcrcx = x(t) is th.: unknown function, T, c. r, and Xo are positive constant~. and U is a 
given C1 function of <>nc variable. 

(b) Put lf(c} = -,-•< /v, where t> is a positive constant. Write down and solve the Euler 
equation in this ca.sc. rhcn c1,plain why you bave solved the problem. 

HARDER PROBLEMS 

3. Show that !be. prob I en, min f.i 1.i2 dt, x (a) = 0, x (I) : . I ha.< a solution if a ~ (0, I), but noi 
if a·,.-.· 0. 
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@ 4. (~) l:I.. ,\ii. Goodwin consider.:. the pn:>hJcm of finding the function y(r) that maximizes the 
integral f ln[y-oy-z/(r)}d, 

Here Cf and z an', po~irive constA.~t.s and /(1) i~ a given positive function. Fi11d the Euler· · 
equation. 

Suppose d,ar l(t) .-. t.1e"' and then Jind the $Olu[ioo of dtc equation when O<Cf ,fa L 

8.4 Optimal Savings 

EXAMPLE 1 

This section considers io more detail the finite horizon optimal .savings problem of Ex­
ample 8.1.L 

Find the Euler equation for the Ramsey ptoblem in Example 8.1.1: 

K(O) = Ko, K(T) = Kr 

Deduce an exptession for the corresponding relative rate of change of consumption, CJ C, · 
where C = f (K )-K. Abo. show that the concavity condition in Theotem 8.3. l i~ satisfied . 
i£ f'(K) > 0, f"(K) ~ 0, U'(C) > 0, antlU''(C) < 0. 

Solvtion: Let F(t, K, K.) = U(C)e.-" withC = f(K)- K. Then we find that 8F/8K = 
U'(C)/'(K)e-" and &F;ak = -U'(C)e-", so that the Eulet equation reduces to 
U'(C)f'(K)e-'1 - f, (-U'(C)e-") = 0. Both U'(C) and e-" depend 011 t, so by the 
produ.:t rule for differentiation, f, ( U'(C)e.-") = U"(C)Ce-'' - rU'(C)e-". Mnltiply­
ing bye'' and reananging, it follows iliat 

U'(C)(f'(K)- r) + U"(C)C = 0 

and so we obtain 
C U'(C) , r -· f'(K) 
C = c'i,"'(C) (r - f (K)J = r7, 

where w = Elc U'(C) = CU"(C)/U'(C) istheelasticity-0fmarginal utility witllrespec1 · 
to consumption. Note that ii, < 0 because ii is assumed that U'(C) > 0 aml U"(C) < 0. 
(An estimate sometimes used for (':J is ···0.6.) It follows that at any time t, 

c C > 0 {=} /'(K(l)} > r 

Hence, coMumption increases if ,uid only if !he marginal productivity of capital exco.:cds · 
the discount rate. 

On the other hand, if f'(K.) < r, there is ~u tnuch impatience to consume that consump· 
tion starts off high, then dcdinc.s over time. 

SECTION S.,1 I OPllMAl. SAVINGS 299 

lfwe u,e the fac,; [hat C = f'(K)K - kin equation(*), and divide it by U"(C). we get 

.. . U'(C) 
K - f'(K)K +--(r - j'(K\) = 0 

U"(C) ' 
(1) 

Because f is concave U"(K) ~ 0), it follows thatf(K)-· K. isahocoucavcin(K, K), as a 
sum of concave functions. The function U is increasing and concave. so U(f (K) - K)e-" 
i.s also concave in (K, K) (see Theorem 2.J.5(a)). Any solution of (l) th:1! satisfies the 
boundary condition& must therefore be a solution of the problem. 

Equation ( l) is a compli<:a1cd sccond-nrdc.-r di:ffetential equation. Explicit 5olution~ arc 
obtainable only in special cases. But note how interesting economic conclu.~ions have been 

obtained anyway. I 

Solve Example 1 when f(K) = bK and U(C) = c1-v /(l - v), where b > 0, v > 0, 

v ,I l, and b ,fo (b - r)/v. 

Solution: Equation (1) yields 

K - (b - r - b)k + b-· r bK = 0 
V 1l 

For b / (b - r)/11, this second-order differential equation has the general solution 

K(t) = Aeb1 + 8/1>-r)t/v 

The constants A and B are detenn.i.ncd by the equations Ko = A + B, Kr = ,tehT + 
Be\l>-r)T/v. BecatL~e /(K) is concave and U is increasing and concave, the function K(t) 
given by ( *), w:ith the constants detennincd by these two equations, solves the problem. l 

PkOBLl';MS FOR ECTION 8.4-

@ 1. Find 1he Euler ~1ua1ion and solve the variational [)(Oblem 

T 

ma~ 1 ... ,;4 ln(2K - K}dt, K(O) = Ko, K(T) = K1 

@2. (a) Solve !be problem 

max rr e-,;10(' ~rx - x') dt, 
)r, .100 

x(O) = 0, x(t) = S 

(b) Le! T = 10 and S ,~ 20 lllld ftnd the solu1ion in d:tis cotSc\. 

@3. We generalize Example J. Let Y(t) = /(K(t),r} a.nd replace U(Ck·" by U(C.t). Assunte 
also that capital d,:preciates at the proportional r.111.1 r,, so that C = [(K, r} - K - SK. The 
problem then be.comes 

1uufor U(f(K,t)-K-oK,r)dt, K(OJs,Ko. K(TJ,~Kr 

Wbut is the Euler equation in this case'/ .Pin<! an expression for (IC. 
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8.5 

@4, A monopolrnt·s prodoction of a conlJli<Kliry per u:iil of lime is x = ,:(t). Supp,Jsc b(;.) is the 
associat~ . .J cost function. At timer, let J)(pCI), p(1}) be the dctnand for rbe e-0mmodi1y per 
uuit <Jfritnc when Ehc prke is p(t). If producr.ioc at any lime is adjusted to meet demand, the 
monop<)lis!'s Emal profit in the time illfl~rval. (0, T] is given by 

fo 1 

[pD(p, p)-b(D(p, p))]dt 

Suppose thar 1,(0) and p(r) are given. The monoi>oli$t 's oa1.untl prohlem is to find ~ price 
functiou p(r) that maximizes the total profit 

(a) rind the Euler e,1uation associau:d with this prol:>lem. 

(b) Let b(x) •0 ax
2 + fi:r + y and x "' l)(p, j,) = Ap + B 1i + C, where a, {J. y, B, and C 

are positive cunsla.ntS. while .1 is negative. Solve the Euler equation in this case. 

More General Terminal Conditions 
So far i.u our variational problems. the initial and terminal vuJues of the unknown function 

have all been fi iced. In economic applications tho initial point is usual! y fixed hecause it 

represents a historically given initial situation. On the other hand, in m.1nv models the 

tem1i.Jtal value of the unknowu function can be free. or subject to more gcnetal resbictions. 

This section consideis two of the mos! common tcnninal conditions that appear in economic 
models. 

The problems we study are briefly formulated as 

1
,, 

max Ii) F(r,_t, x)dt, X(lq) ""'Xq, (a) x(11) free or (b) x(ti) ~ x 1 (1) 

If the tcnninal condition is (a), any C 1 function is admissible if its graph joins the fixed 

poim (to, .to) to any point on the vertical line. t = t1• as illustra111d in Fig. t. Wt!. simply don't 
care where on the line t = t1 the gr.iph ends. 

X 

t :, 

t /----~ I,~/-~ . IL ______..,,1 
xo '. ____ / _['(°" 
L. __ .. ·--·----.. ..., 

' 1~ ti 

Figure 1 x (1.,) free Figure 2 x(11j ::::_ .i:1 

Und.::.r temtinal condition (bJ. any C 1 function is admissible if its graphjoi..as the fixed point 

(zo. xul to 3ny point.on or abov,, the level x, 011 the vt,n.ical line t :::. t,, as illustrat~d in Fig. 2. 

I 
I 
I 

I 
I 
' i 
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Inequality tel'milllll cuuditions like th.is are often encounrcrcd i.!1 c~onomic~. For instance, 

in the optimal savings model of the previous section it makes sense LO replace the terminal 

condition K(7')"' Kr by K(7') c=. Kr. 
The inequality sign in (b) sometimes need\ to he reversed. For example, if x(r) denotes 

the total sto,;k of a pollutllnt in a lake. thell x(tc) ~ xi meltils that at rhe eud of the planning 
period pollution should not exceed a prescribed level x1. 

An imp<Jr.tant observation concemi1Jg (I) is tllaJ an opli.mal solution to either of the two 

problems mu8t satisfy the Euler equation; Suppose. x*(r) solves either probkm, and let 

x = x'(t1). Then. in particular, x'·(r) solves the corresponding variational problem with 

fixed terminal point (t;, i). According to Thcorem8.3. l, the functionx"(r) must then ~atisfy 

the Euler equation. The condition x• (lo) = xo plares one restriction o:U the consmm:s in the 

general solution of the Euler equation_ A so-called transver.,ality condition is needed to 

detenn.ine both conslant.s. The relevant transversalicy condition is spelled out in the next 

theorem. 

Jf x•(t) ~olve~ problem (I) with eitheJ (a) or (b) as the terminal condition. then 

x• (1) must satisfy the Euler equation (8.2.2). With th~ term.inal condition (a), the 

transversality conditioo is 

(aF") =O 
ilx ,~,, 

With the terminal condition lb). the transvcnsality condition is 

with 
·IJF'· 
1-. ) = 0 if x•(t1) > x1 
\ ilx ,~,, 

(2) 

(3) 

I Jf F(i. x, x) is concave in (x, i). then an admissible x'(t) that satisfies both the 
·,1 

Euler equation and the appropriate nansvcrsality condition will solve problem (I). 

L_ .. _ ----------------------
Proof: Wr:. already know that the Eule.r C{1u;t1ion must be satisfied. To derive the trnnsversality 
co11dilions. we define- the function J by J(x) = 1:• F(t,x, .i)dt, and we compare its value al x•(r) 
with its v~lue at the pe-.rrurbedtu11c1ion x(t) = x•(1) +aµ.(1). T.n both case$ w"'rlXJurre thatµ(to) = 0. 

Suppose the terminal condition is ( a). Toe value of x (11) is un.:on,;trained, so the pe.rrurbed functior1 
_t(1) is admissible whatt:wnbe value of J.l(t,). Dc:fi11jng I (a) by (!i.3.3). once again T'(O) i~ given by 
(ll.3.4). But the Euler equ:,,1.ion is satisfied anrl 1,(10) = 0, so the condition that f' (0) = 0 reduces to 

Bc.::,11~,~ 1,. (11) can be ch~cn different from 0, !he conclusion is tha1 (2) must hold. 
Now supp<.>Sc 1.ha1 fl(l. x. x) i~conc~ve in(:, . .i:}. The argwnem leading ro(8.3.5}holds as before. 

Evaluating the. last expression in (8.3.5} at the upper limit yiel~ 0 because of rhe trnosvet·sality 
condition (2). Evaluating it al the lower limit abu yidds 0. bec:ius,; x·u~} ~- x(~,) ,., .r0. Again we 
conclude that x • ( r) solves 1hr. maximization problem. 
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Suppuse the terminal c,~nditu,n if (b). for)(. =,:'+aµ lo h.: admissible. /t mu.:;r be chosen so that 
1,1,(/11) = Oand_,.(t1) +aµ,(t1) 2: ..-,. Tberea:i:c [WO cases to consider: 

(T) x'(r1) ;, .,,. Jr, this c:1.,c t.lu, optim:tl c,,ndiilittc •·ove.rshoots" lhe target. Choose lµ(ft)I a,:,<I [c.; 

str1all enough.so that ]11.(11)1 · lct' < x·(r1)- x 1. Define. !(a) a:; before by (S.3.J). Then /(r,) must 
have a local ma;c.imum for c, .-, 0, so Chae /'(O) "" 0, where l'C,O) is given in (8.3.4). Because 
1h.c Euler <.-quation is satisfied for x' = x'(r) and µ(IQ) = O. w~ find as in the proof of ('.1} C!!at 
(a Fji'lx.),=1,J.J.(t1) ,,O. C.hoosingr.t(t1)drfforcntfrom0yields(U'i8i), ... ,, ,., 0. 

(lI) 1'(1,) ,.~ x1. ·11in~quircmc111 x·(t1) + a1•(ti) ~ .tJ gives aµ (ti) 2: 0 in lhis case. Choose µ(t) 
sach dtat 1,t(to) = 0 an<l 11(t1i > 0. Then x'(t) + a1,(t) is admissible for all a :.=:: 0. and therefore 
/(a}~ /(0) for au a~ 0. This implies that l'lO)::,; 0. and so /'(0} = (i1F/~.:c),,,1µ.(r,):;:; 0. 
Because µ(t1) > 0.1his yields (8F /iii),=,, :o 0. 

Ta.ken tog~ther, die conclusions in <T) and (Il) reduce CO (3), bc.:ause µ.(/1) > 0. 
1f F(t, x, i) is concave in (x. x), die argument leading up 10 (S.3.5) is again v:ilid, and thcl•st 

ex:prt:Ssion in (&.3.5) is now equal to 

ea:),,.1 [x·(tc) -x(ti)] 

If -<'(t1) > xi, then (ilF· iax),=,, = 0 and the express.ion in(*) is equal co 0. If .<'(11) = x1, then 
x• (11) - r(t1) = x 1 - x(r1) ~ 0, since x(r1) 2: x1• Because (<JP" /ili),, ... ,, is .:s O acconling to (3). 
the product in(•;) is ::::. U. Thus tho, expression in (8.3.5) is always::': 0. so the cooclm;jon follows. • 

NOTE 1 Condition (3) is a little tricky. Tt says that a F/ii.i' t=r, is always te.ss than or equal 

Eo 0, but equal to O if x•(t1) overshoots, in the sen~e that itis greater than xi. 

NOTE 2 1f we minimize the intcgr.il in (I). the theorem is still valid if (3) is replaced by 

cJF 
( --·-) > 0 ()..i: ,,.,, - • with (

iJF) O . . • ) -,:- = if X (11 > Xi 
dX r=t: 

(4) 

and we require F (r, x. x) to be convex. 

NOTE 3 lf the inequality sign in ( I )(b) is revemd, so is the inequality sign :5 in (3). 

EXAMPLE I Find the solutions of the following problems: 

max fo\1 - x2 - x2) ,/r, x(O) = 1. with (a) x(l) free oT (b) x(I) ::: 2 

Solution: The Euler equation is easily seen to be :i - x = 0, with general solution x(t) = 
Ae' + s,-•. The condition x(O) :::. l gi\"~S 1 = .-t + B, so an optimal ~olution of either 

problemumst be of the fonnx'(l) = Ae1 +(l -A)e-1
• a.nd thusx•(t) = Ae' -(1- A)e-'. 

Fulthermort, i!FiiJx "'- -li. 
With (a) as the 1erminal condition. (2) requi.r,·s x'(l) ""'0, so Ae1 - (1 - A)e- 1 = O. 

an<l heacc A = l/fe2 + 1 ). The only possible solution is thctcforc 

• ) I . . 2 --,) 
x ll = e?. + 

1 
(e· + e e 

Be..::ausc F ( 1, :r.. x) "" 1 - x 1 • .. :t 1 i~ c:onc.1ve in (x . .i ), the solution has been found. 
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With (b) a, the terminal condition. we rcquire.x•(l) = .4.e + (I - A)e-1 ~ :2. M> A '.! 
(2e.-l)/(e~- I). Suppuscx•(l) > 2. Thencondition(3)w0\1ldgiveiJf'• /'i!i = -2.i' ""'0 

at I= 1. Hence .r"(I) =· 0, an<l so ,1 = l/(e2 + 1). But thi, would violare the inequality 

Ac~ (2e - 1)/(e2 - l). We conclude that x'(l} = 2, with A"" (2e - l)/(e2 
- J). Then 

i ... (I} = Ae+<l -A)r1 = 2(e2 ·-e+ 1)/(e.Z- l) > Oforthisvalueof A.implying that 

;i F' /B.i: = -2.i'(l) is~ 0. The only possible solution is the.rcfoJ'e 

*( • 1 ('(2 1) I ( ., ? ) _,,,) x r > "'' , .. -·- e - e + e- - -<' c 
e· - I 

Because F(t, x • .i:)"" l - x 1 - :c2 is concave in (x . .r), the solution has been found. 

EXAM PL£' 2 Consider the macroeconomic problem of Example 8.2.2, but now a.%ume that x(T) is 

unrestricted. Find the optimal solution x• (t), and discuss what happens to the terminal state 

x• (T) a.s the horizon 1' -> z'lC and also as c _,. 0. 

Solution: Again the EuleT ~uation is x - x / c "" 0, and tbe general solution satisfying 

the initial condition is x = AP." + (xo - A)e-" where r = 1/ ./c. The transversality 

condition (2) reduces to .i (T) = 0. Becanse :i-(1) = r Ae'' - r (.tn - J\)e-", this implies 
that r Ae'T - r(xo-A)e_,T = 0. It follow~ that the only possible solution to the problem is 

•() = _ Xo [ r(J'-t) + ... ,(T-<i] 
.t 1 l<'T + e-r1' f. e 

Note that then x'(T) = 2xo/(e'1 + e-rT) _,. 0 a~ T _.. oo. Also, as c _,. 0, so r - oo 

and therefore x· (T) ..... 0. 1n fact, because 

it follows that x*(r) ...,. 0 for each r > 0 even with T fixed. 1bis is not swprising. As c 
becomes small, the costs become negligible, so x • (t) gets adjlL~ted to O rumost immediately. 

Because F = x 2 + .i2 is convex in (x. x), the optimal solution has been found. I 

f'XA PLE '3 ' Let A(t) denorea pensioner's wealth at lime t, and let 1v be the (constant) pension income 

per unit of time. Suppose Ehat th~ person can borrow and save at the &aJll.C coDstant rate of 

interest r. Consumption per uuit of time ac time tis then given by C(r) = r A(t) + w-A (t). 

Suppose the pen~iont.-r plans consumption from uo,w, t =- 0, until the expected time of death 

T, so a., to ma.'timize 

LT U(C1t))e-P' dr "" for U(r A(t) + u; - A(t))e-P' dr 

where U is a utility function with U' ~- 0, U'' < 0, and p is a disc:oum rate. Suppose that 

present wealth is AQ, and the minimum de.sir.eel lega~y is Ar, so char. an a<lmissibk wealth 

fnm .. 1:ion must .satisfy A(O) "'' Ao and ,4(T) ~ Ar. Cbaracteri,c !he pos.s.ible solutions. 

(TI1is model ha., hccn srut.licd by Atki1ison U971).i 
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Solution: 1ncobjectivefan.:tioni~ F(t. A, ,1) = U(r A +w--Ak-"' ·The.Euler equation 
is easily shown to be 

,;: -- r A + (p - r) U' / U" ,,- 0 

Bec:rnsc U' > 0, one has 'aFiJA ~ -U'(C)t!_,,, < 0 everywhere. lherefore (3) implies 
t.h.1t. A• (T) "" Ar. Hence, any optimal solution A '-V) of the problem must satisfy ( *) wirh 

A·(O) = Ao and A·(T) "" Ar. Be.:ause oi the requin:ment imposed on U, the function 
F(r, A, ,1) is con.:ave in (A, .4.) (for th(: same reason a~ in Example 8.4.1). Note that we 

have Mt prov(·d that (,.) really has a solution that satisfies the boundary conditions. Sec 
Problem 4 for a special ca.,e. I 

1. Solve the problcn1 

mio 1\rx+x2
}d1, x(O) = 1, (i) witbx(I) free, (ii) withx<l) ~ l 

0 

1§) 2. (a) Solve the varia1ional problem 

mat f \10 - .i1 -2.ri- -· sxz),,-' dt, lo x(O) = 0, x(l) = I 

(b) What i& the optimal solution if (i) x(l) is free? (ii) x(1) ~ 2'! 

3. J. K Sengupia has cons idem\ the prohicm 

where a,, u2, r1. r2, T, and Y-0 arc ~-i,cn positive constanr.s. formulatt chis as a va,:iational 
problem with Y = Y(t) r,~ the unknown function. find the corresponding Euler equation, and 
solve the problem. 

@) 4. Solve the problem in Ex«mplc 3 when U(C) = a- e-K, with a> O and b > o. 

@ 5. (a) A con,municy waots to plant tm;s to cover a 1500 hectare piece of land over a period of 5 
years. Let x(t) he the numhcrof hectares that b.we been planted by time,. and let u(r) be 
the nne of planting, .i(t) = u\t). Let th~ o:ost per unit of time of planting be given by the 
function C(f. u). Toe tot.al discounted .:o~t of planting at the rate 1t(r} in the period from 
t = 0 to 1 =;,when the r.ue oflnreresr. is r, is then J; C(t, 11)e.-" dt. Write down the 
necessary cooditions for rhe proolem 

.t(5) c: 151X) 

(b) Solve Che prohlem when r ::. 0. and C(1. 1<) = g(u), with g(O) = O, g'(u} > O, and 
g"(11) > 0. 

C©NTRO l IIH ~ORY: 
BASI G TEC MNIQUES 

A person who insists on lJfldfi:rstanding e,l'?I)' tir.y step before gci1>.9 

ro rhe next is liable to concenr,-are so muc.~ on looking at his 
feet that he f;,i/s ro rrolize he is v1alking in lhl:! wrong 
direction. 

-t Stewa~ (1975) 

0 ptimal control theory is a mocern extension of the c:l<1s5ical calculus of v~riations. Whereas 
the Euler equation dates back to 1744, the mi>in result in optimal ccntrol theory, the max­

imum principle, was dt!veloped as recently as the 195Gs by a group of Russian mathematicians 

(Pontryagin et al. ( 1962)). This principle gives nec:ess?.ry conditions for optimality in a wide range 
of dynamic optimization problems. lt includes all the necessary conditions that em('rge frorr: 
tr.e cl;issical theory, but can also be applied to a significantly wider rc1nge ol problems. 

Since 1960, thousands of papers in economics have used optimal control theory. Its applica­
tions include. for instance, economic growth, inventory control, taxation. eXt:ilction of natural 
resources. irrigation, and the theory of regulation ur,der asymmetric ir:formation. 

This chapter contains some important results for the one st;ite va,iable case that are used 

wideiy in the ecorromics literature. ( "What every young economist should know about optimal 
control theory.") 

After the introductory Section 9.1, Section 9.2 deals with th!! simple case in which there are 

no restriaions on the control variable or on the terrnin;1I state. Although such problems can 

usually be solved by usir.g the c;ilculus of vc1riations, their re!ative simplicity rr,alce them ideal as 
a ~tarting point for introducing sorr.e of the rn<1in con,epts and ideas in control theory. · 

Some additional concepts like the con!rol region, piecewise contir,uous controls. and required 
regularity conditior.s are spelled out in Section 9 .3. 

Section 9.4 goes on to consider different ai:ernative terminal (Olldiric)ns on the state >Jariable . 
Th€ b:ief Section 9.5 shows how to formulate a calet.:lu~ of varia!ior.s problem as an optimal 

control problem. The Eule, equation is ea~r!y derived as an ;mplication of the nwximtJm prindple. 

S<.'Ction 9.6 is conc:emed with sensitivity results: what happens to thf! optimal value iu<1ction 
when the parameters change? In a growth theory setting, these pararneti:?rs are: the beginning 

and end of the planning per,od; the ir.itiai Glpitill stock; and the amount cf c;,pital to leave at 
:.he l:'nd of the planning period. It turn., out that the ad1oint variable can be given interesting 
economic lntt!rpretations. sornliwh;it similar to those for i.391a,,ge mul1ipliers. 
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9.1 

A (,gorous proof ot the max:murn prmciple is beyond the lev!!I of this boo!:. However, thE' 
M.angasariiln sufficiency th('.Crem !$ prov!!d Qi.lite easily in Section 9.7. An import<1nt general­
;za t1on (the Arrow st.ffic,en,y theorem) is also Pxplained. 

ln some economic problems the final time (say the end of the planning period} is a variable 
to be chosen optmally along with the opt:rnai control. Such probf~~s are dis.cussed in Sec­
tion 9.8. Note 9.8.1 poin~ out th.it the conditions in the Mangasarian or Arrow theorems are 

noi sufficient for optimality in variable time problems.. 
In optimal eco1;omic growth models there is often a discount factor in the objective 1ur.ction. 

Then a slight reformul~tion uf the maximum principle, called the current value formulotion, is 

frequently used. This approach is expl.lined in Section 9.9. 
Some ecor.orr.ic models include a "scrap value" in the obJective function. Section 9.1 o 

explains how to adjust the maximum principle to take care of this case. 
Most control models in the economics literature assume an infinite time horizon. Section 

9. 1 1 is an attempt to give some corr~, results and examples in this area w1,ere there is some 
contusion, even in leading textbooks. 

Even control problems for which explicit solutions are unobtainable can sometime5 be ana­

lysed by the phase diagram technique explained in Section 9.12. 

The Basic Problem 
Considera system whose stare at timer is characteril.ed by a number x (t), the state variable. 
The process that causes x(I) to chang.,·. can be controlled, at least partially, by a control 
f11nction u(t). We assume that the rnte. of change of x(t) depends on t, x(t), and u(I). The 
state ~t some initial poim lo is typically known, x(to) = X(). He11c:e, the evolution of x (t) is 
descnbe<l by a controlled differential equation 

i(1) = g(t,x(t), u(t)), x(10) = xo (1) 

~up~o~e ~e choose some:: control function u(t) de.fined for r ~ tn. Inserting this function 
Ult~ ll) gives a first-orde1 diffecential equation for x(t). Be.cause the initial point is th:cd, a 
un1que soltmon of (I) is usually obtained . 

.By choosing different con1rol functions u(t), the system can be steered along different. 
~a.ths, not all of which are equally de~irable. As usual in economic analysis, asswne that 
lt 1s possible to measure the benefits associated with each path. More specifically, a,~ume 

that the benefit~ .:an be me.a.~ured by means of the integral 

1
,, 

J = f(t,x(t), u(t))dt 
IO 

(2) 

wh.ere l is a given fnnctio11. Here. J is called the objective or the criterion. Certain 
restrictions arc often placed on the final state .r(11 ). Moreover, the time t1 at which the 
process stc>ps is not necessarily fix.ed. The fundamcnr;,1 problem tha! we study is: 

Amo11g all pairs (x(t). u(t)) that obey the differential ,iq1<ario11 in ( J J with 

x(to) "" xo and 1har Sflrisfy the r.mutmints imposed un .t(t1), find one that 

maximizes (::! }. 
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, J XA M Pi..§. 1.._. (.Economic growth) Con~ider the control problem 

7' 
ma.ii: lo (I -s)j(k) dt, k = sflk), klO) ""ko, k(T) ~ kr, 0:::: s ~ I 

Herc k = k(r) is the real capital sco..::k of a country and j (k) is its production function. 
Moreover, s ::. s(t), the control variable, i,; the fraction of production set asid~ for invest­
ment, and it is natural to require that s "' [0, l]. The quantity (l - s)f(k) is the llow of 
consumption per unit.of time. We wish to maximize the integral of this quantity over [O, T], 
i.e. to maximize total consumption over the period [O, TJ. The constant ko is the initial 
capital stock, and the condition k(T) ~ kr means that we wish to leave a capital stock 
of at least kr to tbo~e who live. after time T. (Exampfo 9.6.3(b) smdies a .special case of 

this model.) I 

(Oil extraction) Lei x(r) denote the amount of '1il in a Tescrvoir at time t. Assume 

that at 1 = 0 the field contains K ba1Tels of oil, so that x(O) = K. If u(t) is the rate 
of extraction, then integrating each side of (to) yields x(t) - .t(O) = -f~u(,)dr, or 
x(I) = K - Ji 111T) dr for each t ~ 0. That is, the amount of oil left at lime tis equal to 
the initial amount K, 1ninus the total amuunt that has been exttacted during the tim~. span 

[0, t], namely J,; u('i:)d,. Diffcreutiali.ug gives 

x(t) = -u(t), x(O) = K 

Suppose that the market price of oil at time r is known to be q (r), $0 that the ,ales 1ev<?nue 
per unit of time arr is q(t)u(t). As.sume furtherthat. the cost C per unit of time depends on 
r. x and"· so that C = C(t, .i, u). The instantaneous profit per unit of time at time I is then 

,r(1, x(!), u(t)) = q(t)u(t) -·· C(r, x(t), u(r)) 

lf the discount rate is r, the lutal discounted profit over the interval [0, TI is 

( [ q(t)u(1) - C(r, x(t), u(t)) ]e-" dr 
.i) 

It is natural ro assume thill u(t) ~ 0. and that x(T) 2: 0. 

Problem T: Fi.ud rhc rate of extracc\ou 11V) ::: 0 that maximizes l**) subject t.o l*) and 

x(T):,::, 0 over a fixed extraction period lO, T}. 

Problem JI: Find the rare of extraction 11(t) ~ 0 and al~o the optimal t,mniual. tim~ T that 

maximizes(*"') subj.:.:! to(*) and.x(T) 2: 0. t 

Th.:&e are two in&tam:;e$ nf optin11il con1rol problems. Problem l has a fixt~d terminal time 
T. whereas Prc,blcm IT is referred 10 as a tree terminal thne problem. s~.e Example 9.8.1. 
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9.2 A Simple Case 
We bcgio by studying a conirol probJeiu with no restnctioos on the co11crol variable and no 
restrictions on the terminal state-that is. n,1 restrictions are imposed on the value of .t (1) 
at I = 1, . Given the fixed ti.rues ro and t1, our problem i~ 

maxiruii.e {' f(t , x (r), u (t))dt, u (t ) E ( - co. oo) 
subject to 

( I) 

x(r) """ g(t , x(t) , u(f)), x(rr,) = .xo, xo fixod, x (t,J free (2} 

Given a.uy c.:ontrol hmcti,>n 11 (t) defined on [to, ti]. the a~~ociatcd solutil1n of che differential 
equation in (2) with x(ro) = xu will usually be uniquely detcnnined on th~ whole of [t-0, r1 J. 
A pair (x (1), u(t)) that satisfies (2) isc.:alled a.a admil>sible pa.ic Among all admis.<.-ible pairs 
we search for an optimaJ pair, i.e. a pair of ftloctions that maximizes the integral in (l). 

Notice that the problem is to maximiu the objeetive w.r.t. u subject to the constraint (2). 

Because !hi.~ constraint is a differential equation on the inte,vat [to, ti), it can be regarded 
as an infinite number of cq\lality conscrainrs, one for each time t in [ro, 11 ]. 

F.conoruists usually i.ocorporate equality constraints ill their optimi7.ation problems by 

forming a Lagrungian function, with a L.lgrange multiplier couespon<l1ng to each constraint. 
Analogou~ly. we associate a number p(t). called the CO·~tllte variable, with the constraint 
(2) for eacb t in (to, t1 ·1. The resulting function p "" p(t) is called the adjoint fun ction 

a ssociated with the di:fforenti:tl equation. Corresponding to the Lag.dllgi.an function in the 

p resent proolew is the Hamiltonian H .1 For each time tin [ti:,, ti] and each possible triple 
(.x, u, p ), of the ~tate, control, and adjoint variable~. tbe Hamiltonian i., defined by 

1:((1 , x, u, p) = /(r, .r, u) + P8(t , x, u) (3) 

A set of necessary con<litions for optimality is given in the following theorem (some 
r egularity conditions required are di~~usscd in the next section): 

Suppose that (x ' (t), u•(r)) is an optimal pair for pmblem ( 1)-{2). Thtm there 
e.xists a continuo~ function p (t) such that, for eac.:h I in (to, ti], 

11 = u*(r) waximi,:es H (t, x*(1 ), u, p(r)) for u in (-oo, oo) 

Ji(1) = - H;(t , x ' (t) , u '(t), p (1)), p(r1) = 0 

(4) 

(5) 

'----------------·---
NOTE 1 The requirement that p(t1) = 0 in (5) is calk:<l a transvcrsallty condition. So 
condition (5) tells u., that in the case where x(t1) is free. !he adjoint variable vanishes at 11• 

The <-"Ondirions i11 'fhcorem 9.2.l .ire n=.ssruy, but not sufficient for opti.iuaJity. 'The fol­
lowing theorem, which is aspN:ial c.Jsc ofThe{1rem 9.4.2 helow, gives sufficientcouuitioos: 
--·---- ·· . ·--·--
1 T!>t correspon<.Je.nce i.s ruther IOO$C. 5omethir1g c/1,s(.7 tv the l.,1gras1gian would be the fu11crion 

f(t , x , u) "e- p!_g(I, x , u ) - i). 
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t.t NGAS RIAN --···----- , ·-----, 
I 

H(r.x, u. p(r)) iHoncave in (x,u) forcacht i.n (to. ti] I 
If the requirement 

(6) 

(6), then cx· (t ), u' (r)) is optimal. 

is added to the requite~1ent5 in Theorcn1 9.2.1, then we obtain suffi.:lertr con_d_i-_1

1 

tiou~. That is, if we find a triple (x· V) , u • (t), p(r)) that s.1tisfies (2), t4), (5), and 

-----------···---

txM,tP E- 1 

NOTE 2 Changing u(r) on a small interval cau.qe., /(1, :x, u) to c.bangc illlJIH:diately. 
Moreover. at theeod of this interval x(t) has changed and this change is tnmsmittedthrough­
out the remaining. ti.we interval. T.n order to steer the process optimally, the choice of u (1) 

at each instant of time must anticipnte the future change~ in x(I). 1J.1 short, we have to 

plan ahead. Iu 3 certain sco.sc, the adjoint fu.octio.o p(t) takes care of this need for forward 
plawtlng. Equation (5) implies that p(I) = J:' H;(s. x*(s), u'(s), p • (s))ds. 

NOTE 3 Jf the problem is to minimi:z.e tbe objcct.iVt: in (1 ), then we can rewrite tile problem 
as one of maximiiillg the negative of the original objective function. AJrernativdy, we could 
refo1mulate the maxi.mum principle for the mi.ni.tn.izatiou problem: an optimal control will 
m.i.nimizc the Hamiltonian. and convexity of H (1 ,x,u, p(t)) w.z::t (x, u) is the celevant 

sufficient condition. 

Since the control region is (-oo, oo). a necessary condition for (4) is that 

l((t , x · (t) , u'(t), p (t )) = 0 (7) 

.If H (t, xft). u, p(l)) is concave in u, con<.lition (7) is also s11fficiclll for the mUJO,imum 
condition (4) to hold, bccaus;:, we recall that an interior stationary p()iot for a concave 

function is (globally) optimal. 
l t is helpful to see bow these conditions allow some sintplc cxaropl"'~ to be ~olved. 

Solve the prohlem 

i (1} = u (t ) , .x(Oj = ."I). x(T) free , ,, € R 

whi:-rc .to and T arc given positive constants. 

Solution: 111~ Hamiltonian is ff (1, ,t, 11 , p) = l - tx - u1 + p11, which is concave in u . 
so the control u "' u'(I} maximizes H(t,.x'(t). u , p(t}) w.r.t. 11 rf and only if it !latisties 
Hi = ... 2u + p{.tl = 0. Tiius u• (t) ::, 1 p(I) . Bccaose H~, ,,, - 1. the c:onditioos ill (5) 
reduce to ,;(t) ""r and p(T) "' 0. lnregrali.ng give~ p(1) °" !r'J + C with 4 T 2 + C .,.,. 0, ~o 
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Bcca\15<! x • (t) = 11' (t) =" ·-! (7'2 - r2). i.tncgr~ting .i:-·c,) = "'(1) with x• (C)J "" Xo gives 

'Ilt.11s, thtm; is OoJy one pair ~'C• (t), u'(I)) that. logethcrwitb p(t), satisfies both n~essary 
co.aiditions (4) and (5). We have lherefore found the only possible pair that can xolvc the 
prc..lblem. Because H (t , x, 11 , p) = J - a - u2 + pu is cont;avc in (x , u) for e;ich fixed 1 

(it iN a sum of concave funccioos), (x' (r). 11*(1)) is indeed optimal. 1 

Solve the problem 

r 
max 1 ( -x'/. - i u1)e-2' dt, i = x + u, x(O) = 1, x(T) free 

u(IJc (-oo,ool o • 

So Jution: The Hamiltonian is Ei (t , x, u , p) = (-xZ - !u2)e- 21 + p(x+u). The maximum 
pri ociplc states that if an admissible pair (x' (t), u•(i)) solves the problem, then th.ere exists 
a function p defined on [0, T] such that: 

(i) Pore\•cry r in (0, Tl, u = u•(t) m.uimizcs H(t, x'(t ), u, p (r)) foru in (- oo, oc) . 

(ii) jJ(t) = - li; (l, x* (r) , u· (1), p(t)) = 2.x•(t)e- 2' - p(t) and p(T) = 0. 

SU'1c¢Hi = - ut-21 + p, itfollows from (i) thatu•(t) = /1' p(t) . The equation x• = x•+u' 
then yields .i:- · (t) = x•(t) + e2' p(t). Thus x• and p mu.q satisfy the system 

i= x+e1-'p 

jJ = 2e-21x - p 

of two simultaneous equations in the plane, which app=<l as Problem 6.5.'.\. The, goneral 
solution is x == AeOl·../:!), + Bell-/'i)r and p = A../Ze(v'i- 1), - B../2el··v'i-n,. 

l t remains lo determioe tlle constants A nod B so that ..c · (O) = J and p(T ) = 0. 
Tbi.syields A+ B = land A../2efv'1--l)T - B..f2e(- ./i-l)T = 0 . The solution i.~ A= 
( l +e7.;1·rrl and B = e.2·./iT ( l + eZ-i'irrl. The corresponding functions x*, u•. and p 

satisfy the conditions in the muximumprinciplc, and His concave w.r.t. (.x, u) , so it follows 
fro:ui Theorem 9.2.2 that this is the optimal solution. I 

E>.AMPLE 3 (A macroeconomic contl"Ol problem) Consider once again the m3croe.conomic 
me>dcl of faample S.2.2. If we drop the terminal consmiim at the end of the plauning 
period, we focc the following control problem: 

r 
mii:t L [x(1)2 ·l c11(1f]d1, x(t) = u(t), x(O) :-:: x0, x (T} free 

wl1ere 11 (1) <:: li and c 0, xo, and T arc g;ivm. Use the maximum principle to solv,; 
the p.-ohlt,rn. 

PROBl:!; 
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Solution: We:: OlaJliwi.7.e - ji·1xvf + cu(t)2Jdc. The. Hamiltonian is H(r. x,11 , p) = 
- x 2 - cu!+ pu,so H; = -2x al!d H~ = -2cu +p. A11~s.\arycondic.ionibr u ::-: u ' (t) 

lo maximize the Hamiltonian is that n :. "" 0 at " = 11•(1), or that - 2c11*v) + p l.t ) = 0 . 
Therefore, u'(r) "" p(t)/2c. The diffcrcntio.l .:quation for p(I) is 

17(1) :::: - H;(r, x ' (1), 1J"(t) , p(t)) ::: 2x"(1) 

From .-c · (t) = u'(r) and 11'(r) c::. p(t)/2c, we have 

x' (1) = p(t )/2c 

The, two fin:t-order diffe(ential equations (,•) and ( **) can be used to detetmine the functions 
1> and x •. Differentiate (*) w.r.t. t and then use(**) to obtain p(t) = 2x~(1) = p(r)/c, 

whose general solution is 

p(t) = .l\e" + Re-", where r = l/ .,/c 

Imposing the boundary couditions p(T ) = 0 and f>(O) = 2x"(O) "" 2.to implies that 
Ac' 1 + B e-rT = 0 and r(,t - B) = 2xo. These two equations determine A and B, and 
they yield A = 2.xoe-,T / [r(e'r + e- rT)] and B = -2xoe'T /[r(e'T + e-,1) ]. Thcrefoce, 

2xo e-r(1·- ,i - e•(T··t) 
p(I) = - - ·· .. ... 

r e'T + e-r/ 

er(T -1) + e ,.r(T - t) 

and x*(I) = l p (t) = xo - ·-· - · 
· 2 ,,r T + e - rT 

The Hamilconi..111 H = -·x2 - cu2 + pu is concave in (.x. u), so by Mangasarian'~ theorem, 
this is the solution to the problem. tThe same res ult was obtained in E.~ample 8.5.2.) I 

Svlv.: the control problems 1- S: 

1 . max f \e'x(r) - u (1}2)dr, x (t )"' - u (t}, x (O) = 0, x(2) free 
u(l) .. (-ro.-on} lo 

2. max { ' (J - rs(t / }dt, i(t) ,, .tUJ + u(t). x(O) ,:·. I, x(l) free 
r,(,)..:(-,")Q,.:io} }c . 

~ 3. min 1'rx(I) + u(r)2Jdt , i(r) '"' .. u( r) , x (O} = CJ, .t(l) fm: 
1ir(l)~( "C°'l.1•"") 0 . 

1
,0 

IS~ 4. ma> (1 -·· 4x(1) ·· 111(tf}d1, x{rl = u l.f) . .r(O) = 0, .tOO) free 
l'~! - 00.l)Q} 0 
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r 
~5. max. f (J'.·-r,2)111,:i:=.l-i-u, x(O)ec.,O, x(T)free 

fl(rJt"f-('l(:,l'Jl'.,).1 lo 

~ 6. (a) Wrirc down conditions (7) and (5) for the proolem 

1.;~.'!,\,fo\1t(K) - c(l)ldt, K ,., l -U, K(U) ,., K~. K(T) free 

Hen.: is an CX:1Jnomic in1crprera1.ion: K = K(r) denotes Ilic c~pical s1uck of a firm, f(K) fa 
Ilic production function. q is the price per unit of output, I ,·~ I (t) is investmem, ,:(() is 
the cost of irJVcsunem, ~ is the rare of depreciation of capir,tl. KO i, the initi31 capital s!ock, 
and T is Ill" Gud r,,lanrting horizon. 

(b) Let f(K) = K - 0.03K~. q = 1, c(/J = 11 , ~ = 0.(, Ko""' lO, and T = 10. Derive a 
second-order differentiltl equa1ion for K, and e~plain how to find the solution. 

Regularity Conditions 
In most application~ of control theory to ec()nomics, the control functions are explicitly or 

implicitly rcslricted in vnrious ways. For instance, u (t) :::. 0 was a natural restriction in 

the oi.1 extr.u:tion prnblem of Section 9. I; it means that one cannot pump oil back into the 
reservoir. 

In genernl, assume that u(t) takes values in a fixed subset U of the reals, called the 

control region. In the oil exn-i1ction problem. then, U = [0, ,:,o). Acnially, an important 

a5pect of control theory is that the control region may be a dose.d set, so that 11(1) c:an take 

vaiue.s at the boundary of U. (ln the cl.,ssieal calculus of variation, by contrast, one usually 

considered open control regions, although devcloprnems a.round ] 9:10-1940 paved the way 
for the modern theory.) 

What regularity .:ooditions is it natural to impose on the control function u(t)? Among 
the many paper.; in the economics literature that use control theory, the majority assume 

implicitly or explicitly that the control function~ are continuous. Consequently. many of 

our examples and problems will deal with continuous controls. Yet in some applic.ations, 

continuity is too restrictive. For example. the control variable u(Jl could b~ the fraction 

of investment allocated ro one plant, with the remaining fraction I - u(1) is allocatt"d to 

another. TI1cn it is natural to allow control functions that suddenly switch all the investment 

from one plant lo the nth~r. Because they alternate between e.xtremes, such functions are 
often called bang-hang controls. A simple example of such a control is 

f 
l for r in [10, t'J 

u(t) "" 
0 for I in (r', ri] 

which involves a single. ~hift 01. timer'. In this case u(f) is piect,wise cominuous, with a 
jump discontinuity at t = 11• 

By definition, a function of nnc variable ha.~ a finite jump at a point of di~continuity if ii 
has (finite) one-sidecl lim.its f:wm h<>th abovte ,uid below a1 that point. A fuu~tic>n is picce\fise 
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continuous if it ha., ,il mo~t a finite number of dfaeontinuities i.11 each finite interval, with 

finite jumps at each point. of discontinuity. The val11e of a control u(t) at each isolated point 

of dis;.;ontinuity will affl'Ct ocither the inregral objtc1iv<· nor the state, but let us agree to 

choose the v11h1c of u(t) at a point of di~continuity r' as the lefl-hand limit of u(r) at t'. 
Then u(1) will be lcrt~6ntinuous. a, illustrated in Fig. I. Moreover, if the o.1ntrol problem 

concerns the time interval [ to. lt ]. we shall assume thai- u (1) is continuou~ at both end points 
of this interval. 

What is meant by a ·•solulion'' of .i = g(1, x. u) when u "-' u(1) hiL~ tliseontinuirics'! A 

solution is a <'OntinaotL~ function x(t) that has a derivative thal sati,fie,; the equation, eJ1.cept 

at points where u(1J is discontinuous. Toe graph of x(t) win, iu general, have "kinks" at 

the points of discontinuity of" (t), and it will usual I y not be dificrenliable at these kinks. It 
is, however, still continuous at the kinks. 

For the oil extraction ptobleru in Example 9.1.2. Fig. I shows one p()Ssible control 

function, wherea.~ Fig. 2 shows the corresponding development of the state variable. The 

rate of extraction is initially a con~tant ur, on the. inlt.'fVal (0, 11
], then a different co11stant u 1 

(with u, < uo) on (t'. t''). Finally, on (t". T), the r~teof extraction u(t) gr.idually declines 

from a level lower than 111 until the field is exhausted at time T. Observe that the gcaph of 

x(t) is connected, but has kinks at 11 and t''. 

• • ur,~ 

u -~ u(I) 

~ 

"1 !'----.......... __ 
-;---;,-- ··-;.:, .,. 

Figure 1 

X K\ 
' 'X = x(/\ 

Li~--=---1· ' t' , ... 

Figure 2 

Sn far no restrictions have been placed on the functions g(1, :x, u) and .f (t, ;x, u ). For the 

anaJysis presented in this chapter, it suffices to assume that f', g. and their first-order partial 

derivatives w.r.t.. x and u are continuous in (1,x,u). '/11ese con1inuity properties will be 
i111plici1ly assumed from now on. 

Necessary Conditions, Sufficient Conditions, and Existence 

In static optimization tltoory there are du·cc main. types of rte suit tbat cau be used lo find p<.1~­

siblc global sol1Jtions: theorems giving nect:ssary t·onditions for optimality (typically, first­

order conditions); the.orems giving 8uffici.:nt conditions (typically, first,order ..:onditions 

&ul1plcmcntcd by appropriate con.:avity/couvoxity reqLtiremenls); and existence tlieorems 
(typically, lhe extreme value theorem). 

In. control theory the sicuaLion is similar. The ma,:,immn principle, in different versions, 

give.~ i1(1assary conditions foroprimality, i.e. condition~ that an optimai comrol mu.~t .,atisfy. 

T11ese conditinm do not guarantcte. that the m11ximi1;z1.ion problem ha~ a ~olution. 
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The second type of theorem consis~ of sufficiency re.<ults, of the kind originally clc­

vcloped by M:mgasarian. Theorems of this typ-0 impose certain concavity/convexity require-

1nen1s on the functions in vol vcd. If a control function u • ( r) ( with corresponding state 

variable x"(t) and adjoint variable p(r)) sati~fies the stated sufficient conditions, then 

(x •(t), u"(1)) solves the maximization problem. But the.se suf!icil,nt conditions are rather 

demanding. and in many problems there :UX' optimal solutions even though thl, sufficieni 

cc:>nditions are uot satisfied. 
f.xisteru:e theorems give conditions which ensure that an optimal solution of the prob­

le rn really exis~. The .:ondilions nl'.Cded for existence are less stringent than the sufficient 
conditions. Existence theorems are used (in principle) in the followiog way: One finds, by 
using the necessary conditions, all. the "candidates" for a solution of the problem. If the 

ex.istenc.e of an optimal solution is assured, then an optimal solution can be found by simply 

examining which of the candidates gives the largest value of the objective function. (Thi& 
direct comparison of different candidates is unnecessary if we use sufficient conditions.) 

The Standard Problem 
Section 9.2 studied a control probltlm with no restriction on the .:ontrol function at any 

time. and also no restriction on the st.ale variable at the terminal time; x(t1} was free. These 

fearures are unrealistic ill many economic models, as has already been pointed out. 

This section considers the "standard end-constrained problem" 

1
/1 

max • j(t, x(t), u(t))dt, 
,, 

(!) 

x(t) = g(I, x(I), u(t)), x(to) o: xo (2) 

with one of the follo'-"ing temlinal conditions imposed 

(3) 

Again.lo, t1.x0. andx1 are fixed numbers and U is lhdixcdcontrol region. A pair !x(t). u(t)) 

that satislics (2) and (3) with u(t) " U is called an admissible pair. Among all admissible 
pa.irs w.::. seek an optimal pair, i.e. a pair of functions that mnimizes the inte~T.il in (I). 

Tn order 10 formulate correct necessary conditions. we define the Hamiltonian a~ 

H (t . .t, 1,. p) ""pof (t, x, u) + pg(1, :t. u) i4) 

The new feature is Ehc con~tam number I'll in from of f(1, x, u). If Po I' 0, we can divide 
by p0 to get a new Hamilronia.11 in which po :.:: J, in effect But if Po "" 0, thi~ norrnaliiation 
is iwpossit>k. 

The following res\llt is proved in Fleming and Rhhel (1975): 

i 
; 
I 
I 

SECTION 9.4 I Th~ STANDARD PROBt~M 

Suppose that (x'·(t), u"(t)) is an optimal pair for the- staud,-u:d end-constrained 

pmblcm (l)-(3). Then the.n, exist a co!ltinuous function Pll) and a.number po, 
which is eitber O or l, ~uch that for all I in [to. It J we have (pf), p(r)) -! (0, 0) 

and, moreover: 

(A) The control u' (r) maximizes H(r, -~· (r). u. pll)) w.r.t. u F: U, i.e. 

fl(l,x*(t), u, p(l));::: H(r,x"(t),u·(r). p(t)) for all u in U 

(8) p(t) o: -H;<.1, .t•(r), u"(l), p(t)) 

(C) Corresponding to each of the terminal conditions in. (3) there is a traosver­

sality conditioo on p(t1 ): 

315 

(5) 

(6) 

i 
' (a') p(ti) no condition i (b') p(11) ::: 0, with p(ri) = 0 if x"(t1) > xi (7) 

L--·----~--~:~~-~~~=~--------··-----···-·--------··-----·------1 
NOTE 1 In ~om0 "biz.me" problems the conditions in the theorem are o.uly satisfied with 

po == O. (See Prohlem 9.) Note that whe-n po = 0 the conditions in the maximum principle 

do not change at all if f is replaced by any arbitrary function. In fact, when pr, == 0. then 

(5) takes the form p(r)g(r, ..i:*(1). u, p(r)) s p(t)g(r, x·(t), u'(t), p(t)) for all u in U. 
In the .. xample.s and problems to follow we sl1all assume withou1 pnJoj that Po = I. A..11 

exception occurs in Example 4 where we show the type of argument neede<l to prove chat 

Po "" I. ( Almo.~t all papers in the e.:onomics literature that use control theory assume that 

the pr.oblcm is "normal" in the sense that Po = I.) 
If x(t;) is free, then according co (7)(c'), p(t1) "'0. Sine.:. (po, p(r1 )) eannot be (0, 0), 

we conclude Ehat in tl,i, case p0 "'" I and Theorem 9. 2.1 is correct as stmcd. 

NOTE 2 lf the inequality sign in (3)(b) is reversed, so are the inequality signs io (7)(b'). 

NOTE 3 The derivative p(l) in (6) docs not necessarily exi~t at the discontinuity poinL~ of 

u'(r), and.(6) need hold only wherever u'(I) is co11tiJ1uo1L'<. If U is a convex set a.ud the 

function His strktly concave in u, one can &how that an optimal control u'(t) mu.~t be 

continuous. 

Tue conditions in the maximum principle are necc~sary, but generally not sufficieut for 

optimality. The following tbeorem gives sufficient conditions (a proof of the result is given 

in Se.ction 9.7. sec Theorem 9.7.l): 

ffll\.ANGA-SARIAN · ! 
Suppose 1hat (x•(1). 11•(.f)) is an admissible pair with a com:sponding. adjoint ! 
function p(I) such that the condition, (A)-(C) in Theorem 9.4. l are -~atisfied ! 
with Po :.::.· l. Suppose further that the control region U is convex aud that ! 
ii (1, x, u, p(t)) iHonc.avdn (x, u·1 for e.ve.ry r in {10, ii]. Then (x"(t'>. u"(t)) is \ 

L. __ ····---········· ~-~.::i=~I-~~~~---··--·· .. -·-··········-- _,,,,_ .... -· ·--·· .. ------·---·---- -- _____ I 
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"\.Vhen applying Theorems 9.4.1 and 9.4.2, we can often use the following approach: 

(a) For each triple (t,x,p), maximize H(t,x, u, p) w.r.1. u EU. In many cases, this 
maximization yields a unique maximum point u-== u(I, x, p). 

(b) Insert this function into the differential equations (2) and (6) to obtain 

i(r) = g(t, x(I), u(r, x(t), p(I))) and p(r) == -H;(t, x(t), u(t, x(1), p(r)), p(t)) 

This gives two differcnrial equations t() determine the functions x(t) and p(r). 

( c) The two constants in the general solution (x(I), p(t)) of these differential equations are 

determined by combining the initial condition x(to) == xo with the terminal conditions 
and I.be tnmsversality conditions (7). The state variable obtained in this way is denoted 
hy x•(,), and the corresponding control variable by u•(1) == u(t, x*(T), p(t)). The pair 
(x*(1), u*(t)) is then a candidate for optimality. 

Th.is sketch suggests that the maximum principle may contain enough information to give 

only one or perhaps a few solution candidates. 

· Solve the problem 

max f x(t) dt, .i(t) = x(r) + u(t), x(O) = O. x(l) free, u ~ [-1, 1] 

Solution: Looking at the objective function, we see that it pays to have x(t) as large as 
possible all the time, and from the differential equation it follows that this is obtained by 

having u as large as possible all the time, i.e. u(t) == 1 for all 1. So this must be the optimal 
control. Let us confirm this by using the maximum principle.. 

The Hamiltonian fwiction with Po = l is H (t, x. u. p) == x + px + pu, which is 
linear and b~nce concave in (.t, u ), so Theo~m 9.4.2 applies. TI1e differential equation (6), 
together with the appropriate version (c') of the transversality condition (7), gives 

fa= -l-p. p(l) == 0 

This differential equation is especially simple because it is linear with constant coefficients. 

According to (5.4.3), the general solution is p(t) ""' Ae-• - 1, where A is determined by 
0 = p(l) == Ae-1 - 1. which gives A = e. Hence, p(t) = e1-• - 1, and we see rhat 
p(t) > 0 for all tin [O, I). Since the optimal control should maximize H (t, x'(t), u, p(r)). 

we sc.c from the expression for H that we m~t have u'(1) = l. for all t in [0, 1l The 
correspnnding path x•(1) for the stare variable x satisfies the equation x'(r) = .x•(t) + I, 
withgcncralrnlutiunx•(r) ""Be' -1. Sineex*(O) = 0. we obtain B = 1, and so 

x'(r) ::::e.1 -1 

We see now that u•(t), .r•(1). and p(t) satisfy all the requirements in Th~em 9.4.2. We 

conclude !hat we have found the solution to the problem. I 
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(Optimal consumption) Consider a .;ousumcr who cxpcct.s to live from the present 
time, when t =- 0, until time T. Let c(t) denote his consumption e.,pemlirure al time, and 
y(t) his predicted income. l.et u,(1) demite his wealth ar ti.me I, Tiien 

ti,(r) == r(t)w(t) + y(1)-c(r) 

wher.e r(r) is the instanta1:1eous rate of interest at timer. Suppose the consumer wants to 
IIl3Xi.mize the ·'lifoiimc intcrtcmporal utility function" 

where a> 0, and u'(c) > 0, u''(c) < 0 for all c > 0. The dynamic constraint is(•) above. 

ln addition, w(O) ""' uio is given, and !here is !he terminal constraint w (T) ~ 0 preventing 
the consumer from ending in debL 

This is an optimal control problem with w(t) as the state variable and c(t) as lhecon1rol 
variable. We asswne that c(r) > 0, so that the control region is (0, oo). We will first 

<'harac1eri2.e the optimal conswnption path in general, then find an explicit solution in some 
instructive special ca.~es. 

The Hamiltonian for this problem is H(t, w, c, p) = e-a•u(c)+ p(r(t)w+ y-c), with 
Po= l. let c• = c•(1) be an optimal solution. Then H; = 0 at c•, i.e. 

e-<>'u'(c*(t)) == p(1) (i) 

Hence. the adjoint variahle is equal to the discoumed value of marginal utility. Also, 

p(t) = ···H:0 = -p(t)r(r) (ii) 

so that the adjoint variable decreases al a proportional rate equal to the rate of interest. 
Notice that (ii) is a separable differential equation whose solution is (see. Example 5.3.5) 

p(t) == p(O) exp [- fo' r(s) ds] (iii) 

Special case 1 (Constant con.<w11prinn): Suppose lhat r(t) = r, independent of time, and 
a = r. Then (iii) reduces to p(T) = p(O)e-rr, aud (i) becomese-" u'(c•(r)) = p(O)e-", 
or u'(c•(t)) = p(O). ll follows that c*(t) is a constant, c*(r) = c, independcm of time. 

Now(*) tiecome, 1v::::: rw + y(r) - i'. whose solution i.~ 

(iv) 

Because of (_7}1b'), the terminal constraint w•(T) ,:: 0 implies that 

p(T)::: 0. with p(T) :;;,.· 0 if u,•(1') > 0 
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It f'ollow.s that if w• (T) > 0, then p(T) "" 0, which con1Iadic1s (i). Thus wa(T) = O, so· 
it is optimal for the consumer to leave 110 legacy after time T. The condition w*(T) = o · 
determines tht.: optimal level of c, which is2 

c = 
1 

__ :-,1" [ U>o + foT e-"y(s) ds] 

Special case 2 ( lso~lasric utiliry ): Suppose tbat the utility function u takes the special form 

. (c-01-• 
1t{c) "" ---i-=-;- (e > 0; f. ,;t I) or u(c) = ln(c - 0 (v) 

Theo u'(c) = (c - £)-' in both cases, withe.= I when u(c) = In(c - .£.). Nore that when 

f. = 0, the elasticity of marginal u1i/iry is EI.,u'(c) = cu''(c)/u'(c) = -1;. 

When f. > 0, th.: level f. of consumption can be regarded a~ minimum suhsistence, below 
which consumption should never be allowed to fall, if possible. With utility given by (v), 
equation (i) can be solved explicitly for c*(1). In fact 

c"(t) = £ + [e"'1 p(r)f11' (vi) 

In order to keep the algebra manageable, we restrict attention once again to the case when 
r(t) = r, independent of time, but now r ;ii: a is allowed. Still, p(I) = p(O)e-'' and so (vi) 
implies that 

c*(1) = f + [/a-r)r p(O) rli< = f. + AeY' 

where A= p(0)-1i' and y = (r - c,_)/e. Then(*) becomes 

w = rw + y(r) - £ - AeY' 

Multipl}ing this fir.st-order cq11ation by tht.: integraling factor e-71 leads to 

Integrating each side from O 10 1 gives 

-·rt ) 1' .. ., C (. ') A [ ( 't] e w(r -wo= e y(s)ds-= 1-e-' ---1-e-,-YJ 
0 r T ·- y 

In paiticular, 

w(T) =- ,tr w0 + {T er(l'-s)y(s)ds - ~(e'T -1) - ~(e'T - e'r) J,i r r-y 

Again p(T) > 0 and thus m•(T) "". 0, so the optimal path involves choosing p(O) such that 
p(O) "'A-•, ~here 

1' 
r - Y [ T 1 ·rr ) · f ( 1· ] A = ----· e' WQ + e' _, y(t) dt '"'-=- t'7 - I) 

e'T - eYT o r 

lb.is is die .sam.: answer as that de,rived in Ei1.ample 2.4.2, equation (iii). 

EXAMPLE 3 
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There arc two significantly different cases involved here. The fin:t is when r > CY. and so 
y ;;.- 0. Then consumption grows over time starting from the level£+ A. But if r < a and 
so y < 0, then optimal consumptiou shrinks over time, This makes sense becaiJSc r <. c: is 
the case when the agent discounts future utility at a rate a that exet:cds the rate of interest. 

Tue previous case wilh constant consumption is when y = 0. The same solution emerges 
in the limit as e --,. oc, which represems the case when the consumer is extremely averse 

to fluctuations in cons11mption. 
ft is also wortfl e,:amining what happens to the sollltion as the horizon T recedes to 

infinity. The normal case is when r > y, which is always tiue when e ::=:: I; it i& al~o ttue 
when O < t < I and et > (1 -- ,;)r. In this noimal case, we see that 

as T -4 00- Using the method~ introduced in Section 9.11, this limit can bl! shown to give 
the solution to the infinite horizon problem. 

In the abnormal case when r ~ y. the limiting value of A is zero. Then the limiting val11c 

of c'(t) is the minimum allowable level f for all t. 1bis is the w<m.1 admissible consumption 
path: in fac1, there is no i11finite horizon optimum in this case, I 

Solve the following problem ( where the optimal control is bang-bang): 

Solution: The Hamiltonian is H. = 2x - .t2 + pu. so an optimal cona:ol u"(t) mnst 
maximize 2x*(r) - (x•(t))2 + p(f)u subjec:tto u E (-1, l]. Only the term p(t)u depend~· 
on 11, so 

1t"(1) = { I 
-1 

The differential equation for p(i) is 

if p(r) > O 

if p(t) < 0 

p(t) = -H;(I, x·(r), u"(t), p(t)) == 2x•(r) - 2 = 2(x*(r) -1) 

No1cthaLt"(t) =11*(r)::: 1. Beca.usex•(O) =0.itfollowstharx*(t) < I for all I in!O, l)_ 

Then(**) implie~ lhat p(t) is snictly decreasing in (0, 1]_ 
Suppose there could be a solution with p(l) ::=:: 0. Because p(t) is strictly decr~.a~ing 

in [0, l], ooe would bave p(I) > 0 in 10, l), and then(*) would imply lhat u•(1) = l for 
all I. 1n this case, x•(r) ::::: 1 for all I in f.0, l}. With x•(Q) = 0 WC get x*(r) *" I a.ud thus 
x*(l) = I, which i., incompatible with the t,mninal condition x*(l) = O. 

Thu.,, p(t) mu~t satisfy p(l) < O. Suppose p(t) < 0 for all I in (0, lj. Then from(*), 
u'(I):::: -I for all such t, so x*(r) = -r wjth x·(l) ~ --1, again violating the terminal 
condition. Hence, for some t• in (0, I), the function p(/J switcheli from being posit.iv<) (or 
possibly ~.em) to being negative. A possible palh for p(r) is shown in Fig. L 



320 CHAPH R g I CONTROL HIEORY 3ASlC TECHNIQUES 

t 
p(t.l 

-t-
! 
; 

1 
figure 1 

Recalling our convention that 1.1• should be kft-continuo1L~. we have u•(t) = 1 in [O, r•] 
amlu'(t) = -1 in (t', lJ. On [O, t'), therefore, x•(t) = 1, and with x"(O) = O this yields 
x•(t) = t. Since x•(t) is required to be continuous at 1•, we havex'(t") = x~(t._) = t*. 

Jn (r*, lJ, we havex•(r) = -I, so x•(t) = --t +c for some constant C. Becausex*(t) 
is continuous att•. x*(t"+) = x*(1') = t*, so C = 2r•. Hence, x*(t) = -t + 21•. Then 
x •(I) = 0 implies that r• = 1 /2. We conclude that the optimal solution is 

11"(t)={ I 
-1 

in [O. 1/2j 

in (1/2. Ij 
x'(r) = { 

1 

t -t 

in [0, 1/2) 

in (1/2, I] 

To tind p(t), note that p(r) = 2x•(t) - 2 = 2t - 2 in {O, 1/2]. Because p(l/2) = O, we 
have p(r) = t

2 
- 21 + 3/4. In the interval (l/2, IJ, (**) implies that p(t) = -2t and, 

because p(t) is continuous with p(l/2) = O. the adjoint function is p(t) = -12 + I /4. For 
this function p (t} the maximum condition ("') is satisfied. Since the Hamiltonian is concave 
in (x, u), we bave found the optimal solution. I 

The fust examploo shows a rypical kiod of argument needed to prove that po "F O. 

EX.t\MPH 4 Conside1· EJ<ample 3 again. including the multiplier p0, the H:uuiltoni.m function (4) is Ff = 
p 0 (2x - xz) + pu, and the ,tifferemial equation (6) for pis p = -H; = -pn(2- 2x"(r)). Suppose 
po= 0. TI1cn p = 0 ai1d sop is a C-Onstant, ;;. Bo-cause (po. p(1)) == (po, p) f,. (0, 0), tb.atconst,mt 
pis nor 0. Now.an optimalcomrol must maximi~e pu = pu subject 10 u '= [-1. I]. If p :> O. then 
obviouslyu•(n = 1 forallrin[O, I]. Thismcanslbali*(t):s- l,withx'(O) =O.sox'(1)"' t. lbis 
violare;, 1he tenninal condition.c"(l) =: 0. If p < 0, the11 obviously u'(r)., -1. and i'(t):,, ... J for 
all I in [0, !], with x•(O) = 0. There.fore x*(t) = -t, which again violates 1h,: terminal C<.'ndition. 
We conclude that po = 0 is impossible. so p0 = I. I 

PROBI EMS fO R StCTION 4 

1. What is th<! <>b•ious solution to the pl'Obkm 

r 
max 1 xcr)dt, i(t) ,,., u(i). x(O), ·· 0, x(T) free, u(t) E [0. I] 

where 1' is a filtcd positiv~ constant'! Compute ti.; associar.c-.d value, V('t), of the ot>jective 
func1i,•n. Fi111! the solution also by usiug Thecrn:m 9.4.2. 

SECT!Q!>i 9.4 I ,Ha: S7ANDARO PROSLE!v1 

@!l 2. Solve the prol)lcm: max [1 (I - x2 - u2) dt. ; = u, x(O) ,.,, 0. x(l) ;;: 1, u E ~­Jr. 

@ 3. Consider th.: proble_m in Example 9.2.1. 

(a) Replace u F. R ~ u E 1.0, l] and find the op:imru -solution. 

(b) R~pla.;:e ,, € R by u E f-1. I] and lint! rho! optimal solution, pro"iided T > 2. 
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® 4. Solve the following problems ai1d compute tl1e corresponding values V of the ohjectivc fu11c1ion. 

(a) max · x.it .. i=u, x(0)=-0. x(I.O)as2 1
'0 

••('l.lJ o 

(b\ max fT xdt, ;=u, x(O)=xo, x(T)-=x1 (with.:to <x, <xo+T) 
· -~ro.11}0 

S. (a) Given rhe fi.J.ed positive number T, wriue down lbe ~·ooditiotL< in Theorem 9.4. l for the 
problem 

max 1T --(u2 + x 2)d1, i <= ,w, x(O) = I, x(T) free, u(1) E (0, 1] 

and tirui the solution when a ?; Q_ 

(b) Find the solution if a < 0. (Hint: Try u"(t) E (0, 1) for :ill 1.) 

® 6. Soh•c 1h.o following spt,-cial case of Problem 1 in E~ample 9.1.2: 

m:tx 1\ !Ou -- (11 2 + 2)le··O.lr dt, .i: = -u, x(O) = IO, .\'(5)::: 0, u 2: O 

® 7. (From Kamien and Schwa,:,:,. (1991).) A firm ha.s an order of 1J units of a commodity 10 be 
delivered at ti1J1c 'f. Let x(t) be the slock al time t. We a.,sume thal. the cosl per unit of time 
of storing x(t) units is ax (I). 'The increase in x(J), which equals production perunit oftime, is 
u(t) = x(t). Assume tb.,t the total cost of production per unit of time is equal to b(ult))2. Here 
a an<l b ;,re po,itive conslnuts. So the firm's COS! mininti:1.1tion problem i., 

min r [ax(t) + bu(1)2]dr, i(IJ == tt(I), x(OJ = 0, x(T) = B, u(t)?. 0 
-0 

(a) Write down tht: ncwssary conditions implied by Tbeotcm 9.4. I. 

(b) find the only possibli;: solution to the problem and explain why it really is • solution. (Hint: 
Distinguish betwr.:cn tlu, casi:.s B ~ aTZ /4b and B < u'f2 /4b.) 

@ 8. Find the only posiible solution to lhc problem 

max J.\xz-1u)d1. i = 11, x(O) = I, x(2) fl'ee, u E [0. l.] 
(o 

(Him: Show lbill p(t) is strictly decreasing.) 

9. Consider the pr,)hicm lllax fd -u dr, x = u2, l'(O) '"' .t(l) = 0, u E R. 

(a) Explain why 1<'(1) "_t•(1) ,., 0 s,:,lv~s the problem. 

(b) Show th.at lbe conditions in the maximurn principle are satisfied c111I y for Pu = 0. -- -_ . - - . . - - ... -. . -_. . . 
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9.5 The Maximum Principle and the Calculus of 
Variations 
The introduction to thi~ chapter claimed that optirn.'\l control theory ex.tends the classical 
ca.le ulus of variations. Consider what the maximum principle has to say about the standard 

variational problem 

I 
(a) xv,) = xi 

x(10) ""'xo, (b) x(r1) ~ x, 

(cl x(r1) free 
1

,, 
max , F(t, x(1), .i(r)) dt, (1) 

whe.rc one of the alternative conditions (a), (b), and (c) is imposed. To transform this to 
a control problem. ~-imply use u(r) = x(t) a~ a control variable. Beca.u.~e there are no 
restrictions on x (1) in the variational problem, nor are there any on the control function 
u(t). Hence, U = R. 

The concrol problem has the particularly 8impl.e differential equation .i(t) = u(t). The. 
Hamiltonian is H(r, x, 11. p) = poF(t, x, u) + pu. The 1naximum principle states that if 
u"(r) solves the problem. then I/ as a function of II must be maximized at u "" 11'(1). 

Bee a use U = R, a necessary c:ondition for this ma.x.imum is 

H~(t, x'(1), u'(i), p(r)) = por~(1,x*(1), u'(1)) + p(r) = 0 

Since (p0 • p(1)) ¥ (0. 0), equation (*) implies that po ,fa 0, so p0 = I. The differential 
equation for p(r) is 

p(t) = -H;(t . .x*(t), u*(t), p(t)) = -F;(t, x"(l), u•(r)) 

Differentiating ( *) with respect to 1 yields 

:t ( Fi (t, x*(I), u•(r))) + p(t) = O 

Since u' = .i', ii follows from(**) and(•**) that 

F; (t, x·, x•) - ~(F_;(1, .r*, i')) == O 
dt 

which is the Euler equation. Moreover, ( *) implie.s that 

p(t) = -F;(1, x•, x') 

(2) 

(3) 

Using ('.l) it is easy to check that the transversality conditious in (9.4.7) are precisely those 
set our in Section 8.5. Note also that concavity of the Hamiltonian with respect to (x, u) is 

e,.1uivalent to con.:avity of P(t, x, x) with respec;tto (x, x). 
Thus the maxim.um principle confirms all the ITlilin result5 found in Chapter 8. Acnially, 

it contain., more.information abollt the solution of lhc op1imization problem. For instance, 

according to the maximum principle, for every tin [to, ti] the H3miltonian att~ins its max­

imum at ,,•(1). Assuming lhar Fis a C 2 function, not only is u; = 0, but al,o H:. :;; O. 

implying that F('., :5 0. This is the rn-called Legendre condition in the calculus of v:iri­
ati<m.s. (Also, continuity of p(I) and (3) together ~ive the Weierstr-Erdma1m comer 
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condition. re.quiring Fl to be continuous a, a function of I. This is a well-known tesult in 

the classical theory.) 

@ 1 . Find the. only possible s0Ju1.ion to the folluwing prol>Jem by using both the calculus of variations 
and control theory: 

x(O} = 0 . .t(l) = J 

@ 2. S,)l11e the following problem by using both the calculus of variations and control lhcory: 

max j~\3- xz -2.i:2)dt, x(O) = I. x(2) ~ 4 

iI9> 3. Solve lhe following problem by using both Ille calculus of variations and control lbeory: 

fl · •2) -tjU: t max Jo !.-2.x-x e ,t, x{O) = 1, x(I) = 0 

4. At time 1 = O an oil field is known to contains x barrels of oil. It is desired to e.xtract al~ of lbc 
oil dwing a given time interval [0, 7"). Tf ,:(r) is tht amount of oil left at time. t, tbco -x 1s the 
ext1action rate (which is?; O when x(t) is decre;ising). Assume that the world market pn~e pet 
b,urel of oil is given and cq1L1110 ae"'. 111e e.~tr.iction costs per unit of time. are assurncd to be 
:i:(t)2eP'. The profit per unit of time is then ,r = -.t(r)ae"' - .r{1)2e~'. Here a, a, and /J are 

constants, a > 0. This leads ta the vi1ria1ional problem 

1
T 

. . u• · 2 1 -n max c [-xv)ae · - .x(t) e~ ]e d1, x(O) = .i. x(T) = 0. 

whci:e r is a positive constant. Find the Euler equation for problem (,c), and sh<>W lhat ar lhe 
optirnum 3;r /"J.r "'ce" f<.>f some constant c. D<--rive the same result by using conttol lheory. 

5. S. Stnlm consid<.>rs the prob!.-:m 

max lU(x(t)) -b(x(r))- g~(r)\dt. z(t) = ax(1J, z(O) "'zo, z(T) flee L
r 

,. 0 

Herc U(.x) is the utility enjoyed by society consuming x, whereas b(x) is total ..:ost and z(r) 
i.\ the stock of pollution iit timer. Assume that U a11d b satisfy U' > 0, f.!'' < 0, b' > 0, and 
b" > o. The ..:ontrol variable ;s .t(r), whereas z(r) is the stare variable. The cons1ant~ a and If 

are po~itive. 

(a) Write dowo the conditions of the maximum principle. Show that the adjoint function is 
j!'.iven by p(r) = g(,· - 1"}.1 E (0. Ti, and pmve th.ii if .x'(1) ~· 0 ~olves the problem. then 

U'(x'(()) ,.· /1\x"(t)) +ag(T -1) 

(h) Prove th>tf. a solution of(•) with x'(t) > 0 mu.st solve lhc problem. Show tha,l .,"(1) is 
stri.:tly incri.:asing. (llinl: Dill'crcntiatc ( •) with r<\$poct to r.) 
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9.6 Adjo int Va riables as Shadow Prices 
L ike tbe Lagrange multiplier~ used to solve static constrained optimization problems :in 
Chapter 3, lhe adj oint fll!lction p (r) in the roa:timum principle can be given an intem.tiug 
prke inrerpretatiou. 

Consider the standard end-constrained problem (9.4.1)--(9.4.3). Suppose that it has a. 
u nique optimal solution (x ' (t), 11' (t)) v,ith n un ique corresponding adjoint function p(t). 

The corresponding value of the uhjectivc function 'l\·ill depend on xo, .xi , to. and ft , so it is 
denoted by 

V(xo,x1, ro, 11) "'i1

' f(t . x• (1) , u ' (r)) d t ( I) 

We call V the (optimal) valnc function. (\','hen x (r1 ) is free, x1 is not an argumeut of V .) 
Suppose xo is changed sl ightly. In general, both uk(t) and x"(t ) will change over tbe 

whole interval (to, t1l For typical problems in control theory, there is no guarantee that V 

is differentiable at a particular point. But at any point wb.1--re it is differentiable, 

J V(xu . x1, to,t1) ( 
. = P Jo) 

oxo 
(2) 

T he number p(to) therefor~ measures the marginal change in the optimal vulue function as 
xo increa.o;cs. 

In Example 9.2.l thti obje,::tive function was f.{[1 - rx (t ) - u(r)2] dt , and the ~olution 

was 11• (t) = - !(T2 - 1
2
), .x•(I) = .ro - l T 2 t + i t3. with p (t ) = -!(T2 - 12) . So the 

value function is 

This last integral could be evaluated exactly, bllt fortuuately wc do not ue<.>.d to. Instead, 
silllply differentiating V w.r.t. xo under the in1egral sign using formula (4.2.1)·gives 

ilV(xo , T) Lr i 2 - ---·· = ( -t)dt = ·- - T 
nxo O 1 

On the other hand, p (O) = ·-! 7"2, so 12) i~ couftnned. 

Formula (2) interprets p(t ) at time t """ ti). What about p (,) at an arbitrary 1 E (to, r1)? 
We want an interpretation thai relates to the value functioo fo~ the pmblew defined over 
the whole interval [to , tt.i, not oal}' the subinterva \ [r, It ]. Consider again problem (9.4.1 }­
(9.4.3), but a~~~1mc that all admissible paths x tf) of the state variable are force,] to hav<:. 
a jump equal to v at t C: {to. t1), so that x (1t') · - x(t- ) = v. Suppose all admissible x (r) 

arc continuous elsewhere. The optirn.il 'lialue function V for this problem will depend on v. 
Sup pose !hat (x•(t) . u• (r )) i~ thr, optimal solution of the problem for v = 0. Then, under 
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ce11ain co.ndili<:>os, it can be sbown that V as a function oft> is defined in a neighbourb,)Od 
of v = 0, that \I is differentiable w.r.t. v at v = 0, and that 

(~v) = p (t) 
av u~n 

(3) 

The adjaim variablt' p(t ) is the firsr-order appmxim ate chanxe in the \l(J/ue f unction ( I ) ,Jue 
to an enforced u11i1 jump increase in x (I). 3 

A General Economic Interpretation 

Consider a firm that seeks to Ulllimize its profit over. a planning period lto, 11]. The stare of 
che firm at time t is described by its capitlll stock x (1 ). At each time t the finn can inlloence 
its immediate profit, as well as the cbau_ge in its future capit.al stock. Suppose the firm can 
choose its control variable u(t ) within cectain limits, so that u(r) e U = (uo, u1l Let the 
profit flow at time I be f (t , x(t ), u(t)) per unit of time, so that the total profit in th~ time 

period [to, 1d ~ 
f'' ] ,,, f(t , x(t) , u (r)) dt 

The rate of change in the capital stock depends on the present capital stock as well as on the 

value chosen for u (t) at time I. Thu~, 

x(r) = g(1, x (t ). u(r)), 

wb.ere xo is the given capital stock at time 1 = to. The control variable 11(1) not only 
influences the immediate profit but also, via the differential equation, influences the rote of 
change of the capital stocl<. nnd cheteby the future capital stock, which again changes the 
total profit. 

Suppose we have foun<l the optimal ,;ofution to this proble111, with corresponding adjoint 
function p (r). According to (3), p (1) is a .. shadow p rice" of the capirol stock variable, 
since p (r) mea.5ures the marginal profit of capital. The Hamiltonian is H = f (t, x , u) + 
p(t)g(t, x, u). Consider a small time ioterval [t . t + tJ.t] . Over this time interval. Ax ''" 

;:(t ,x. u) At and so 

H D.( = f (t. X, u) D.I + p (t )g\l, .t, u) Ar"-:: f(t , x . 11) d/ + p(I) b.x 

Hence. H t.r is the sum of the irn;tantancoo.~ profit f (t , x . u) Ar carocd in !he time interval 
[t, r + Al J and the contributim1 p (I) b x to the local profit produced hy the cx1ra capital t.x 
at the end of this time period. The rnax.iwum principle rt'.quires choosing at each tune the 
value of u th:ll maximizes Ii , and bencc H t, 1. 

- - --···-- - - -
3 J'~omists have reaJi:1.ed for a long time dlil\ the adjoiot <.:an be imerprc!<-...1 as a shadow priC<' .. 

l)orfmnn ( 1.%9.l hns an illumina1iog di~ ussion ou die ecooom.ic lrucrpretations, extemliog the 
material in lhc rw:xt subsection . For pred.~ results and n,fereoC'e~. :l<"'e .g. Seiec~ia.l ar.<l Syds-Etl'r 
(1987). 
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EXAMPtf '2 

Other Sensitivity Results 

Con sider once a!:ain the .slillldard eod-constraine<l problem (9.4.1)··(9.4.3) and its optimal 
value function (l). It men~ out !hat, p{Ovidcd V is difkrcotial:i\e, the effect, ..in 'V of small 
changes in xr , ro, and 1, can also be <',Xpre,,~cil very simply, Define 

W (;) ,., H (t , x' (t ) , u•(1), p(t)) {4) 

Then 
av av av H· av • ) - ""p(to.J, - ""' - p (tc ), -;:- = - (to) , - = H ( 11 (5) 
Jx0 ilx: 010 itt, 

The first of these equ:1lions w.is discussed abO\'C. k for che second, it is like the first, except 
that requiring tbc statext ro be larger at time t1 has an effect that is th.: oppositcof allowingx0 
to b e IMger at time to. For example, in the capital accumulation interpretation in the previous 
subsection, increasing the initial capital stock xo by one unit. inere.ascs the total profit by 
apptomJJately p(ro). On d.te other hand, i»creasing the capital which must be left al the e.nd 
of the plannins period 11 dtcreases the total pr<>fit earned by approximately p (t1 ). The third 
cqu ality is .similar 10 the fourth except for the cbange of sigo. In the capital accumulation 
interpretario11, increasing 11 makes the planning period longer and the iotal profll increases 
(if the instantaneous pro fiL is positivt). On the-other baI1d, mcr~sing 10 m.'lkes the planning 
period shorter. so the total pr.CJ lit docrea.,es, The last equality is illustrated in thtoncxt example. 

NOTE t Consider the standard end-constrained problem with x(tt) free. Tf (x' (t), u• (r)) 
is an optimal pair with COtTesponding adjoint function p (I), then according to condition 
(9.4.7)(c'), p(t1) "" 0, This makes sense because of the second formula ill (5) and the 
econornic ioterpremtion abo, e: if there is no rea,;on to care about the capilal stock at tho 
end of the planning ~riod, its shadow price should be equal to 0. 

Verify the last equality in (5) for the problem in Example J. 

Solution: Diffefentiatiog the value fw,ction V (x0 , T) fron1 Example I w.r,t. T, using the 
Lei bniz. rule (4.2.3) yields 

J V 1 • 4 t 4 1T 1 2 · J 2 2 ] -· =1- ,·or +~t - ·-T + [-11 - - (T -t )2Tdt ar · • 12 
0 

2 s 

Integrating aud simJ)lifying give~ 

av 1 4 -- = 1 - xoT + - T iJT o 

Now, H'(T) -== I -Tx'(7') -- (u' (T))' +p(T)u ' (Ti =c.: J - xoT + ! T4. bccsnseu' (T) ""0 
~nd .r. • (7') ....,., xo - t r 1. Thus the l:i.~t rcsu.lt. in (5 ) is confirmed. I 
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E AMl'H 3 (Economic growth} Consider the followi.i1g problem in ei:onomic growth theory due 
to Shell ( 196 7): 

·1' 
1113., I ( I - s(r))cP' f (k (t))e ... ' dr 

lo 
s.f. k(r) cc: s(t)eP' J (k(t)) - J..k(r), k(O) = 14), k(T) ~ kr > ko, 0 :, s(t) :::, l 

Here k (t ) i.~ the c:ipit..-il stock (a s l.a!e variabfo), s(t) is I.he saviDgs rate (a control varfablc), 
and / (Ir.) is a production function. Suppose that f(k) > 0 whenever k ?.'. kQe-;,7 , that 
J'(k) > 0, and that /1. 8, )., T , ko, and kr ure all positive constants. 

(a) Suppose (k ' (1), s'(t)) solves d.te problem. Wrire down the conditions in the lll.aJdmum 

prini:iple in thls case. V..nat arc th.c possible values of:;' (r)? 

(b) Put p = 0, / (k) = ak, ti > 0, 8 = 0 and). = 0. Suppose tha1 T > I/a and that 
k;,,e4

T > kr. Find the only possibt..: solution t () the problem, distingtiishing. be-tween 
two different ca.~e.s. 

(c) Compute the value function in ca,e (h) and then verify the relevant equalitie~ in (5). 

Solution: (a) The Hamiltonian is H = (I - s)e"' f(k)e4• + p(.rc"1 / (k) - ).k) , 

If (k'(r) , s•tt)) solves the problem, then in particular, .r• (t) must solve 

rna.x. (1 -s)e.P' f(k' (t ))l,' ''1' + p(1)[seP'f(k*(1)) - Ak' (r)] subjectto s E [0, l] 
s 

Disr.eganling the terms that do uot depend on s, s•(t) must maximize the cxprc, sion 
eP' f(k• (r))(-e .. 61 + p(t))s for .v E [O, lj, Hence, wt1 muse choose 

{ 

1 if p(T) > e-lil 
s· (t) = 

0 if p(t) < ;;-St 
(i) 

A pos,.;ible opcimal control can therefore only take tht: values I and O (excq,t if p(t ) = e-Jr). 
Except where s*(.f) is discontinuous, 

p(r) = - (1 - s · (t })e'" J ' (k . (t))e-& - Ptr}s· (t)eP' / '(k. (ti) + J.p (r) 

111c trnn.svet:<;ali1y condition (9.4.7)(b') gives 

p(T) ,: 0 with p (T) "" 0 if k•(1') > k; 

for 3 more extensive discussion of the model, see Shell (1967). 

(h) Briefly founulatoo, the problem reduoos to 

l' 
ma'!( 1 (I - s)ak d t , k ::::. a.,k, k(O) ~ kc;, k (T) ~ kr > ku 

with I e; 10, l}, a > 0, T > 1/a., and /qie.~r > kr. 

TtJe Hamiltonian is Ji "-' (1 - s)ak + pask. TI1c differential ~qualioo (ii) h nnw 

p (t ) "" - a + s· (r)a (J - p(t}) 

(ii) 

(iii ) 
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whe.reas (i'l illlplies that 

From (iv) and (v) it follows that 

{ 
1 if p (t ) > I 

s*{r) = 
0 if p (r) < 1 

p(.1) ::.: - a < 0 if p(I) <. I , wherea, p (r) ::: - ap(t) if p (<) > 1 

In Ix.1th cases j,(t) < 0, so p(t) is striclly decreasing. 

(v) 

(vi) 

Suppose p(O)::, l, which implies tbal p (r) < l lhroughout (0, T) . Then by (v), s•(r) s, 

0. and so k*(r) '!!! k.J, which contradic t.:, k ' (T) :;: k1· :• k.J. Hence, p (O) > 1. Then the.re 
arc two possible paths for p (t ) , which are shown in Fig. 1. Io the tirs l c:i.-:e p (T ) = 0: in 
the secood case, p(T) > 0. 

Figure 1 Two po.,;siblc paths for p(t) . 

Case I: p(T) = 0. Sini;e p(t) is conlinuous and strictly dC(,Tea.5ing wilh p(O) > I and 
p(T) =: 0, there is a unique r. in (0, T) sucb thal p(t. ) = 1, with p(t) > l in [0, t ,) 
and p (t ) < 0 in (I. , T]. Then s'(t) = l in [O, 1.) and s ' (t ) = 0 in (t. , TJ. By (\i) , 
p (<) = -ap(t) in [0, t*) an<! p(t ) = -a in (1~ . T]. On (L. , TJ, we have p{t) = - a(t - T). 
b ecause we have assumed p(T) = 0. But p (t~) = 1, so I = - a(t. - T), implying that 
t~ = T - 1/a. Furthermore, p{t) = ea'.l'-r)-l on [O. T - 1/a]. This g.ive~ the following 
solution candidate: 

For t e [O, T - l/aJ, s*(t) = l , k' (t) = koe'" , and p (t ) = e0 fl"-i)- I (d i) 

For r E (T - 1/ a, Tl, s• (1) = 0, k·v) = koe"r~•. and p (t ) = - a(r -T) (viii) 

It remains to chcckthatk' (T) ~ kr. This reduces to koe•T--1 ~ kr ,i.c. koe••. ~ kr. The; 
latter inequality holds if and only if 

(ix) 

Ca~e fl : p(T) > 0. ln this ca.,e, by (iii), k• (T) : kr. Cf it were true thal p(T) ::=: l , then oue 
would have p(t) > I and sos•(1) = I foraH tin [O. T ), i.Jnplying thatk' (T) = k0 e"1. > kr, 
a contradictioi1. So there exists a unique r• in [0, T) such that p(t' ) = I. Similar arguments 
to those, for ca.$e I su~e.~t tbe following as an optimal $Olution: 

For I<': [0. t* ), s• (t) "'J, k* (t ) = fcoe"'. and p(t) "" e.0 r1• ··
1> (x) 

For t c. (t ' , T], J' ' (t) = 0 . .l:' (1) = koe"'· . and p(r) .a:. J -a(1 •· , •) (xi) 
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From k'(T) ::, kr it follows that e•1
' = kr/ ki:,. so 

. I (kr) t = -Ju -
a ko 

(xii) 

We note thal r• < T is equivalent lo koc"" > kr, as a~surned • . .<!JJ of this was derived under 
the as$umption that p (T) '> 0, i.e. l - a(T - 1•) > 0, which give.~ 

(xiii) 

Putting the two cases toge~, the.re is only one solution candidate, with 

s•(r) = 1 if t E [O,il, s• (r) = 0 if I E (i, T ) (xiv) 

wherei ::: max {T - 1/a, (1/a) ln(kr / ko) }. 
1n Eumple 9. 7 3 we shall prove thac this is the optimum. 

(c) For case I in {b) we have 

1° 
V(ko, kr , T ) = [ akoeaT- l dt = akQeaT - l [T - (T - 1/ a)] = koe"r - i 

l r- 11a 

so ilV /cko = e·7 •· 1 
:i:: p (O), using (vii). Also av /<lkr = 0 = -p(1') . Finally, W (1') = 

(l - s•(T ))ak'(T) + p(T)as"(T)k"(T) = ak"(T) = a k(ieaT-I = iJ V/!JT. 
For case II, 

1T _,,,• ar• • ( I l ) 
V(k-0, kr , T ) = akoe· dt = akoe (T - t ) = akr T - - lnkr + ··· lnko 

• a a 

Heoce a V /i>/1.o = kd ~. and we see that p(O) = e•1
• = kr / k,, also. Moreover, av /ukT = 

a(T- ! lnkr + ! lnko)- 1 =a(T - 1' ) - l.and - p (Tj = a(T - r' } - l also. Finally, 
cl\l ;ar = akr and H' (T ) = ak'(T) == akoe"'' = akt,(kr/ko) = akz-. I 

PROBLEM<, FOR S~C'I ON 9 b 

~ 1. (a) Solve tl:Je cunttol problem 

r 
rnaxl (x - {u2)dr , x = u, x(O) ·" -'O· r( r} free, i<(I) t;; R 

0 • 

(b) Compute !be optimal value funcii,,o V (xo. T). ,uid verify Lhc n:k:vam equalitic~ in (5). 

2. Verify th~t V'(T) = R"('l') for Problern 9.4. 1. 

3. Verify (5) for Plot,lem 9.4.4(b). 
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HARDER PROBLEMS 

@ 4. (a) Given the r;>ositive constant T, fini.l the only pcssiole. sohition to the problem: 

max f\1..,2e- 11 - ue') dt, .i =. 1u' . . ~{0) "-' I , x(T)fre.:, u E [O, l ] Jo 

(b) Compute tllt: V111uec function V (T ) and wnfy that V'{T) = H'(r). 

5. CoIU1iJcrthe pr<>hlem max J~ ux dt , .i = 0, .t(O) = .<o, x( l) free, "E fO, I). 

(a) Pcove tb..c if .f-0 < 0, Chen the optimal coolrol is u' = 0, and if xo > 0, !lieu the optimal 
control is u• = I. 

(b) Show that the "alue function V (.ro) is not dilforer,tiable al .xo "" 0. 

9. 7 Sufficient Conditions 
The maximum principle provides necessar)' conditions for optiml\l.ity. Ouly solution CM· 

<lidates fulfilling these necessary conditions can possibly solve the problem. However, the 

xnaxilnum principle by itself cannot tell us whether a given candidate i.s optimal or not, nor 

does it tel l us whelhe~ or Mt an optimal solution e.xists. 

. The following result, originally due to Mangasarian ( 1966), has been referred co before 

(TI1eorem 9.4.2). Io fact, it is quite easy to prove. 

THEOREM 9 7 T (M ANGASARIAN) - ··-----·--····------- ~-·- --- - ---- 1 

Com:i<kt the standard end-<Xlnstra.i.ocd problem (9.4.l}--{9.4.3) with U an inrer· 

val of the real line. Suppose the ac.lruissible pair (x · (1), u•(t)) sati$fiCS all the 

con<litious (9.4.5)-{9.4.7) of lhe maximum principle, with the associated adjoi.!lt 
function p(r), and with p.1 = L Then, if 

H(r, x, u, p(r)) is concave w.r.t. (x, u) for all I i.o fto , t1] 

the pair (x*(r) , u ' (t)) solves the problern. 

If H (t , x, u, p(t)) is stric:tly concave w.r.t. (x , u), then the pair (x' (t), u•(r)) is 

the unique solution tu the problem. 

I 
l 

i 
! 
I 
I 

(I) 

NO TE 1 SupposethatU j,- an open inccrval (u,) , ll j) . Then the concavity of H(t , x, u, pl()) 

in u implies that the tnax.iotlzation condition (9 .4 .5) is equiv:\leur. 10 the first-(1rdcr condition 

!Jll'/ou = i:IH (1 , ., • (1) , u'V). p (t))/3u = 0. (Sec The.on.-;m :U.2.) The coacavity of 

H (1, x , u, p (:)) in (.x . u) i~ satisfied, for e~ample, if f and pg arc 0011cave iD. (x. u), or if 
f is rnncavc an<l g is linear iu (x, u). 
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Supp<ise that U = (uo, ui). lf u' (tJ E (u0,u i), then 'd H'/<111 = 0. Tf the lower limit 

u, (t) = uo ma.tiini:ws tile Hamiltoni&n, then aH• ;au :: U. becausc.oihcrwise if ,iH·' / J1, > 

0, then the H amiltonian would attain greater values just LO the right of u0• lf tbe upper liwit 

u'(t) "" u1 maxiru.izes the Hamiltonian, then we see in a similar way that r)lr /iJu ~ 0. 

Because rht> H:uuiltouiah is concave io u, it follows that if U "' [uo, u i], then the maximum 

condition (9 .4.5) is cquiva/em to the condition$: 

! 
-:- 0 if u'(t) :a uo 

:JH' ., 
Tu° = 0 if u' (t) € (uo, u t) 

~ 0 if u ' (t ) == u 1 

These conditions are illustrated in Fig . l. 

II H 

1 

i~ I (T' 

H • 

71 
1 : • 

(2) 

+--t .. ,,, ;,--· i ! l -· j- ,- - - -,-u 
UQ t.t t 

I i 
·~ -··•·-~IC-1- ..- u 

u'(c) = u0 u'(I) E (uo, u1) u· (1) = "t 

Figure 1 

If the Hamiltonian i~ concave in u, rile maximization condition iu t9.4.5) can be replaced 
by tbe inequality 

(3) 

If u•(r) E (uo, u1),condition(3)rcduces to 8H'/3u = 0. lfu*{t) = u0 , theo u'(t) - u = 
uo - u < 0 for all II in ( 110, uiJ, so (3) is equivalenr to a H· /3u :: 0. Ou the other h311d, 

if u'(t ) = u1, then u'(r) - u = u1 ·- u > 0 for all u in [110, u1), so (3) is equivakut to 
aJJ• ;au ;~ O. 

Praof of Theorem 9.7. 1: Suppose tha1 (x , u) "" (x(t), u (t)) i, an arbitrary alternative ad­
missible puir. We ruust show that 

1~ r 
D. :: J. f (1, x•(1), u•(t))dt · · f,, f(t.:r.(t),u(t)) dt2:_0 - -~ 

First, simplify notation by writi ng ff• i.oste.id of H(t. x'(r) , u•(t). p (t )) nod H instead 

of H (t , x (t), u (t). µ( t)), etc. Then, using lhe definition uf the H ruuiltoniau and the fact 

th3t x•(t ) = gt(, .t " (t). u'(T) ) and x (t ) =:. g ( t , .t (I), u(t )), we have r == H· - p.t· and 

f = H - pi:. 111\~refore, 

o. = 1'; ( H • - If) dr + f" fl.i - x· J de 
fu ]," 



I 
I 
! 

I 
j 
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Be.cau~e I( is concave in (.r, u), Theorcm 2.4.l implies that 

iJH• c!H' 
H - H' .:S --(x -x·)-1· ·-(u-u*) 

o.r Ju 

Now, j, ""7-o!L'(Jx,so (*) and(*"*) together imply that 

D , 1''[·< *) (" ·•Ji 1'' aH• ,.,:: p_x-x +p_x--x) ,1+ --(u•-u)dc 
ro - au 

Because of (3). the second integral is 2: 0. Moreover, acconling to the rule for differentiating 
a product, p(x - .t') -I· p(i - x')"" (d/dt)lp(x .. _ x*)). Hence. 

11, d !'' 
D • .C: dtlp(x -x"))d1 = ·1 p(t)[A"(I)- x"(t)] = p(ti)(x(t:}-x"(ti)) 

" Ill 

where the lase equality holds because the eonlribution from the lower limit of integration is 
p(ro)(x(to) - x'(zo)) = p(to)(xo - xo) = 0. 

Now one can use tb.e terminal condition (9.4.3) and the trn.nsver:sality condition (9.4.7) 
to show that the last term in (***) is always::: 0. Indeed, if (9.4.3)(a) holds, then x(r1) -

x'(r,) = x1 - Xt = 0. But if (9.4.3)(b) holds, then p(i1) 2':. 0 and so if x*(t1) = x1, 

then p(r,)(x(11) - x*(r1)) = p(ti)[x(ri) - xi] :::. 0 bccau.~e .r/11)?. x 1. Alternatively, if 
x*(11) > xi, then p(r1) = O. and the tennis 0. Finally, if (9.4.3)(c) holds, !hen p(r1) = O, 
and th<! term is 0. In all cases, !hcrefore, one ha~ Du ?_ 0. 

If His strictly concave in (x. u), thentheinequaliiy(**) is strict for (x. u) "'F (x',u'), 
and so D. > Ounlessx(t) = x'(I) andu(r) = u'(t) forallz. Hence(x·,u•) is the unique 
solution to the problem. • 

Mo,;t of the control problems presented so far can be solved by using Mangas.arian ·s sufficient 
conditions. However. in many important economic models the Hamiltonian is not concav·e. 
Arrow has suggested a weakening of di.is concavity condition. Define 

H(r, x, p) = tUaf H(t, x. u, p) 
uE/.· 

(4) 

assuming that the maximum value is attained. The function H(t, x, p) is called 1he maxi­
mized Hamiltonian. 'Then one can show: 

Suppose that (.x'(t). u*(r)) is an admissible pair in the standard end-con.strained 
prohlem (9.4.1)--(9.4.3) tbal satisfies all the requirement~ in the maxin1um prin­
ciple, wich p(t) a~ the adjoint function, and with po :::: 1. Suppose further that 

H(z, x. p(I")) is concave in x for every t E [t0 • r1 f 

Then (x•(t), u•(r)) solves the problem. 

(5) 

J._ •• ~ .. --,···--··------ .......... ---------·-----·------ J 
A proof and fur1hu discussion of thi., result are p(lStponed ro Section IO. I. 

£XAMPL 
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NOTE 2 Here i~ an important ge.nerali1.ation of the theorem: Suppo~e the problem imposes 
the constraint thatx(I) must belong to a convex set Mr) for all 1. Supposc.alsothau•(t) is an 
imeriorpoi11tof A(t) for every I. Then Theore.1119.7.2 is still valid, and x 1-·> H(t. x, p(r)) 
need only be concave for x in A(I). 

Consider the problem 

maxl\?-x)dt, x=u, x(O)=O. x(2)free, O:$u~I 

(a) Pind the only pos~ible solution candidate by using the maximum principle. 

(b) Use Theorem 9.7.2 to prove that 1he pair found in (a) is optimal. 

Solution: (a) The Hamiltonian with p0 = 1 is H(t, x, 11, p) = u2 - x +pit.Because 
H; = -1, the differential equation for p = p(l) becomes p = - H~ = I. The solution of 
this equation with p(2) = 0 is p(t) = r - 2. According to the maximum condition (9.4.5), 
for each I in [0, 2], an optimalcontrol u• (1) must maximize H subject co u E fO, lj. Hence, 
u*(t) mus, maximize g(u) = u2 + {t - 2)u, with 1 fixed, subject to u E [0, IJ. Note that 
g(u) is a,lrictly conVt'-X function. ~o iL~ ma:,dmum cannot occur at an interior point of[O, lJ. 
At the endpoints,g(O) = Oandg(l) = t-1. Thus the maximum of II depends on the value 
oft. Clearly, if t < ! the mai:imum of g occms at u = 0, and if t > 1, the ma)(imum occurs 
at 11 = I. Th>L~ the only possible optimal control that is continuous on the left a, 1 = l is 

the bang-bang control 
. { 0 if I E (0, !] 

u*(t) = 
l ifrE(l,2f 

In the interval [O. !] on<" ha~ i"(t) = u*(t) = 0, and x"(O) = 0. so x*(t) = 0. In the 
interval (1, 2] onehasi-*(r) = u•(r) = l,andx•(t) = 0,&o.t"(r) = t -1. We have found 
the only possible pair that can solve the problem. 

(b) The Hamiltonian with p(t) = t - 2 is H(t, x, 11. p) = 11~ - x + (r - 2}u, which is 

strictly convex in u. The maximized Hamiltonian is seen to be 

-· , 1-x .ifrE[O,l] H(r, x, pct})= ma.t u~ -x + (t -2)u = . 
u,;fO.lJ -x + t -· I 1[ t E (I. 2] 

For each r in fO, 21, 1he maximized Hamiltonian is linear in x, hence concave. 1b.c optimality 
of u"(t) follows from Th~orem 9.7.2. I 

The following el(ample illustrates an important aspect of Theorem 9.7.2: It is enough to 
show that the maximized Hamiltoniaa is concave a, a function of x with p(t) as the. adjoint 
function derived from the maximum principle. · 

Use 'Illcorcm 9.7.2 to prove that au oprim.al control for the problem 

maxfut3tufl,X=u\ .~(0)=0, 1(!)5.0, UE[-2,oc) 

is u'(t} = I in [0, 8/9) and ,.•(1) = -2 in (8/9, If. with p{t) = ·-1. 
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Solution: The Hamiltoniau with p(r) ;,;; -· l is H(r, .t, 11, p) = 3u - u3• which i~ not 
coo.cave in (.:c. u). Bue. both u~(f) = I and u"(r) "" --·2 maximize 3u - u3 subject ·to 
u E (-2, oc). (SeeFig.2.) Sothc:maximizcdHamiltonianisH::; max•,r!-2.oo)(3u-i.3j !;;; 
2, which iHoucave. Beca1Lse />(I)= - l, the result in Note 9.4.2 implies that x'(l) = o: 
The. function x•(r) must satisfy the equation .i"(t) = u'(t)3 for ,~ach r, and aho have. 
.:c'(O) ''" I) and x•(t) = 0. One possibility is x"(r) "'' r in [O, 8/9], with u"(J) = 1, and 
x•(t):::. 8 - Sr in (8/9. I], wilh u;(t) = -2. Because all the conditions in Theorem 9.7.2 
are satisfied, this is a solution. But the solution is not unique. One could also havt:, foe 
example, x•(r} = -8/ in (0. 1/91 with u•(t) c.= -·2, anti x"(t) = I - l. in (1/9, 1] wilh 

u'(t) ''" I. I 

Figure 2 For Example 2. Figure 3 For Example 3. 

Our final example makes use of Note 2. 

EXAMPLE 3. Consider the capital accumulation·m,)dd of E.~ampk 9.6.3(b). Prove that the proposed 

sol.ution candidate is optimal. 

Solution: The Hamiltonian is H(t, k, s, p) = (l -s)ak + pask = ak(l + (p - l)s]. This 
funct.ionisnotconcavein (k, s} foT pf 1,becausccheo H;~H;;-(H~}2 = -a'(p-1)2 < 
0. The function ii defined in ( 4) is 

H(t, k, p(t)) = ak max (I+ (p(I} - l)sl 
,ero.11 

Given I defined as in the solution to Example 9.6.3(b), we found that for r E (0, i), the 
adjoint variable is p(t) > l. ft follows that H(t, k, p(i)) = ap(t)k. fork ~ 0, while 
H(r, k. p(t)),... ak fork :S 0. For I e (I, T), however, the adjoint variable is p(l) < I, and 

it follows that H(r, k, p(t}) = ak foT k ~ 0. while H(t, k, p(I)) = ap(t)k fork 5. 0. It is 
tempting to suggest that, because ii is linear in each ca,e, fi must be concave ink. But the 
graph in Fig. 3 sh,)w~ that ii is convex, and not concave. 

Define A(1) "' {k : k ?:: OJ. Certainly, the optimal k*(I) is positive for all 1, so we can 
impose the. constraint that k(1) E A(r) without aJTecting the solution. Moreover, k·(1) is 
a.n interior point of A f.t i for every 1, so we can apply Note 2 pro..,ided that ii ( r. k. p( t)) is 
concaw as a function of k on the domain /I = (0, oo). But fork::=. 0 we have 

~ { (tkp(t) if p(t} > I 
IJ(t, k. pV}} '" 

. ak if p(t) :S: 1 

which is linear in k, and so i5 co11c3ve. The cundidarc suggcsrcd in Ex:unplc 9.6.3(bi is 
themfore. nptimal. I 

:1:. 
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NOTE 3 To give. a complete solutiou of an optimal control problem using the Mangasarian 
(or A1rowi sufficiency result~. ir is uece~sary ro prove that there is a pair (x"(t), u'(t)) 

satisfying all the requirements. fo problem~ when: iris impossible to find explicit ~olutions 
for x•(t) and u• (1), this means that we mu.st prove that there exist arlmissible so!urions of 
the diffe.rential cquation:s which arc valid for the whole interval [to, It J. (This is almosr never 
checked in the economics literature.) 

NOTE 4 (What to do if even the Arrow condition fails) If the mal\i111izetl Hamiltoniao 
is not concave, !hen the Ma.ugas;i,rian condition also fails. Nev.:rthcless, even if fi is not 

concave in x, it is still pos.~iblc thatx"Cr) may maximizo! Fi + p:x for each tin fro, ri]. Thi.~ 

j~ sufficient for optimalily. 
When even this weaker sufficient condition fails, we can still be sure that, if there is a 

unique solution candidate and a solution really does exist, then tbat candidate must be it. For 
static optirni1.ation problems we relied on the extreme value theorem to demonstrate that, 
under cenain conditions, there dc>es exist an optimal solution. In Section I 0.4 we. discuss 
analogou~ existence theorems for coottol problems. 

l'lWBLf-MS FOR Sc CTION 9 .7 

~ 1. ta) Solve the control problem 

Ul:lX [\100- X -- !112 )dt, .i '" U, x(O) = Xo, x(l) = X1, U € (--00, 00) 

(b) Verify that;)\! /~-t-0 = p(O) and av /il.<J ="· -/)1.1), where V is 1he optimal valucfunction. 

~ 2. (a) Fin<! th.: only possible solution 10 

!0 

max 1· (I -s)-lk dr. i.: = s.fi. k(O) = 1, k(lOi free, s € [0, l] 
0 

(b) u~e Th.:orem 9.7.2 m prove that the solution c~ndidale in (a) is optimal. 

~3. (a) St>lvcthc:pmblem(wh~'Te T.a,and/5 areposirivc<:()rlStants,a /2/J) 

max (7 e-~1,J;.dt when :i(I) =ax(t)-u(r). x(O) = I, xiT) ,~ 0, uv) >-: O 
Jo 

(b) Whal happ<!llS i.f the tt:nnina! co1n.litior1 x(T) ,,,. 0 is changed to x(T):::: O'! 

4. Let f be a ct-function defined on a ~cl A in a.-•, and let S be• convex se1 in the interior of A. 
Show that if~~ maximize.s /(xl in S. then V f(i') · (x1' -· x) ~ 0 for all x iu S. (Hinr: l)(sfine 
rhc fu11ctiong(1) ~ j(rx + (J - r)i!J fort in ro. I]. Then g(O) c: g(t) for all I iu [0, l.f.) 



336 0: .11.P H:F< 9 ! CONTiW,. TH~ORY: BA$ !( H CKk !QUf.5 

9.8 Variable Final Time 
In the oprunnl. cootrol problems studied so far the time interval has bccu fixed. Yet for some 
control problems in ceononlic.s, tbc final time is also a variable to be chosen optimally, 
along with rhc function u(t), t € lto, t1]. One instM('e is I.he optimal extraction problem of 
E xample !I. 1.2. where it is natural to choose for how long to eJttract the resource, as well a.~ 
h ow fast. Aoothcr ellllmple is lhe minimal time problem in which che objective i.~ to steer a 
s y,;tem from its initial srate to a desired slate as quickly a.~ possible. 

The ,·aliable final lime problem considered h.erc can he t>riefly formulat.<::d as follows 
(note that the ~ho ice variables u aod t 1 are indicated below the max sig.o.): 

ma;,i: 1" f(t.x ,u)dr, x(t) = g(t.x ,u), x(to) =xo, 
&l ,tt to 

(l) 

(Either (a). or (b), or (c) is imposed.) The ooly difference from the standard end-constrained 
problem is that It can now be chosen. Tims, the problem is to maximize the integral in (1) 

over all adwissible coouol functions u(t) that, over the timei.nlt:rval [10, ti], bring the system 
fr.om xo l<l a point sati.~fying the terminal condition&. In contrast to the previous problem.q. 
the admissible control functions may be defined oo different time intervals . 

Suppose (xT(t ), u• (r)) i.s an optimal solution defi.ntd on [to, r;J. Then tbe condition.~ 
(9.4.5)-{9.4.7) in the ma.'\'.iruum principle are still valid on the interval lro, rt], because the 
pair (x* (t ), u*(t)} wust be optimtll for the corresponding tixed time problem with It = tj. 
1n fact. here is a modified maximum priociple: 

,_..T .... H .... EO,.....RE .. r.,_1 .... 9__.8-"'1 ....aT.,;.;HE MAXIMUM PR NCIPLE WITH VARIAB E FINAL TIME) --, 

I 
I 
I 

I 

Let (x*(t), u•(i )) be an admissible p;iir dcftne<l on [to. I[) whicb. solves prob· 
ll~m (I) with 11 free (t r " (lo. oo)). Then aU the conditions in the maximum 
priaciplc (Theorem 9.4.1) are satisfied on [to, ti). an<l, in addition. 

H(rj, x•1m. u·cri), p (tj)) = 0 ('.!) 

L_ ______ _ 

Compared with a fixed final time problcw lhtre bone additional unknown tj . Fortunately, 
(2) bone extra condition. 

One method for solving variable final time problems is first to solve the problem witll 11 

fixed for every 11 > to. Nex1, cou&idl-r 11 as an onknown to be detenni.a<'.d by ,;ondition (2). 
A.:cordiog to (9.G.5), iJV /ot1 :.::. H (1~, x• (lt). u•(r;). p(tj)) if V is difforentiable. Thus, 

condition 1.2) is precisely as expccti,d. For a formal proof. see. Hestern!s (1966). 

NOTE 1 (A common misnndershUJding) Concavi ty of the Hainiltc>nian io (x, u) is net 

sufficient foroptirnalitywhen 11 is frc0. For sufficiency results when !he final time is variable. 
see .S<'.icr,;tad and Syd~11:ter (19117), Sections 2.1) ~nd 6.7. 
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c,msider Problem II in Example 9.J.2 for the speL-i.al case when the C()St function C = 

C(t, u) is u1dcpcndent of; and convex in u, with ci. > 0. Thus. the. problem is 

T 
max f [q(t )u(r ) - C(r, u (r)} Je-'1 dt ; .t. i-! r) = - u(r), x (O) = K", x (T) ~ 0, u(t) c::: 0 
•.T lu .• 
Wha.t due.s the mttXimum principle imply for this problem'' 

Solution: Suppose (x· (1), 11•(1)), dclined on (0, 1 '], solves this problem. The Hamil· 
tooian with Po "" 1 is H(t. x, 11,p) c; [q(t }u - C(t, u)Je-'1 + p(-u),aud themax.imllm 
principle stares that Uiere exists a ,;onr.inuou~ function p(t) such that 

u•(t) maximizes (q (1)u - C(t, u)Je-" - p(t)11 subject to 11 2: 0 (i) 

p(t) = - t!H :::: O. p(T') :!:. 0, wi th p(T•) = 0 if x•(r<) > 0 (ii) 
ax 

[q(T")u·(r· ) - C(T"' u'(T')) V'T" ::::: p (T")u' (T') (iii) 

Because p(t) is continuous, {i i) implies that p(t) = p :::. 0, where pis a constant. 
Put g(u) = [q(r)u - C(r. u) )e-" - f,u. Becanse C(t, u) is convc;,i: io u and~ other 

~rm~ are linear in u, the function g{u) is concave. According to {i). u•(t) in= zcs g(u) 
subj¢cttou:::. O. Ifu'(I) = 0, the-ng'(u"(r)) = g'(O) ~ 0. Ifu•(t) > 0, lhe11 g'(u'(t)) = 0. 

Theruforc (i) implies that 

[q(r) - C;.(r. u0 (t))V" - p !:: 0 (= 0 if u'lt) > 0) 

Because g is concave. this condition is also ~uflicicnt for (i) to t,ol<l. 
At any time I where u' (I) > 0, equation (iv) implies lhat 

q(r) - C;,(t, u•(r)) = pe" 

(iv) 

(v) 

Toe left-hand side is the marginal protit from extraction. aJT /8 u. Toerefofe, whenever it is 
opti,oal to have positive extraction, we have !he following iule due to Hotelling (1931 ): 

HOTELLll~G S RUlf 

Positive optimal extraction cequires the marginal profit to increase exponentially (3) 

at a rntc equal to 1he consUlllt discount facLor r . 

Pu tti11g t = T' in (v), and using (iii), w~ deduce that if u'(T') > 0, them 

C<Y-, u'(T' )) 
C' (r• ' (T')) = ---·-- -" 'u u•(P) 

(vi) 

Terminille e..rtractim: at a ti,n;, when the margin"/ cost uf extrar.tinn is equal to nveruxc c:osr.
1 

lf the problem bas a solution with 1,(1) > 0, then (v) an<l (vi) both bold. Tf C(T', 0) > 0 .. 

then u'(T') > 0, beeau~e u*(T*) = 0 contradicts (iii). 
We have not proved that lbereeii.~t, an optimal ~olo.tion. (For a more thnrvugh discus~ion 

of this problem. see Seieri;tad and Sydsreter (l9lS7), Sectio1l 2.9, faainpk, 11.) I 
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@ 1. Find the ouly possible soll}[io11 lo f!le foU,.>wing variable final time problemt: 

r 
(a) m:ix [ (x -- t 3 - h,.2) d1, 

u, 1 .,o " 
i "'"· x(O)"' 0, x(T) free, u "'R 

•1' 

(b) Olll I (-9- lu2)dl, .i -:. u, .t(O) , .. , 0, x(T) e:16, ,u; IR 
It, t lt} 4 

@ 2. Solvt problem 9.4.7 with T free. 

3. Consider the optimal extraction problem over a fixed exttaction period, 

1Jl.3K ( [ae"'u(t) - e~'u(t)' - cJe-'1 dr, .i(r) = -u(t). x(O) = K, x(T)"' 0 
.:..v>::.(llo 

Here x(r) and u(r) have Elle same inrerpretatioll a~ in Example l, wiEh q(I) = ae"' as the world 
market price, and e/J• u(1)2 + r: a~ the cost of extraction, wich c > 0. 

(a) One can prove that if ,,•(1) is optimal. then u'(r) ~- 0 for all L. (You are not required to 
show this.) The adjoint function is a constant;;. Find u•(t) expressed in terms of p. Then 
findx"(r) and p for the case a"' fl= 0. r > 0. 

(b) Let T > 0 be subjectto choice (keeping the assumptions a .,. fJ ,. 0., > 0). Provethatthr; 
neoe8sary conditions lead to an equation for determining the optimal r• that has a w1ique 
positive solution. Assume that ma.x.(a11 ·- u1 

- c) > 0, i.e. a2 ~- 4c. 

9.9 Current Value Formulations 
Many comrol problems in economic& have the following stcucmre: 

!
,, 

max f(l,x, u)e-'1 ,it, 
u~os;R tll 

X=g(l,X,U), x(to)=XI), I 
(a) x(ti) = x1 

(b) X(l1) ~ Xt 

(c) x(lr) free 

(I) 

(Either (a), or (b), or (c) is imposed.) The new feature is the explicit appearance of the 

discuuot factor e -r1. For such problems ii is often convenient l<) formulate the maximum 

principle in a slightly different fonn. 

The oniinary Hamiltonian is H ''" pof(t, x. u)r.-'' + pg(r. x. u). Multiply it bye" 

to obtain the current vah1e Bamiltoniau He "" lie" = Pof(r,x, u.) + e" pg(t, x, u). 
Tntrodudug J... = e" p a.~ the current value shadow price for the prcjblem. one can write 

H•' in the fnrro (where we put po .::: to) 

H'(t, x, u, ,l..) = ).of(t. x. u) + .i...11(t. x, u) (2) 

} 
• I 

J 
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Note that if i, ""' e" p, then i = re'' p + e" p = r}.. + ,!1' p and sop "" e .. "().. - rA). 

Also, Hr.= He" implies that 'ijff•'jax-:;- e"(JH/iJx). So J>"' -i!t:l/ilx takes tlle form 
i - r:,, ""·-ilHr. /ax. In fact, the follov.'ing te~ult is obtained: 

Suppose that the adm.issible pair (x'(t), u•(1)) solves problem (I} aDd let He he 
the current value H.amill.onian (2). Then there exbt~ a continuous function J...(1) 
and a number J..1:, either O or I, such that for all t in ltn, 1i] we have (i,,11, ;.(t)) =/­
(0, 0), and: 

(A) u = u'(r) maximizes ffC(t, x*(t). u, .i..(t)) for u EU 

ilW(t, x"(t), u'(t). ,l.(1)) 
(B) .\(l) - r).(t) = ax 

(3) 

(4) 

! (C) Finally, the transvcrsality conditions .ire: 

l (a') ;.(r1) no condition 
I 
I (b') i.(11) ::: 0, with >..(11) "'0 if x'Ut) > x1 (5) 

I {·c'> ) , ) o I •.I!. ;: I 

L----............. ~ ... ---.............. ,.~,.-·-·--·- ·-· .. ··--·---·· .. ·---.. ··-·-........... - .. -.--... -------.. ----·----' 

EXAMPLE 1 

The Mangaisarian and Arrow sufficiency results from Section 9. 7 have iromediaie extensions 

to problem (1 ). The conditions in Theorem 9.9.1 are sutucienc for optimality if ).o"" 1 and 

Hc(t,x.u,J..(t)) isconcavcin (x,u) (Mangasarian) (6) 

or (more generally) 

ii< (r. x, A(r)) = max II' (1. x, u . .i..(r)) isconcave in x 
u~U 

(A1row) (7) 

or (more generally ~till) 

x = x"(t) maximizes fie+ (f(t) - r.l.(t))x 

Solve the following problem usi11g 1.he current value formulation: 

max (4K - u2)e-02~' dr, 1
io. 

u~O Cl 
K = -0.25K + u. K(O) = Ko, K (ZO) is free 

An cconon,ic interpretation i~ that K (t) i, the. value of a firm's capital stock. which depreci­

ates al the constant proportional mte 0.25 per unit of time, whereas u(t) i.s gro~s inve.~tment, 

which. cost~ u(1)2 because. the marginal cost of investmenr increa.~es. Fimdly, profirs arc 

discouritcd at the constant proportic•nal rare 0.25 -per unit 0f time. 



340 CHAPHR 9 I CONTROL THEORY: BASIC TECHNtOIJfS 

Solution: The. current 1taluc .Hamiltonian i., He ::;· 4K - u2 + ,l.(-0.25K + u) (with 

lo"" 1). a11d so aH"/ilu = -2u + i.. aod oRc /iJK = 4- 0.25:: .. Asswniog that u"(r) > o 
(we try this assumption in the following), o(J/c).-irJu = 0, so u·(t) -,,, 0.5..1.(t). The adjoint 
[unction ,. satisfies 

.i..- o.25J...,.., -a(H')' /oK = -4 +0.25)., A(20) = 0 

It follow~ that 

J..(t) = 8(1- e05•-H>) and u'(r) == 0.5J.. = 4(1 - eu.s,-w) 

Notetbatu'(r) > 0 in {O. 20). The time path of K'(t) is found from k· = -0.25K"+u• = 
--0.25K* + 4(1 - eos,-io). Solving this linear differential equation wilh K"(O) = Ku, we 
get 

T('(r) = (Ko - 16 + ¥e-lO )e-0251 + 16- ¥eo . .s,-to 

Here H" = (4K - uz) + .\.(-0.2SK + u) is concave in (K.u), so wc have found the 
optimal solution. 

Note that the paiT (K*(t), Mt)) must satisfy the system 

.i = 0.5.l. - 4. i,.(20) = 0 

K = -0.25K + 0.5J.., K (0) = Ko 

Figure 1 Pha.se di~b'Tarn for Ex.ample I. 

Figure l shows a phase diagram. for this system. When Ko < 16 as in the figure, the left 
curve drnwn with a solid line is cousisten[ with th.e indicated arrows. Tnitially the capital 
stock increasc,s, and investment is reduced. Then, after the curve l:tirs the line I( ""' U, the 

capital stock decreases and investment is reduced until it eventually is 0. The dotted curve 
is also consistent with the arrows, but theTe is no wa)' the curve can satisfy 1,.(20) = (J..­

the required investment. is It)<> high to lead to an optimal solution. (When ). i& large. Ml is 
" = 0..'i;l., and the integrand 4K -· u2 hecome~ large negative.) I 
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The diagrammatic analysis related to Fig. I i11 the last example is in a way .superfluous since 
the solution has already been completely ~pecifie<l. But it is very useful in some probkm~ 
wh.:n: explicit solutions are unobtainable. See Section 9.12. 

1. l'ind the solution to hllample 9.2.2 using the curreni value fhm,u\ation. 

@) 2. Find the solution of ProblcOI 9.4.6 using rht, current v,~ue fonnulation. 

@l 3. find tbe solution of Problem 9.5.3 using the cui.cnt value fonnulation. 

9.10 Scrap Values 
In some economic optimization prnblem.s it is natural to include within the optimality 
criterion an additional function representing the value or utility associated with the terminal 
state. Th.is gives the typic:al problem 

1
,, 

max_ { f(t,x(1). u(t))d1 + S(x(t1))j, 
MIJE[J J() 

-~(1) = g(t,x(t), ll(t)), x(to) = xa 

(I) 
The function S lx) is called a scrap value (unction, and we shall assume that it is C:. 

Suppose that (x·(t). u'(t)) solves this problem (with no additional condition on x(t1)). 

Then, in particular, that pair is a solution to lhe corresponding problem with fixed terminal 
point (11, x*(/1)). For all admissible pairs in this new problem, the scntp value function 

S(.x*(t1)) i~ constant. But then (x•(r). u'(t)) must .~atisfy all the conditions in the max­
imum principle, 0°.tccpt the transversality conditions. The correct transversality 1:on<lition 
for problem (1) 

(2) 

This is quite natural if we use the geneml economic interpretation explained in Section 9.6. 
Lu fact, if x (t) denotes the capital stock of a firm, then according to (2). the shadow price of 

capital at the .:nd of the planning period is equal to the marginal scrap valut of the terminal 
sto,;k. 

NOTE 1 If S(.x) ,,. 0, then (2) reduces to p(r!) = 0, which is precisely as expected in a 
problem with no resnictions on x(11 ). 

One way to show that (2) is the com::ct transversality condition involves lransforming prob­
lem (l) int,i une srudit:d bcfon;. Indeed, suppose that (x (t), u.(l)) is an admi8sible pair forthe 

problem(l). Then f,S(x(t)) = S'(x(1}).i-(1) = S'(x(r))g(r,x(f),11(1)). So,byintegration, 

l
rl 

S(x(1,)) - S(x(to)) = S'(.tV))g(t, x(t), u(1)) dt 
• ro 
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Herc S(.r(to)) ==- S(xo) is a constant, so if the objective function in (I) is replace(] by 

1
1• 

· [/(1, x(t). i.(r)) + S' (x(t)}gll, x(t), u(t))] d1 

'• 
(3) 

then the new problem. i~ of a typc.srudied previously with no scrap value, still with x(/1) free. 

Let the Hamiltnnian for this new problem be H1 = J+S'(x)1h·qg "'J +(q+S'(x))g. with 

adjoint variablcq. An optimal pair (x•(r). u•(t)) for this probiern must have the following 
properties: 

(a) "= u*(1) maximizes H1(i,x*(r). u,q(1)) foru e U 

(b) q{r) = -oHj /Jx. q(11) = U 

Define p(t) = q(t) + S'(x•(r)). Problem 7 asks you to prove that, if H = f + pg is the 
ordinary Hamiltonian associated with problem (1), then u'(r) maximizes H(x·(t), u, p(r)) 
for u EU and p(t) = -1.JH* /'rl.l, with p!r1) = O. 

Appropriate concavity conditions again ensure optimality, as shown in the nen theorem: 

Suppose lX*(t), u' (1)) is an admissible pair for th" scrap value problem (1) and 
suppose tht--re exist~ a continuous function p(t) such that for all t i.11 (to, ti), 

(A) u = u'(t) maximi:t.es H (1, x*(r), u, p(t)) w.r.t. 11 c: U 

(B) p(t) = -H;(r,x•(r),u'(1), p(t)), p(t1) = S'(x•(ti)) l 
(C) H(t, x. u, p(t)) is concave in (x, u) and S(x) is concave j 

l;.· Then (x'(t), u•(t)) solves the problem. • 

................. ,_ ....... ···--~,.., ... ~... ... . .... _ --,-, .. ··,-·--··--... ···-·--~ ........ , ............ t 

Proof: Suppose that (x(t), u(t)) is an aTbitrary admissible pair. We must show that 

!.,, 1'' Du= f(t,x'(r).u•(r))dt + S(x•(r1))- /(1,x(t), u(t))dt - S(x(ti))::: O 
~ ~ 

Beeau.se S(x) is C! and concave, S(x(t1)) -S(x"(l1)) ~ S'(.t"(l;))(x(r1) - .t"(ti)). Com· 
hining this with the inequality 1,:• (.f' - f) dt :::: p(r1)(.t(r1) - .~·(11)) that wa., <lerive.d a~ 
fonnula (*~·*) in the proof of the Theorr.m 9.7.l, we get 

where the las! equality follows from 1.B). So D. ~ O. • 

EXAMPLE 1 
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NOT£ 2 11le theorem still holds if !he concavity of H in (x, u) is replaced by the An·ow 
condition .requiring H(r. x. p(I)) tc, exist and be concave in x. Or, more generally still, if 
x'(t) maximizes H(t, x, p(t)) + p(r)x. 

Solve the problem 

ma.,c { (-}u2dr+.Jx{I)}, k=x+u, x(O)=O, r(l)free 
• .,,-ve,:io) Jo 

Solvtion: We have H = -4u2 + p(x + 11) and S(x) = ./x = x 
1i 2

• Hence H~ = -u + p 
and H; = p. Since u e (-oo, oo), maximization w.r.t. u rc::quircs that H~ = 0, implying 
that u = p. So we have the differential equations x = x + u = x + p. p = -H;"" -p. 
The latter equation has the solution p(r) = ,1e-r. Then .i: = x + p == r + Ae-•, and 
this linear diff.:rential equation bas the solution x = Be' - ! Ae-'. where the. constant. B 
is detem1ined by r(O) = 8 - l A = 0. Hence, B = 1A, so that x(r) = !A(e' - e-'). 
The co1i.st.ant A is determined by the tran&versality condition p(l) = .'le-< = S'(x(I}) = 
f(x(I))' I/Z = Hf A(e1 - e"1)1-1i 2 . Solving for A we find A :e: e[2(el - nr1t3

• Tom. 

we have the following candidate for an optimal solution: 

Bccau,;e the Hamiltonian is ·concave in (x, u ), and the scr.ap value fwiction is concave in x. 

this is the solution. I 

Current Value Formulation 

Many control problems in economics have the following structure: 

max {1\(1,x,u)c-"dt+S(x(t;)).:-"1 ). x=g(t,r,u), .r(to)==.to (4) 
11t.U£R ~ 

(a) x(t1) = .. q, (b) x(;i) :::: x;, or (c) x(11) free (S) 

(Either (a), or (b), or (c) is imposed.) Toe new features as compared with problem (I) arc 
the discount factor (or interest rate) r, and the reintroduction of the altcmativt: tcrnrinal 
conditions in the staodard problem. (If x(t:) is fixed as in 5(a), the scrap value function is 

a constant.) 
The current value Hamiltonian f<'r the problem is 

tl"(t, x, 1,, .i..) = >..of(t. x. u) + ;.g(r, x, u) (ti) 

and thi, coITec.t necess.uy conditions arc as fo\Jnws: 
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Suppose that the a<ln,issible pair (x•(r) . u*(1)) solve,~ problem (4}-(5). Then 

L'lere ex.isr a continuous function J.(t) .u1d a number ,\a, either O e>r l, such th:lt 
foe all I ill [t,}, i , J Wt: bave (Ao, A(t)) :/ (0. 0) , and: 

(A) u = u •(t) ma:<lmi:r.es fl''(t. x•(r) , u, l (t)) for "E U 

. . ilW(t,x ' (t),u• (r) ,>.(r)) 
(B) >.(t ) - rA{t) "" - -----

8
-x---- whenever u• (r) is continuous 

(Cj Finally, ll1t' transvcrsality condition~ are: 

(a') l(t1) uo condition 

(b') >..(11)::: i..0S' (x*(r1)) (with= if.r•(1i) > x1) 

(c') ),(1;) = ./.oS'(x .. (I,)) 

I 
I 
I 
I 
J 

The folhlwing sufficiency resul t is a straightforward extension of Theorem 9.10.l: 

THEOREJ.l 9 

The conditions in Theorem 9 .10.2 with >..o ,,,, 1 are sufficient if (} is convex. 
H .: (r, x, u , >..(1)) is concave in (x , u), and S(x) is concave in x. 

L. _ __ . ,.,,_ .. ......,.. __ ._ ____ ., ___ ___ .. ,.-·-• 

EXAMPLE 2 Consider the following probleo1: 

max llr (x - u2)e··0.1, dt + a:,(T)e-o.ir J 

. i: :;= - 0.4:r + 11 , x(O) ::.= l. x (T) is free, u e: R 

where a is a positive constant . Solve the problem. 

Solution: The current value Hamiltonian. with J..o ::: 1, is H ~(t, x, u, ),) = .t - u2 + 
>.. (-·0.4x + u), wb.ich is concave in (x , u) . Moreover, S(x) = ax is linear, and hence 
concave in x . The conditions in the mawnum principle are therefo1e suflicienL Becau.~e 
H e is concave ia u and ,, E R, the maximum of lhe Hl!Jniltonian occurs when 

DW(r, x·(1), u•(t) . )..~!l!. = _21,(r) + >.(r) "" 0 au 
Next, the differenli~l equation for A is 

i (r) - 0.U.(t) = -aW /3x = - 1 +0.4}..(t) 

Bt.'c.aw;e x(T) is fi:C'c tt.nd S(x) = 11. ~. condition (C)(c') in Theoceu1 9. 10.2 yields 

).(1') = a 

(i) 

(ii) 

(iii) 

EXAMPLE 3 
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By integrating the linear differential e4ualion (ii), using (iii), we obrni.n 

.:..(1) = (II - '.!)e-1).)('/'-rJ + 2 

Ftom (i), u•(t) .,,. {l(t). Because .:c' (t) must satisty the li11car differential equation 
x* = - 0.4x• + 11 • '-"' - 0.4x• + !ta - 2)e -Q.S(T- •l + l , with x• (O) = 1. one has 

x*(I) = { + ~(u - 2)e -O.S(T--:) - (i + ~(a - '2 )e-05T)e-OA, 

All the oonditioos in 'lnemem 9. l03 are satis fied, w this is the solution. 

(Feeding a fish optimally) Let x(t ) be the weight of a fish attune I and let P (1, x) be 

the price per kilogram of a fish. whose weight is x at time t . Furthermore, let u(t) ~ote 
the amount of fish food pe.r unit of time measured as a proporti.on of the weight of a fish, 
and let c > O be the constant cost of a kilogram of fi~b. food. If the interest rate is r, men the 
prcs.:nt value of rhe profit from feeding the fish :ind then catching it at the fiied time T is 

r 
x(T )P(T, x(T))e- rT -1 c.r(r)u(t)e.-'' dt (i) 

Supp<)se that 
x(I) = x (t)g (t, u(t)) , .c (O) = xo > 0 (ii) 

so lllatrhe proportion.1lratc of growth in the weight of the fish i~ a knownfunction.g(t. u(t)). 
The natuml pn)blem is to find the feeding function u • (1) ruid the corrc.spondwg weight 

function x•(t) that maxi roiz.e (i) subject to the constraint (ii) and u(r) ?: 0. 

(a) Write down necessary conditioosfor (x•(r), u•(t )), wilhcorrcspomling adjoint function 
71.(t), to solve !he problem. Deduce an equation that u*(r) must satisfy if u• (t) > 0 . 

(b) Suppose P(t.x) = uo + a1x, and g(1,u) = a -bc"/ u, where all the const.1nts are 
positive, with s > r, Characteri1.e the only possible solution. 

Solution: (a) The current vruue Hruuiltonian is H'(r, x , 11 , >..) = -cxu + hg(r , u), aod 

the scrap value function is S(x) = x P(r, x). Thus :J H0 /<J.r: = - cu + J.g(1, u), ofl' / !J u = 
x(-c+ Ag~(l,u)), and .SV(x) = P(1, x) +x~; <t ,x ). . . 

According co tb.e maximum principle. there exist~ a continuous funcllon )..(r) ~uch lhat 

u• (r) ma.timi2es x "(r)(- cu + >..(t)g(I, u)} for u ~ 0 (iii) 

and 
. aon· ·c >.. > . ·<r>> A(t)- r).(1) = - ~ =cu ti - (1 J( {./,U (iv) 

F i\rthi,rmorc, condition (C)(c') in Tuc0re.m 9.10.2 lake~ tltc fom1 

J..('r) ,,.- P(T, x ' (T)) + x ' (T)~ (1', x'(T )) (v) 
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Frorn (iii) ir. follows !hal if 11' (1} > 0, then cl(H")• //Ju ""0. If x"(i) is not O then 

,l.,(/)g~V. -4°(1)) = c (vi) 

(b) We have g~(I. 11) = be'' /u2 , so (vi) yields >.(t)be" /(u'lf)f = c. Then >.(t) > 0, and 

with u•(1) <> 0, we oblain u•(t) = .fli7c ei" (>.(1))1i 2. Equation (iv) is now j,(1)- r ;_(r) = 
cu"(t) -· .l..(t)[n - lw" /u"(t)). which reduces to 

(vii) 

Finally, (v) redu.:es 10 

(viii) 

The standard Irick for solving the Bernoulli ettuation (vii) i8 to introduce a new variable z 
defined by z = ;..1!2 . (See (5.6.2).) Then),= z2, so}..= 2zz. and (vii) yields · 

2zt = (r - a)z2 + 2v"bce}" z (ix) 

Because we are looking for a solution with z(r) = .,/I(r) > O for all t, (ix) implies that 
~ = } (r - a)z + .Jbc e!s:. According W (5.4.4) this has the solution 

where ,4 is a constant. Since u*(1) = .,/o!ce431 z, we get 

,- '<. , 2b 11"'(!) = A,;b/cel ,-,-.i,, + e:" 
. s-r+a 

Inserting u•(t) into (ii) yields a separable differential equation foe r*(r), with a unique 

solution sati~fying x'(O) = xo. Tile constant A is finally determined by equation (viii). I 

1 . Find the solution to the co11trol problem 

m;,x I ( (1 -111 ·- ,,2)dr + ~(l) ·r 3}, :i = u, x(O)" !, u€(-oo,oo) .,, 
@2. In a smdy of savings and inheritance, Atkinson (1971) consMcr:s tk problem 

m:1., { lr U(rA(I) + u: ·- u(i))e-P' di~ e-PT ,p(A(T))}, 
.• o .4 = "· A(O} = Ao 

A11 eco11omic int<--rprcl;Uion is given ill Ex~mpk 85.3. cxc<:'pt th."ll the objective function now 
includes a11 extra u:rm which mt'.asures th(, imlividval's di&counte<l be.netit from bequeathing 
A(T). Suppose thut rp' > 0, ,p" < 0. Give a set of suftkieut conditions for die solution of 
thi~ prohlt:m. 
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~ 3. Solve the foll0win:; control prob km from ect•nomic gr.owtb Che<.>ry: 

('u 
max {Jo (I - ,}..ikd1 + lOfi(to) l, k = 6.Jk. k(O) = 1. s G [0. (l 

.• 
where k '" k(t) is the capital sL(>Ck, ands= s(t) b the savings ratio. (See. Problem 9.7.2./ 

® 4. (a} Solve thO problem 

max t{ (x- u)dt + !xO)J. r .-, u, x(O} = t, x(l) free, u € (0, l} 

(b) Solvetbeprohlem with tlic objective function L' (x - t<)dt - i(x(l)-2l. 

@5. Consider the problem: 

X., -x + ,,, XlO) = xo, u E ~ 

(a) Solve the problem usingTheo,:em 9.10.3. 

(b) Cc>mput~ the oprimal value function. V 
iJV/l>T"" W(T). 

V (xo, T). Sbow that iJ V Jilx,) = p(O) a11d · 

@ 6. Solve the following prnblcm using the current value fonnulation 

The const:oncs r, a, and Tare 311 positive. 

7. Con.~ider die .:ootrol problem 

!.
,, 

ma~ io [f(1 . .r,u}+S'(.r)g(r . .x,11)]d1, i = it(l, x. ul, ""iU 

(Sec (3).) Lei lh,; Hamiltonian be fl1 ,., j + S'!'x)g + qg = f + (q + S'(.<)),s,, witb q as !he 
adjoi!lt variable. Then 3n optimal pair (x', u') for this problem mus1 satisfy condition~ (ai and 
(t,) ab<.wc Theorem 9.10. L Define p = q + S'l.r*) and Je.t H = f + (If/. Prove rha1 propertieij 
iai and (h) imply Iha! u• maximizes l/(r, x•: 11. p) for u "' U. while ;, ~· ··JH" /8.r. with 
11(;,) = S'(x•(r1)i. Thu8 co11ditions (1\)-{C) in Thcocern 9.10. l an, satisfied. 
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9.11 Infinite Horizon 
M ost of the optimal growth ruodels appearing in the econo111it:$ literature have ao infinite 

tim(, horuon. lbi~ ls despite the following comml"nt hy Nobel laureate Ragnar Frisch (1970) 

about infinite hurii~m growth models: 

Qu~tfoos of oonve:gcnec oader an intinitc rim<: horizon will depend so much on ep~ilon1ic refine­
m ent~ io the system <>f assumpti<)ns-nnd on the infinite constancy of the.sc {<:finement<--thnt we= 
huruanly speakin~ ftl)Solutely certain of getting infinite tiuie h,)ri:i:on results which have .no relevance 
to concr~te re-ali,y. And in particular we arc hb:.olutel}' certain of gening irrelevant results if such 
cpsilootic exercises arc made under the as.wmption of a c..,nsrant !b:lmology. 1 n the loog run we 
am lill de-ad.'' These wo,-d., by Keynes ought to be engrave~ in marble and put on the desk or all 
ep~ilootologists in growth thcllry under an inlinite horiwn. 

Clearly, choosillg an infinite horiwn makes ~ense in economic models only if the distant 

future has oo significant influence on the optiw...'11 path for the near furore io which we are 

most interested. Nevertheless, the infinite horizon assumption often doe, simplify foanulas 
a.ad conclusions, though at the expense of some new malb.ematical problems that need 10 

be sorted out. 

A typical infinite horizon optimal control prohkm in economics t-<tkes the following fom1: 

ma~ 1 oc f (t. x(r), u(t))e - rr dr , x (r ) = g (J, x (t ), u(1}), x(to) ::: xo , u(t} E U (1) 
,~ 

Often no condition i.s placed ,m x(t ) as t ... , oo, but many problems do iropo~e the coostr.i.int 

(x1 is a fixoo number) (2) 

The pair (x(t), u(I)) is admissible if it satisfies :r(t) = g(t, x(I), u(t)), x(lo) = .,u, 
u (t ) G U, along with (2) when that is imposed. Suppose the integral ( !)converges whenever 

the pair (x(I), u(1)) is admissible. For exampk, the integral will con\"erge for all ad­
mis sible (x(r) , 11 (1)) if r is a positive constant. and if there exists a number M such that 

lf(t ,x, u)j ~ l rf for all (x.u) . 

One c:an then shuw (lfaikin ( 1974)) that nil the necessary conditions in the maxiwom 

principle {Theorem 9.2.1) hold, cxecpl the tran.~versality condit,on p(r1) = 0. With no 

ttansversality condition we get coo many soluLion ca ndidates. 

NOTE 1 It is tempting to a.~sumo:: that all results for finite horizon problem~ can be c!l!ried 

over io a sin1plc way to the infinite horizon ca,;e, Tllis i~ wrong. For example, in a finite 

horimn problem with x(t,) free, the transversality condition i~ p (r1) = 0. However, with 

n<) terminal condition. the "naroral" transvcrs!lli ty coudition, p(I) -> 0 as r -+ oo, is not 

corn :ct. A we.ll-known coumerex o1 mplt is due lo Halkin (1974). Tlvlt example also shows 

that Ilic condi tiou p(t)x(t) -+ 0 is not a nocc,csa{)' condiLion for optimality, contrary to 
a w itlespre-id belief in economic litcracure. including snme populai: textbooks. (Sec also 

Exampl.:: 1.) 

H owever, in economit' rnorlcls with x (oo) free, it is ln most casr.s a sensible w1"1Tking 

hypotht.<as that p(t ) ii~ ii!lKI to O a.5 1 tend s to oo. Hut, ulLimatcly, this must be continued. 

SEC TIO N 9.1 1 / INFINITE '10 f<l7.0N 349 

Because the discount f.i11.:1<1t e-" appears iu !ht> problem t1bol/\:. it i.~ convenient to US<! the 
curr,•nt v3luc fonn ulation with the cutTent value Hamiltonian 

H'(t , x, u, ), ) = i.Qf(:, x, u) + J.g(1, .t, u) 

and wi.th ). as the current value shadow price. 

Suppose that an admissible pair (.x'(t ) , u• (r)) for problem (1), with or without 

terminal coudition (2), &atisfics the following conditions for .~ome J.(1) for all 

t ~ ro, with ).o = 1: 

(a) u· (i) ma.~inu zes H '(1,x*(1), u.,>.(1 )) w.r.t. u EU 

(b) .i.(f) - ri.. :::: - oH' (1, x*(t) , u*(r), i..(t))iax 

(c) H'(t , .Y , u , >.(t)) is concave w.r.t. (x. u) 

(d) lim J.(r)e-'' l . .x(l) -x'(tj] := Oforall admissiblex(I) ,-co 
The.n (x '(r), u*(t)) i, optimal. 

Proof: For aoy admissihle pair (x(t) , u(r)J and for all/ ::: f;i, define 

.. 1' 1' D. (t ) = 1· .f('t , X0 (T),u'(,:))e-n d,: - J(i, x{r), u(t ))e""'' 1h = u· - ne_,, d,: 
~ ~ ~ 

in simpli fir;d notation. Now, r = (H'Y - i.g• = (W)' - .l..i ' and f = H" ·- >.x, so 

D.(r) = 1' [(H'Y - l{1e_,~ d,: + [ :..c-" (i - x·) d't 
IQ ti,) 

By concavity of H", one has 

so 

. lltWl" • J(H")' , 
(H')' - H' :! - ~ (x - x } + ~(u - u) 

. arH" )' 
.,, (!.. - ri.)(•· - x ') + - '--(u' - u) au 

D ( . f.' -"((' ')( • ". '")J , 1' ll(W )" ( • ) - r• d • . fJ :~ r. ,..-- ,,. •• - X ) + I.\.( - X ,. r-i- --":-->· " - "C r 
" /(I t:l 

As in the proof of Theorem 9.7.1. we see lhat the $(;(.:ond integral i~ 2: 0 and so 

D.(t ) ,~ ~ [e-"'i.(t)(.z(~) - ,·(t))l dr =- ; r.-".l( r )(x(r )- x' (r )i [
, . r 

ii, dr ~,0 

Th<: ,Qnuibution from th~ J,)wc:r limit of inte.gr111i,,n is O becau,s,: x'(r1;) ... x.(1~J ~" x,; -- XQ "' 0, so 
D, (r) ::: , "" }..<tJ(x(t) - x*(/i). l'..s~ing to tlie limit as t --,. c,; in this i'oequaliLy nntl using \d), one. 
cooclu~ th:,t ex· (/), u' <t)) is optimal. • 
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NOTE 2 Condition (d'; in Theorem 9.lLI is wel! l:nowo in the eco11omics literature, but 
is often not proper.ly cl1c.:kcd. Note that lhe inequality (d) must be shown for all admiss­
ible x(I), which is oft~n problematic. Suppose for example thar lim,...oc i.(t)e-rr >-_ o. 
lim,-c:o)..(t)e··"x'(t) =- 0. and x(r) ~ 0 for all t. Do these conditions en.sure that {d) is 
satisfied? The answer is no, unless one is also ~ure that i.(t) :':: 0 for aU (large e.nough) 

t. For a coumcrcxampJc consider what happens when J..(I) = -1, r == l, x(t) =- e', aud 
x" (t) = l. Tbcu i.(1)e-'[x(I) - x•(r)] = -e'''(e' - I) = e-1 

- 1 -+ -1 as 1 .-,. oo. 

NOTE 3 Suppose tile terminal condition i.s limi-. 00 .c(t) ~ x 1• Rewrite the pmd11ct in 
Theorem 9.lL l(d) as 

We claim that, provided the following thre~ condilions are all satisfied, then condition (d) 
is sati.,lied: 

(A) lim,-+c-.' >.(t)e.-r: (x1 - x*(t)) ~ 0; 

(B) there exists a number M such that IJ..(1)e-"I :o M; for all 1:::: ro; 

(C) there exists a number I' such that t(t) ::: 0 for all t ~ t'. 

Because of (A), in o.-der to prove ( d), it suffices to show that !he first term in ( *) tends to a 
nun1bcr::: 0. If lim,_oc x(t) = x1, then x(I) - xi tends to Oas t tends to oo, so because of 
(B). thdirst 1cm1 in(*) tend~ to O. Tf lim,-00 .x(t) > x1• then x(t)-x1 > 0 for r s11fficiently 
Jar.ge. Then, because of (C), i.(r)e-"(x(t) -.r1) tends to a number::: 0. Wuondude that. 
if (AHC) are all satisfied for all admissible pairs, then (d) holds. I 

NOTE 4 Suppose that we introduce additional conditions on x(I) in Problem (1). Thc.11 
the inequality i11 TI1eor~m 9.11.J(d) need only hold for pair.; (x(t), x'(t)) satisfying the 

additional conditions. 
In panicular. if it is required that x (1) ~ x I for all 1, then it sufficc5 to check conditions 

(A) and (C) in NoEc 3. This result is rderred to as the Malinvaud uansversality condition. 

EXAMPLE 1 Consider the problem 

x=1u··01 , x(O)=O, limx(t)2:K, UE~ 
t-·~ 

Toe constant:\ r. a, and K are positive. with a > r /2. Find the optimal solution. 

Solvtion: The current value Hamiltonian is He = -u2 + ),ue-•1, which is obviously 

conca'lic in x and u. We find [}H'jnx-::: 0 and rJH''/nu "" -2u + >..e-"'. It follows that 

u• ~.,.~;,,.-~,.The differential cq11ation for),, is >.-r;..,.,. -oH< /Jx == 0, with the solution 
). = Ae'1• whi:re l\ i~ a constant. Titus u • = ~ t\e.;r--a},. The differential equati,m fo, x then 
become, 

E)(AM Pl_J:., 2 
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Thu&, x'(r) converges lo A/2t21. -· r) as r approaches oc. So admissibility requires that 
A i2(2a - r) ~ K, ot A ~ 2K (211 -· r). In pa:nicular, ,1 :::: 0, so (C) ill Note 3 is satisfied. 

To check condition (A) iii Note 3 rcqu-ires t·onsidering 

wb.ich t.ends Lo Af K - A /2(~1 - r) J as I tends to oo. We conclude from Note 4 that if we 
choose .4 :.: 2K (2a - r), then all the conditions in Thoorern 9. 11.1 are satisfied and we 

have found an optimal solution. Note that plt) => Jl!··ri = 2K(2a - r), which uoes not 

teud to Oas I tc~nd~ to oc. Nor does rlt)x'(t). f 

Consider the following version of Example 8.5.3: 

max --[rA(t) + u; - u(t)] e-P dt 1"" l 1-S 1 

o 1-.s 

A(r) = u(t). A(O) =Ao> 0, lim A(r):::: -w/r, 
1-+0C 

u e: IR 

As~ume rhat O < 8 < 1 and O < r < p. and then solve the problem. 

Solution: 11ie current value Hamiltot1ian. is He = 1~t(r A + w - u)1-s + i.u, and tne 
differential equation for J..(1) is 

. ll(H")' • . , -S 
;1..(r) - p),,(1) ""-aA· = -r[rA (t) + w - u (1)] (i) 

Theeontrol function u"V) 111aximi1.es 

l I ·· 
q,(u) =< ~i[r A•(1) + w - u] -• + ),,u for ueR (ii) 

Now the funclion Hr. is concave in (A, 11), as the sum of a linear function (.i,.11) and a 
concave function (c1 .-~ /(I - 8)) of a linear fimction (c = r A + w - 11). (Alternatively, 

look at the Hessian.) ln particular. ,p(11) is concave in u, so 11'(1) maximizes ~?(u) provided 

,p'(u"(I)) = 0, i.e. 

-[r.4'(t)+w-u'(r)]"~+'-Cr)=0, Of u'(1)=rA*(1)+vJ-.i,.(.l)-
11

~ (iii) 

Combining (i) and (iii). it follows that J.(1) - p,.(t) = -r},(t), soi"' (p - r)).(I), with 

solution 
;,(I)== C1/i>-r)• 

for some constant C 1• Because A*:::, u*, it follows !hat 

The general solution of this linear Jilforoutial equa1ion is 

A*(1) "· C:!e" - w/r + c;-11
~ e .. "' j(n + r) 

(iv) 
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THEOREM 9 

We musl aow fmd suir:1ble values of the coosrn.nL~ C1 and C2. Jr seems reasonable to a.ssul1ll! 

thar Jim,-+,» A·(/) = ··w/r. Thi~ is only possible if C2 = 0.. Toco C1 is d¢tcrmined by 
the condi tie>u A' (O) ::: ,4o, which gives Ao ::: -w/r + c;·l/J /ta -t- r). Hence, we find that 
C~i;;, /{a+ r) =Ao + wir. We thuefore bav"' the following candidate for an optimum: 

A*(t) ""(Ao + w/r)e -'" - m/r. u*(1) c::: -a(.4o 4 w/r)e~•, , i..(t) = i./1>-r)t (v) 

where i. = ((a + r )(Ao + w/r)fJ. 

It remains ro wrify (d) in Tu~,otem 9.11.1. According to Note 3 it suffices to ~hQw tbJt 

conditions lA), (B ), and (C) are satisfiro. Tn our case (A) holds becaoS<! 

lim >.(r)(w/r + A•(r)) = i.(Ao + w /r) lim e-<r+«J< ""O 
,-oo r--+oo 

ancl (B) and (C) are evidently satisfied. Hence we Ji.we shown that ( A •(r), u*(r)) solves the 

problem. I 

M any cwnomi&ts see m to beli.,,ve that, for problems with an in.ti.oi~ horizon, no necessary 

trrui,vernllity conditions are generally Yalid. TI!is is wrong . But cert:i:in growth couditiu!\S 

are needed for such conditions to hold. A special result of this type is given in the next 

theorem. (See Seiers1.ad and Sydsreter (1987), Section 3.9, Theorem 16 for a more general 
rt.ssult. There is a misprint in that theorem: please replace b > k by b > (11 - nz)k.) 

Assume Ular (..c' (t), u•t1)) is optimal i11 problem (1), wilh uo condition on lhe limiting 
behaviour of x(r) as ! - o::,. As~unic lhat r.; lf(r, x (t), 1t (1))le-" de •.: .::,o for all 
...:lmissible (x (I), u(I)). S11ppose too rhnt there <rKisl po~itive consl.wts A and k .,,; th 
k < r such that 

Jaf(i, x , ,,' (tii/ii.rl ::, ,1 for all ..r 

and 
3g(I. x . u·(r))/&..c :;; le for all x 

Then there e!<ists a cunrinuoo.s funcliun ;.(1) such that, with J.o = I, 

H'(i. x•v ), u, ;.,.(, )) :$ H'(r, x*(I ). ,,• (r ), A(()) for all" in (} 

uod such l h ~L A(t ) e: limr-"" i.( t , '[) . where >.(t, T ) is the solution of 

~- - r ).. = --aW(t, x•(r), u' (t). >.)/ox, i.('t. n ,, o 

(3) 

(4) 

(5) 

((,) 

i...- --- - ------- . -·· 

NOTE 5 $UpfX)8e that, for euch t, the <cl (j (1) comains all admissibfo x (t), and that N and M an; 
two p<.>sitivc numbers ~ucl; ! lu1t lxol •: N and sup1,1~_., lg(t , x, u' (t)i !: kM. Then, for any 1, (;I) 

~ only b,-.ld for .r i11 lltx· {r); N + u;.,) n G(1) an<l (4) need only hold for t<I ::: N. x E G(t). 
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@ 1. Solve the problem 

mu£"' (In ure-0•2' dt, i = O.ix - u, x(O) ,., lO. 

u.~ing The.orcrn 9.11.1 and Note 3. 

lilll x (t) ;~ O. u > 0 ,_:x,; 

@ 2. Find the ooly p,:,ssible solution to the prohlc,n 

max ioc x(2-u)1-'d1. ;i :c uu-•, .r(O) = l. x(ooj is free, u E (0, t] 

3. Compute the optimal value V of the objective function in Exo,nple 2. How does V change when 
p incrc:a.scs and when w in=scs? Show that av /3Ao = >.(O). 

@4. Solve lhc pr\\blem 

!"° mu (x - u)e··1 d t , _, .i = .,.-; . x{-1) = 0, x(-:oi i& fre.:, u E (0. I f 

9.12 Phase Diagrams 

E <At.1PlE I 

Con~;der the following problem 

max f'' f(x , u)e- '' dt, .i "" g(x , u), x(lo) = xo, u E U <; IR (I) 
J •• 

with the standard end consttaints, and with 11 linite or cc. In this , asc the functions f and 
g do not ilepcnd explicitly on 1. Nor, therefore. does the current value Hamiltonian lie . 

Suppose that u = u(x, i.) rr11uimizes He = f (x. u) + >..g(x, u) w.r.t. u for u E U. 

Replacing u by 11 = u(x . >-) in the differential equations for x and ,. gives 

x = Ftx, i.) 
~ =G(x, >..) 

(2) 

This is an autorwmous system that is simpler to b..mdle than one in which .:i: and k depend 

explicitly on t as well as on x and i .. ln particular, pluise plane analysis (s~. Section 6. 7) 

can be u~ed to sbed light on the e.volurion of an autonomoo~ systeui even when explici t 

solutions arc not obtainable. E xample 9.9.1 showoo a simp le case. 

We stuily two examples. 

Write dowu the sys~m of c,quations (2), a.od draw a phase diagram for tlw pn.1hlem 

ma>: f"\x - u1k-u.i, ,i1, x = -·0.4x + u, x(O) .-, l. x(oo) is free. u E (0, oo) 
li1 

Try 10 find the solution of the- prot>lcm. (See btftOlJ)le 9 10.2.) 



354 CHAPT[R 9 I COII/TROl THEORY: BASIC HCHNIOUES 

Solution: Inthiscaserhe Haruiltoaia.u H"(I, x, u. )..) = (x -u2)+J..(-0.4x+u) is concave 
in (x, ")- The rna.xilll.i.zation of He w.r.t. u gives u = 0.5.l., assuming lhat .l,., is > O. (We 
ju.~tify this ~s~111nption later.) Hence. i "" -0.4.t + 0.5),. Sy~tcm i2) is here · 

.:i = -0.4x + 0.5J.., x(O)"" l 

.i.. ,,.,- 0.5). - 1 

,r 
I 

I 
I 
I 

I 
•-·1 

(_ 
l' 'I 

~ 

X 

Figure 1 Phase diagram for system ( *) in Example 1. 

Figut"e I shows a phase diagram for(*). Any path (x(I), i.(t)) that solves the problem mu~t 
start at some point on the vertical line x = 1, but no restrictions are imposed on x (r) as 
t -,.. oo. If we start above or bdow the line;. == 2. it appears that (x(t). )..(1)) will "wander 

off to infini1y", which makes it difficult to satisfy requirement (d) in Thcorem 9. l l. l. 
In fact. the S<~ncral solution of(*) is x*(r) = ~Ae051 + i - ({A + !)e-0

·
41 

and 
A(I) = Ae0·5' + 2. The expression we m,ed to consicle1 in Th.wr1::m 9.11.1 ( d) i$ the difference 
of the two ,~rms ).(1)11-0·1' x(t) and i.(r)e-0·

11x•(1). For large values oft, the latter product 
is dowinatedby the term fyA2e0·9', which tends to infinity as t tends to infinity when A 'F O; 

that docs uot seem promisiug. Altematively, it approaches O a~ t approaches infinity if A = 0 
(then;,= 2), and then th" product is equal to 5e-0·11 - 3e.-0·~'. which does approach Oas 1 

approachesinfinity. ltiseasytoseethatx(t) > Oforall1::;: O,so,.(t)e-B·"x(r)is> Oforall 
t :':. O. Itfollowsthatcondition(d)inTheorcm9.Il.l i~salisfied,andx'(r) = -}e-fl.4r +} 
is therefore optimal. 

Coming backto the phase diagram, ifwe swtatthe point (x, ).) == (1, 2). then i.(t) ""2, 

while x(t) converges to the value i, wbkh is the x-coo1dinate of the point of imerse.ction 
bt,fween the curves .i. = 0 and x = 0. 'Tile pha~e diagrll!ll therefore suggests the optimal 

solu.tion to the problem. 
The point(~. 2) is an equilibri11m poim for ~y.stem (*). Let us see wllat. Theor.:m 6.9.l 

~ays aboutthi~equilibriump•Jint. Delining/(x. i..} = ···0.4x+0.5J.andg(x. i..) == 0.5i.-1. 
we find that the de1.enninant of the Jacobian mafli;,;. in Theorem 6.9.l is 

1

-0.4 0.5 
,.,. -U.2 < 0 

0 0.5 

so ( 1. 2) is a saddle point 
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EXA~ PL.E_ i Consider au ewnoruy with capital stock K ""' K (t) and production per unit of time 
Y = Y(r), whcl'e Y ""a.K - bK2• with a and bas positiv" constants. Consumption is 
C > 0, wher.eas Y - C ::.- aK - bK2 - C is investment. Over th.: period [O. oo). the 
objective is to ma~imizc total discounted utility. In particular we c,m.~idcr the problem 

1
<-.0 l 

C l-v -rid --·· e I, 
o l -· Ii 

K=aK-bK2 -C, K(O) =Ko> 0 

where a > r > 0 and " .> 0, with C a., the control variable. We require.that 

K (t) :::: 0 for all t 

The currem value Hamiltonian is H" = 
1 
~u CI-•+).(" K -I> K2 - C). An interior maximum 

of H' requires IJH' (ik = 0, i.e. 
c-"=J.. (i) 

The difTeremial equation for J.. = .l(r) is). == -)..(a - 2bK) + r )., <Jr 

. ( a - r) ;. = i..(r -a +2bK) = 2bJ.. K - -~ 
2b 

(ii) 

Now (i) i.Jnplics that C =)..-lit, which inserted into the differential equation for K yields 

K = aK - bK~ -- J.. -tfv (iii) 

,. 
!- =0 

I 

• . L 

Ii:, •. 0 

;"'"-
··-····-···----··• K 

i a/2b 

Figure 2 Fig11re 3 

Figure 2 presents a pha.~e diagram for the ~ys1cm given by (ii} and (iii). We sec that k = 0 
for J. = (aK - bK2r", with v > 0. Here z:::: aK - bK2· represent& a concave parabola 
with z ::, 0 for K ;;: 0 and for K ,,,- a/b. For l =-: 0. one has ). "" oo. The graph of 

k = O is symmetrical aoout K :..:. ,1(2b. Note that J.."" 0 when K :..: (fl-· r)/2/1, which 
gives a straight line parallel ro the ).-axi~. Uecau~e O < (12 - r)/2b < a/2b. the gr~ph 
of ). :.:: 0 will be as ~ngge~ted in tht: ligurc. The equilihrium poiJJt (K, ),} is givca by 

K ·.- ca -r)/2b, .i:."" [(a2 - ,?.)i4br''. 
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In Fig.. 2 the K .l.·pl,me is <lividcd inm four parts. 111c arrows indicate lhe direction.~ 
of the integral curves in each of these four parts. From (i:i) wc see lnat K > (a - r)/2b 
imptie.. J.. :> 0, whereas K <: (a - r)/2b implies). < O. Also, the eigh t-hand ,title of (iii) , 
aK - bK;. - .1,-l;•, incr= as,)., incr=~~ for each fixed K, so !hat K > 0 above tb.e 
curve k = 0, and k < 0 below this curve. 

Figure 3 ~hows some inlegtal curves that (K (t), ).(1)) could follow a~ r increases. In this 
figure we have assumed that Ko < K. Of particular interest are paths th.it start at K "' Ko, 
but other curves, which start with other values of K, are also drawn. Note that, although K.o 
is k.uowu, the quantity >. (0) must be regarded as an unknown paramt!ter. In this particular 
problem .1.(0) can be determined ns follows: If J..(0) is large, the point (K (t), .l.(t)i starts 
lligh up on the Ii~ K = Ko and moves along a ClJ!·ve lilre that marked l in Fig. 3. If >..(O) is 
small, then (K(i), J.(1)) stans low down on the line K ::: Ko and moves along a the curve 
like min the figure. If i..(O) is even snialler, and (K0, >.(O)) lies b.llow the curve K = 0, tht1n 
( K (1), A(t)) moves steadily ~souLh-wcst'', likeclltVe IV. At some point on the line K = T<.o, 
continuity suggests that there 6hould be some particular value). •(O) of >..(O) $uch that the 
resultant curve is of type JI, which convciges co the stationary point (K, i.). 

Hero is a more precise argument: Curve I was obtained using a high initial value foe .:..(0). 
Along curve J the point (K (t), >.(I)) move-.s down to tb.:: right until it reaches a 01inimun1 
point where it crosses the line).. = 0. Let }. (0) decrease. Then curve l shifts downwards. lts 
rnininiuro point oo the line). = 0 will then $hift downwards towanh the equi librium poi.nt 
(K, i). Acll.lally, i .• (O) is precisely that value of 1(0) w'llich wakes this minimum occur at 

che point (K. , i). Tbis initial value>. *(O) leads to a special path (K*(f)J·(1)). · Both i(•(r) 
and J.. •er) approach zero as r -+ oo. Nore that (K*(t) , >.. *(t}} is never equal to (K, i) for 
any finite,, but (K \t), ;..• (t)) ~ (K. ).) as r-+ oc. 

So far we baYe argued that the conditions of the maximum principle are satisfied along 
a curve (K"(r), J.'(t)) of type l( in Fig. 3, where /C(1) ->- Kand i .• (t)-+ 5. as r -+ oc. 
Let us prove that this candidate ~olution is optimal. 

The current value Hamiltonian H' is concave as a function of (K, C). Wich ;.: (1) 
given and c•(r) = i.' (t)-!f,,, the first-order condition for a ma.ti.mum of H" is sati~­
lied, and bcc::m.~e H" is concave in C. it reaches a ruax.iroum at c·(t). Moreover, because 
J. • (t)e - 11 K (r) ~ 0, e-" -> 0, w,d (K'(t), >.· (r)) ..... (K Ji as t -+ oo, it foUows that 

lim ;,,.'(rk-n(K(t) - K'(t)) ~ () 
t-+OO for all admissible K (r) 

This verifies all the suffici(',nt conditions in Theorem 9.1 J .1, so (K· (r), C'(t)) i& optimal. 
Any solution of th,~ sy~te:m (ii) and (iii) will depend on Ko !llld on i.(O) = >.. 0, so it 

can be denoted by K(t) "" K(r; Ko. >.. 0) and i-(1) "' J.(I; Ko,>.. o) . Tn this problem, Ko is 
given, whereasi..0 is determined by lherequirement that lim, .... 00 .l(t; Ko,>..°)= i. Figurc 3 
actually ~hows two curves of type 11 that conve~e to (f:. , X). Th.e alternative solution of the 
differential equations converges co (K, }.) from the "southeast". This path docs not solve 
(ht: optimization probkm, however. because it must start from a wrong value of K at time 
t := 0. t!t do~.s &~!vt the problem when K() ;. K, however.) 

The equilibrium point (K).) ::: ((a - rJ/2b, [(a2 - , 2)/4br") is an ~ample of a 
saddle point (seeSectic,n 6. 9). We show this by applying Theorem 6.!l. l . To do so, define the 
function.~ f (K, .:..) ""aK -bK2 - ... - If• andg(}(, .l.) :..c 2.bi.(K - (a - r )/2b} c.orresponding 

I 

:;~ 
·:.' 

-~ 

'} 
.. 

:~· 

)I 
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to the right-hand sides of(iii) 3~d (ii) respectively. Th:_n at ~e poi~t (K, A) i ne ha~ <if ~Fl K : 

2/ ,;, _ '!'" _ (l /v)i. .. 11,, · t u"/.JK = 2hl and &g/81. c:: 2b(J/. - (a-r), 2b) -
a --- ' " -· r, " , """ -··· ' ~ 
o. The dctenninant of the matrix A in Theorem 6.9.l is therefore 

··i r . (l/v)f-l/o-11 ::: - ~_i-1/1' •: 0 

j2b). () V 

This coufinns that (K , >.) r~ally is a saddle poi11t. 

9 12 

@ 1. (a) Consider the. problem 

max [.''\ ax_ !ul)e- rr dr, x =-bx + u, .i(O) == xo , .x(oo) free , u ~ R 

whw: a, r, aod b arc all po:,i1i,..:.. Write do•vo the curre.'.t value Hauiillonian H' for this 
probiem. and determin<> the systl:m (2). What i$ the equthhnum pornt7 

(b) Draw ~ phMc diag,-am for (x (I), ).(1)) aud show that for the two.solutions coovcrgingto the 
equilibrium poi1\t.. >.(t) l'OILst be a constant. Use sufficieol condiuom to solve !be problem. 

(c) Show mat ilY /3x.o = J..(0), wbe-re Vis the optimal 1:aluc function. 

@ 2. 1n fa.amplt 9.2.2 we stvdicJ a proble<n clo,;ely related to 

ma.~ Lr (- xi - !ul}e-11 dt, .~ = x + u, .t(O) ::. I, x(T) 2:. 0, u 4'i R 

Solve this problem in the ~ase T = co. (Hint: lim,-<>< p(t) = 0.) 

@ 3. (a) Conbider the problem 

max LT e-" In C(r) di 

(hJ 

(ci 

K (t) = AK(t)" - C{r), K(O) = Ko. K(Ti = Kr 

wh~rc 1.he constant, A and r ate positive, and o, E (0, 1). Here K{r) tlem>les _the capital 
slock. of ae1 cconomv and the control variable C(I) denote., consumpho.n at hm~. I. 1l1e 
horizon Tis fixed a~d finite. Prove that if K "' K' ( tj > 0 and C "" Ctr) > 0 solve the 
problem, then 

(i) K '"' AK" - C (ii) (':~ CfuA K.•·· • -t) 

j ? - l '2 and r - O 05 l'row tbal Ille equiJib\iu,n i.~ s saddk point. 1n Suppose: = -, a - ; , - · · . . 
Problem 6.7.4 yo,, wc,:c asked 1,,1 ur•w a phase dia1,•rarn of the system. 

lndkatr, in ti!<! diar.ram for Proolem 6.7.4 & 1x,,;,.jhlc in1.ei;r:1l cur,'<! for the= Ko'·" 100 
and K.r '"= 60.0. Wharisthesolutionwheolo= !OOao(IT = ~.'.111th K(1) > Oforallt / 
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~ 4. Consi(l,;-r the problem 

., = x ·-· "· x(O) ·"- ~, .t(c-::J free 

(a) Solve the proNem quai.irativcly by a s,,ddle poim. a(gumcTJL 

(h l Find >Ill ex.plicic solution. 

I 

To be 5Ure. m<1thematio O.ll1 t,<;, exrer.ded to ,iny !>ranch of 

knowledge, including t~onomics; providf:'d Th'1 concepts;:~ so 
dearly df!!fine<J .is to perm;r amirate symbolic ~presentaticn. 
That is or,i'y another way of sayillg rhat in some brilnches of 

discourse it is desirabie to know what you arE• talking about. 

-D. MacOougl.i~ (19S6) 

This chapter begins by e)(tending the opt:rnal control theory developed ir. the previous chapter 
to problems with several state and control vario1bles. In Section 10.1 the main emphasis is 

on appropriate ger.~ralizations of results from Chapter 9. The explar.ations are brief because the 
e5sential motivation was given in Chapter 9. However. we give a proof of the Arrow sufficiency 

theorem in the case of several state and control variables. 

Section 10.2 contains examples il1uwating the theory. 

SE'ction 10.3 extends the infinite horizon theory ot Section 9.11. In fact, the majority of the 
control models that appear in economics literature assume an inti nite horizon. A good treatment 

ol ii1finile horizon control theory with a la,ge number of E'conomic applications can be found 

in Weitzrnan (2003). 

If neither the Milngasarian nor the Arrow concavity conditions c1re satisfied, then we need 

some ;issurance that the control problem has a solution. Even if the maximum principle gener­
ate5 a unique candidc1te for an optimal soiution. there might still te no optimal sol1Jtion. This 
diffcu\fy is discu~sed in Section 10.4. Th~ Fi,ippo'I-Cesari theorem gives sufficient conditions 

for existence of an opt,r:ial control ir. a •ather general control problem. The section eads wi1h ,l 
formulc1tion o! precise ser.sit.vity results in cor.trol theory. These are seldom spelled out P.)(CP.p'. 

in spccialiwd literature. 

Section 10.5 offE'rs a heuristic proof oi t.hE> maximum principie. which, at least in the c;ise 
of a free er.d. is close to a propiir proof. Proving thP. maximum princip!e is rnuch hardN when 

then~ are terminai consuaints on the staw variables. 

Sectio~, 10. 6 has a short discussion of control problems witli rnixed con,tr .:iints of the type 
t,(r. x. u) :::. 0, and Section i0.7 considers pure state ~onstra•nts tharlar. b,:,writter::11 the vector 
lorm h(t, x) :::. 0. In fact. many of the control probiems that economist~ t,avc cor.sidered involve 

mixed and/or pure con'.;tra,nts. Finally, SP.c.t,on 10.8 br<~fly discusses some qP.ner.:iliza,ior..s 
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10.1 Several Control and State Variables 
Chapt.-. 9 srudi,-<l oootrol problems wiih only 01ie state :i.nd one couuol variable. In thi~ 
section mosr of the results from Chapter 9 are gencraliro:l tu coutrol problem~ with 11.n 
arbitrary number of s tate aad control V3riabk.s. 

The standard cnd-c.on.~trained probicm with n state varinb.les and r controls is to fu:ld 

a pair of ve.-'todunctiuns (x(1), u(t)) "' (x i (1), ... , xn(t), u1 (t ), ... , u,.(&)) defined on tbe 

oxe<l tim<: interval [ro. /1 Jin order IO maximi1.c 

1
,, 

"'f(1, x (1J, 11V) ) d 1 

subjc~I I(> the dynamic constraints 

dx1(t ) 
-;,;- = g1 (t, x(r), u(t)) 

or X = g(t , X(I), 11(1)) 

tbe initial conditions 

x;(to) = x?, i = l, .. . , n (x0 = ex?, .. . , x~) is a given point in R") 

the terminal conditions 

(a) .x;(t1) = x}, 
(b) X; (11 ) :'. xl, 
(c) x; (t1) free, 

and the control var.fable restficrions 

i = l, ... , I 

i =I + l, .. . , m 

i=m +l, .... 11 

u (t ) = (u1(t) , ... , u,(t)) EU £ W (U is a given set in 11n 

(I ) 

(2) 

(3) 

(4) 

(5) 

ln (2) the sy5tem of differential equistions is also wriuen as a vector differential equation, 

where i = (d x1idr, d.x.z / dt, . ... dx. / dt ), and g = (K1, g 2, . .. , g.) is a vector function. 

To,~s., 11 equations describe the rate of growth of each state variable. In (4), the numbers ft 
ancl x;' are fixed. 

The pair (x{1), u(t)) is admissible if,, 1 (t) • ... , u, (1) are all pieeewisc l:(mtiouous, 
u (t) takes values i.n U ruid li'.(t) = (.~1(1), .. ,, x.(t}) is the corresponding continuous and 

pieet..-wise di.ffeTentiable vector function that U tisfie$ (2), (3), and (4). The functions f and 

g 1, ... , Cn and their partial derivatives w.c.t. the variables x; are assumed to be continuous 
in all the n + r + 1 variables. 

By amllogy with the sinsle variable problem in Section 9.4, assuciate an isiljoiot func­
tion p;(r) with each state v1triable x, (1). T be :Hamiltonian Ji = H(r. , x, u , p), with p = 
(Pt , . . . , p.). is then defined by 

n 

H (I.X, u. p) = Pof(t , X, u) +P · g(t, x , 11} = J>o/(r, x , n) + r: p,g;(l, X, U} (6) 
i~T 

I 
I 
I 

I 
I 
I 

I 

HlEORfhl 

L __ 
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The Maximum Principle 

The roaximwn principle for the problem give~ necessary condition£ for optimality, but the 

t:on<litions are far from suffidcut. Fo.r a proof ~ec Fleming and Ri ~he.l O 975). 

Suppose that (x•(r). u•(r)) is an optima.I pair (or the s11U1datd ~.nu-constrained 

problem ( J}-(5). Toco I.hen: exist a constant PO, with po == 0 or Jlo = I, 

a.o.d a continuous and pieceY.ise diffccc.ntiable adjoint vector function p (t ) ==­
(p1 (t), ... , p.(t)), such that for all tin [ro. td, oucha.~ (po. p(r)) # (0, 0), and: 

(A) The control function u• (1) maxi.mires the Hamiltonian H (r, :r(t), u . p (r)) 

foru E U,i.e. 

H (1, s:• (1). u , p tt)) s H (1, i·(ri, u' (r). p(r)) for all u in U 

(B) Wherever u'(I ) is continuous, the adjoint fuuc1ions ~ati:,fy 

. aH(t, x*(t), u• (t). p (1)) 
Pi(I) = - -·- , /h; 

i = 1, . .. , n 

(C) Corresponding to The terminal conditions ( a), (b ), and ( c) i.u ( 4 ), one b,,s the 

respective trnmwersality conditiou.~: 

(a' ) p1(t1 ) no condi tion. 

(b') p;(r1) ;:: 0 (pi(t,) = 0 if xtCrt) > x(), 
(c') p ,(11) ::: o. 

i = !, ... ,/ 
i=l + l. .. . , m 

i=m + l. ... , n 

i 

! 
I 
I 
! 
i 

I 
i 
t 

! 
I 
! 

I 
! ·-·-------... ,---·----- -"-... ··--··----.---· 

(7) 

(8) 

(9) 

NOTE 1 For any i.ucquality in (4 )(b) that is reversed. the corresponding inequality in t9)(b') 

is reversed as wel I. 

NOTE 2 One can show the following additional properties: 

(a) The Han1iltonian 

H (t , x·{!), u•(1), p (r)) is cootiouous for all t (10) 

tb ) If th~ purtial derivative~ il/ jilt aud ogif;Jt. i "" J, .... 11, exi~t and are continuous, I.hen 

d . • 3Jf(t . x•(t). u'(t ), p (r)) (ll ) 
d/11(1, x' (t), u (!), p (t)) = · 

01 
......... . 

at all points of continuity nf u•{r ). (S.:e Problem 2.) 

(c) Moreover, 

V c.onvex un<l H stric.r\y concave in u ~ u*(.I) continuous for all f (12) 
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NOTE 3 Suppose that. the terminal condition is that al] stale variables x;(t1 ) are free, for 

i = l, ... , n. In this case, (9)(c') yields p(r1) = U, aud then Po"" 1. 

NOTE 4 Toe adjoint variables i.El Theorem 10.1. l can be given price interpretations cmres­

pontling to !hose in Se.."'lion 9.6 for the cast: n = r =.: I. lodeed, let x1 = (x/ • .... x~) and 
defipe the value function V aswcialed with the standard problem as 

1
,, 

V(',/'. :t1, to, ti)= max { ~ f(t, x(t), u(t)) dt : (x(1), u(r)) admissible} (13) 

Then, under precise assumptions st:tted in Section 10.4, for i =- I, 2, .... n, 

av 
-;;-0 = p;(10J, 
vXr 

&V 
aio = -H'(ro). (14) 

where H* denote~ the Hamiltonian evaluated along the optimal path. 

Sufficient Conditions 
The .simplest genera.I sufficiency theorem is the following: 

THEORE 1012 

; 

Consider the standard end-cons1ro1ined problem (1)--(5) with U convex, and sup­

pose that the partial derivatives ~f /rJuj and ag,/ llllj all exi~t and are continuous. 

If the pair (x • (t), u• (t) ), togctlmr with a continuous and piecewise differentiable 

adjoint func1ion p(I), satisfies all the condition8 in Theorem 10. l.l with Po = J. 
and if 

H (1, x, u. p(t)) is com:ave in (x, u) for all tin [to, td 

then (x•(t), u'(t) solves the problem. 

fflhe function H(t, x, u, p(r)) i8 strictly concave in (x. u). then (x*(r), u'(r)) is 

the unique. sol11tion to the problem. 

(15) 

._,,._ ...................... ._._ ____ . __ _ 
NOTE S Because a ~um of concave functions is concave, the cnpcavity condition (l 5) i8 

satisfied if .f and PtKl, ... , Pn8n are :i.11 concave in (.x, u). 

At this point lhe reader might want to srndy Example 10.2. L and then do Problem 10.2. l. 
The proof of Theorem 10.1.2 i& ve1y ~imilar rotheproof uf111corcru 9.7.l. so we skip ii. 

Instead, we. lake a closer look a£ a generalization of Mangasarian's theorem due to Anow 
(sec Arrow and Kun (1970)). Define the maximized Hamiltonian as 

H(1,x,p) ==mar..H(r.x,u.p) 
\ltll 

(16) 

assuming that. the rua:xi.tm1m value is attained. Th,·n th~- appmpriat.: g.:nerali,.atic.m of 

Theorcm 9.7.2 is thi~: 

SF.CTION 10.1 i SEVtRAL CONTROL AN[) STA"£ VARIABLf:~ 

Suppose that (:x"(t), u•(r)) is an a<lruis~ible pair ill the standard end-<:onstrai11e<l 

problem (1)--(5) cha1, together with the co11tinuou~ aud piecewise differentiable 

a~joint (vector) function p(t). satisfies all the conditions in Theorem 10.1. l with 

Po = 1. Suppose furthe~ that 

fl(r. ,i, p(l))is(·oncavein xforall i in (to, til 

Then (x'(I), u"(t)) solvl's the problem. 
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(17) 

~ I . _,.. _ _. .. __ ..... ---·--~ ........ ---·-···· .. · ............ ,---•,,...--......... , __ .. _ .... ·-··-.! 

Proof: Lei (x, u) = (x(r), u(t)) be an arbitrary admissible prur. We must show 1ha1 D. 
f~1 /(r. x'(t), u"(t))clt - f~' f(t, x(r), u(r)}dt ~ 0. Let us simplify !be notation by lclting f' 
denoce /(1. 1'(1), u'(I)), f denoce f(t, x(t), u(t)), H' dt:notc H(r, x'(t). u'(r), p{r)). etc. As 1n 

the proof of Theorem 9.7.I, it is easy to see that 

D• =, 1" (H' - H)dr + 1'' p(t) · (i(t) - ir.'(r))dt 
'• ti) 

(i) 

Jncegration by° parts yidd$ 

/.
't p(t). (i(r) - x*(1))d1 = I'' p(1) · (x(r) - x'(1)) - [: p(t) · (x(t) - x'(t))dt 

II) q; ., (ii) 

:::. - {' p(r). (x(t) - x'(r))d1 

To explain tile Ja.~t ineq1mli1y. note first 1ba1 because x(roJ) ... x'(toi w,~ ge! 

\'' p(r). (x(r) - x·(t)) ""p(11}, (x(1i) - x*(11)) ,,, t p;(r1)(.t;(r,) - .:((11)) (iii) 
I~ i=I 

We claim that this sum is ?.; O, which will imply the inequality in (i\). ln fm:c, for i "' I, 2, . - . , I, 
we have x,(r1) =- x;(r,) = xi, so the corresponding lenns are, 0. Also, for i = m + 1, ... • n, the 
corresponding terms iu the sum in (iii) are O l)r.,eause by (9)(c'), p;(t1} = O. lf i =I+ I, ... , m and 
x;'v,)::, x,C, lhe corresponding tcri1Ls are O because by l9)(b'), p;(r1) = 0. Finally, if X;'(r,) = xl, 
t11enx;(t;) - x;'(t1) 2: 0 and, by (9)(h'), p;(r1) ~ 0, so the corresponding term,; arc~- 0. All in a.11, 
c:his prove~ that the sum in (iii) is ?: 0. __ 

To proceed, note that by the dd1nition of H, 

fr .,,. ff• and H :s ii (iv) 

It follows from (i)-(iv) !hat 

1
1• 

D,:::. · [H' -· ff - p(r) · (x(r) - x"(r))]dr ,, 
(v) 

But c.S) implies that -p(r) is rh.c (partial) grJ1!!_c11t vector 'v,l-1', which rnust equ;,l v,fi• by rhc 
envelope ttl<~">rem (Th,;orem 3.10.2). Because H is c,lncavc w.r.t. ll', it follows from Theorem '.!.4.1 

Iha[ 
ii:_ ii• :" -p(Z)lx(r}- x"(t)). or fi• -- H '.?: p(t)(x(t) - x'(r)) 

This imi>lics rhac the integral on the rigb!·band side of (v)is nonnegative for all tin fro, rd, so D, ?: 0 

asrequi.re-d. • 
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Trl EOR U,1 

I 

! 

NOTE 6 The result in Problem 3 shuws that couditio11 (15) implies ( l7). Thus Theorem 
l 0.1.3 gcncrali2cs T heorem I 0.1.2. 

NOTE 7 Suppose that in the ~tandard.end-constrained probkm (l)-(5) one !'('.quirt:., that 

x(t) E A(r) for all I, where A(r) for each & is a given convex set in IR". Suppose also that 
x*(t} is ao interior point of A(I) for each r. The conclusion in Theorem 10.1.3 is thc-n valid, 
and x f-t H (I , x. p(r)) need only bccoocuve in the set A(1). 

Variable Final Time 

Consider problem (1)-(5) with variable final time 11. The problem is among all conU'Ol 
functions 0 (1) that during the time interval [ro, ri] SICCI: die system from -tJ along a time 
path satiifying (2) to a point where the boUJldary conditions io (4) are sa.Lisfied, to find one 
whict, ma.x.imiz.es the i.ategral in (1}. The time t 1 at which the process stops is not fixed. as the 
different admissible control functions can be defined on different time intervals. Theo.rem 
9.8.1 has then the following immediate generali'zatioo: 

ME) -

Suppose that (x*(t) , u• (r)) is an admi~ible pair defined on [10, til that solves l 
problem (l}-{5) with r1 fox (t1 E (to, o:i)) . Then all the conditions iu the max· I 
imum principle (Theorem t0.1.1) arc sar:i.~fied on [10, 1jJ aod, in addition, I 

(.l 8) 

L-------------· l ___ _.., 

For a proof, see Hestcnes (1966). Neither the Mangasillian uor the Arrow theorem applies 
to variable final time problems. For ~ufficicncy result$, sec Seierstad ood Syds~ter (l 98i). 

Current Value Formulations with Scrap Values 

TI1c theorems in Section 9.9 on Cll.rleot value fonnulation.s of optimal .::ontn)l problent~ with 
scrap value functions ca.n easily be gcnerafo.ed to the following problem involving ~everal 
state and e<1ntrol vruiahles: 

{1,, . - rl • -ri, l 
max JV, x . u)e. dt..,.. S(x(ri))e. J· 

11l::L'£,R' I() 
x(/) = g(f, x. u), x (to) = x0 (19) 

(a) Xi(T1) = .4, i a= !, . .. 'l 

(b) Xi (/IJ ~ .t/, i = l + l , .. . , m (20) 

(c) X;(t1) free, i= m+l, ... JI 

Ho::rc r denotes a discount. factor. The c11uent value Hamiltonian is by definition 

ll" (t. X, u, l.) = >-0! v. X, u) ... l. . g(f ' X, n) (21) 

l 
l 

I 
i 
I 
! 
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Suppose that (x'(f), u' lt )) is an opLimal p=-~ the pro:l:~9)-(20). Then i 
(here exist a conrinuou.~ an<l piecewi~e continuously dift'ereutiablc veer.or function 
.l(r) = ()..i(r), .... .\.,,(,r)} and aconstanr .\.o, with A-O = 0 or AQ =-I . such that 

(i..o, .l (1 )) # (0 , 0) for all r in [to. ti] , and such that 

(A) For ,Ill I in f to, r, l. 

u = u'(t) mwmi:tes H"(t, x'(t). u . .l(t)) for 11 E U 

(B) Wherever u• (r) is continuous, 

. 1'W(t, x•(1) , u '(t), l.(r}) 
l;(I) - ri.;(t) = - h ; , i=l , .. . , n 

(C) Finally, comsponding 10 the terminal conditions (20)(a), (b), aud (c), one 
has rhe respective irnnsver,;ality conditions: 

(a') l.;(r1) oo coodirion, i = 1, . .. , l 

' 1JS(x~(t1 )) . . , ·c ) I ) · l L 1 (b1) A;(l1 ) :::: Ao · (with = d x, 11 > .t, •• 1 = ·r· , •. . , m 
ilx; 

(22) 

(23) 

(24) 

0S(x'(r1)) ! (c') A;(lt) = '-o , i=m + l , . . . ,11 
' 3.t; 

L....------··---- ·- --------- ---~-
THEORH,1 10 1 6 (r;UFFICIENf CONDITIONS ARROW .... - ... ·---- ----s 

...;..;~a;...:.:-; ............ 

I 

I 
The conditions in Theorem 10.l .5 are ~u{fk i.ent (with Ao = I) if 

and 

fi<(r. x. l.(t)) = max /-l"(t, x, u, l.(I}) is concave i.u x 
t•EU 

S(x) is concave in x. 

- -··---.. ----~---------

(25) 

(26) 

Toe problems for this section. are of a. theoretical nature. Non-theoretical exercises ure found 
al the end of the nexc = lion. 

PROBL£ 1,IS fQR '\E flOll 10 1 

1 . c-.. ,nsider the vari• tioDl\l problem v.ilh a.ti i11reg.-al cOnSltirin l 

1" max F(t, :r. ,i:)dt, x(f~) ,,,,.r0
• x (1,.l = .x', 

'<> 

~n 

J.,, · G<t, x, :i:)dr ~, K 

TrM.~forrr. the prools'UJ 10 a cimtrol problem ,;,.·ilh one control Yarfable (!< ·· ·, i ) and two state 
variable:; x ,. x(r} ~nd yl_r} = J~ G(r,.t(tl. i (-r:))d r. 
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2. Prove (11) 8.\SUIIling that u' (I ) is diff&entiablon<l n'(l) l'Clongs to t!\dnterior of U . (Hi.tu: 
Di1Tcn:utiate lf. (1, x· ( r) , u' (!}, p(I )) totally w.r.t. t.) · 

~~ 3. Let S and U be convex SCI$ in R" and R', rc:;poctively, and let 1-'(x, n) be. a real-valucdcoacavt1 

10.2 

EXAMPLE I 

function of (x, ui, ~ e S, u <: U. Define · 

f (x) = mn F (x, u) 
ael' 

where we as~ume that tbe rru,ximum value exists for eac:h x E; S. Prove 1bar f is coocavc in S. · 
(Hint: Let Xt, x2 ~ S, ,\ E [0. I) and choo.se u1, o2 in U such tbat f(x1) ., F(1:1, u1), 

f (x1) = f"(J2, u2).) 
Let B be a coovex set in W x R' and define the sec U, = {u : (x. u) e BJ. Prove lhat 

g(x) = 11).QX_.v, F (x, u) is concave. 

4. Ri;write the follov.iog problem as one oflhc type (l}-{5): 

('' = J,. J (r. x , u)dt, i ""!f (t, x , u ), x( to) = x 0
, u € U. 1

,, .. 
"' h(1, .t, u)dr= K 

Here to, 1,, x'\ ~nd K are given numbcl-s, f , g , and hare given (unctions, and (I is a.surn;ctof ft 

Some Examples 
In this St.-ctioo the theory from the previous section is used Lo solve some mu.ltidimC-11SionaJ 
cootrol probleois. The first i$ intcodcd to be simple enough for you to be able to make a real · 
effort to solve it before looking at the suggested solution. 

Solve the problem 

1· 

max f (x(t) + y(1) - !uv,1) df, 
u(r~eM Jo { 

.i'(t ) = y(t), 

y(r) = u(t), 

Verify that the last equality in ( 10.1.l 4) is ~atisticd. 

x(O) = 0, 

y(O) = 0. 

x(T) is free 

y<T) is free 

Solution: Suppose that (x • (t ), y• (1) , u• (, )) solves the problem. With the r:wo adjoint van-· 

uhle~ Pt and P2, the Hruniltooian is H = x + y - !u2 +Pl y + pzu, which isclc:arlyconcave 
in (x, y, u). (Becau~e x (T) aod y(T) arc free, Note 10.l.3 iD1plics po '== 1.) We see that 
H; = 1, H; == 1 + /J I, and H~ = - 11 + h · 

The differe ntial equatioos for Pl and fJ2 are Pt (r) "' - I with Pt (T) = 0, and j,i(t ) = 
-I - Pl (t) with p:(l"l =: 0. It follows that p1(t) ::. T - t . Hence, p2(1) = - 1 +, - T 
and therefore P2(t) = - 1 + }t~ - T t + .4. The requirc1uenr. p2(T) = 0 implies that · 
A= iT1 + T . Tbn~ • 

p1 (t ) = T-r , 
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Now H is concave in u and u E R, so J-J has its maximum when a; = 0. This gives 
u•(t) = pz(t ) == ~(T - if + T - 1. Since y• (1) "'u•(r ).,. hT - tf + T - t, we find by 
integrntion that y;(r) = -~(T - r)J + Tr - ,Jr2 + 8. To,.. i.uitial condition y• (o) = 0 gives 

B = i T 3 . From x•(t) ""y•V) we get x' (I) "" ~IT -1)4 + J Tr2 _ .. &t3 + iT3
t + C. The 

Tequirement x·• (0) = 0-~ive~ C = - ~ T4 . Hence the optimal choices for x• aud y• arc 

Mangas.atian·~ theorem shows that we have found the optim;il solution. 
Tbe value function is V (T) -"= f~ (x' (t) + y•(r) - ! u' (1}2)dt, aad 3 ralht·r tcdiou~ 

cornput:1tion (using Leibniz's fonnnla) yields V'(T ) = ! T2 + ! T3 + i T•. On the oilier 
hand, H'(T) = x'(T) + y ' (T) - } (u' (T))2 + p 1(T)y' (T) + J>2 (T )u"(T ) is easily seen 
to equal 4r2 + ! T3 + kT', confirming (lO. l. 14). I 

EXAMPLE l (Two.sector model) (This is related to a model of Mahalanobis.} Consider an =nom.y 
that is divided into t.wo sc-ctors. Sector 1 pmdoces investment goods, while sector 2 produces 
consumption goods. Define 

x; (t) = output iu sector i per unit of time, i = 1, 2 

u(r) = the fraction of 001put in :sec«ot I that is invested in sector I 

Assume that each u.nit of inve$tment in either sector incrC3ses output in that sector by ,1 

twits. It follows rhat xi = 1111x, and .x2 = 11( 1. - u).,·1, where ah a positive coustant. By 
clelinirion. ooe ba.~ O :S u(r) ~ I. Finally, if the pl.luning paiod st.ms at ti.me r "" 0, tllen 
x1 (0) and Xz (0) arc historically give.n. 

We conside{ the problem of maximizing total consumptioo in a given planning period 
[O. TJ. The problem is th¢n, with a, T, x?, and xi as positive constants: 

{ 
.i1 (1) = ou(t )x 1 (r), 

xi(t) = a(I - u (t))x , (r) , 

X1(0) = x?, 
x2(0} = xt 

.c1 (T) i~ free 

X·1 (T) is free 

The Hamiltonian is H = x2 + p1auxi -i- pza(l - u}xi, wbere Pl and Pl are the adjoint 
variables associate.d with I.he two difft..-reothl eqoations. (Bc.;nuse hoth terminal stocks arc 
free, Note I 0.1.3 illlplics Po = I.) 

Suppose that (xi ((} , xi(t )) aud u• (t ) solve the prohl.:ru. According to Thcorc!Il 10.1.l 
there exi~ ts a continuous vector function (p 1 (t ) , p-2(1 )) su.ch that for all t in [O, TJ, u•(t ) 

is the value of u in [O, I J which rnax.imi1.es xi(t) + p1 (1)auxf(t) + p2(t)a(I - u)xj(t) . 

Collecting the terms iJ.1 H which depend l' ll u. note thai. u• (1) must he ,~hosen as tha! value 
of u in (0, !}which maxim.i1.e~ a {p1(1} -· P2(t))xi (t)u. Now. x;(Oi = x? > 0, and bccau,;e 
.i: j (t) = au' (t)xf<t), it follows that xi (t l :, 0 for al.It . TI1e ma~imum condition therefore 
implies that u'(r) should bt\ Chose.n a, 

{ 
I if Pl (r) > µ 2(1) 

u•(t ) = 
0 if /II (r) < /-'2 (/ ) 

(i) 
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The fum:tion P2(t) satisfies h(t) "'' -cJH* /ox2 = -J with P?.(T) "'U. Hence, 

P2(r) = T ·• t 

The functi,)n P1(t) satisfies .PI(I)"" -aH•tox: = -p1(1)au*(1) - p2(t)a(I - u'(r)). 
wilh PI (1') =. 0. Because P1 (T) = pi(T) = 0, one baa PI (T) = 0. From i>i(t) :::: -1, 
it follows that Pt (1) ·~ [>2(1) in ~n imcrval hmncdiatdy to the left of T. (See Pig. 1.) If 

we It:11• "' inf{t E 10, T) : p1(r) < pz(r) for r in (1, T)). then (1', T) is the large.st 
such interval. (Possibly, 1• = U.) Using (i) it follows that 1<*(1} = 0 in (r*, T). Hence, 
.Pl(I) = -a['2(t) = ·-a(T - 1) in (r', T). Integration yields PI(t) = -«Tt + !012 + c1. 
But p1(T) = 0, so CI = }a1'2 and hence 

I E [I', TJ 

Pl,/>2 

/P2(t)= T--t 

Figure 1 The bebaviotlf of p1 and p,. 

Unless p1(t} < P1(r} for all I in [0, TJ, the numlx>r i• is determined by the equation 
Pt (t•) = P2(1*). Vsing the expressions found for Pl (I) and pz(t), it follows that 

r• = T - 2/a if T > 2/a. otherwise 1* = O 

Consider the case when T ;. 2/a, so 1• > 0. How does p 1(t) behave in theioterval [O. t*)'? 
Note fir.c:1 that · 

• {-ap1 (t) if Pt (r) > p2(1) 
P1(t) = 

-aPi(I) if p1(1) :S pz(I) 

If PI (1) '> p2(r}. then -apI (r) < -ap2(1). Whateveris the relatiouship hetwccn PI (t) and 
P2 (t), we always have 

Pl (1) :S -ap2(1) = a(t - T) 

In particular, ift < t•, thenp1(1) ~ a(t-T) < a(r* -T)"' -2. BccaoseJii(t) = -t for 
all t andp1(1*) = p2(1*), wcconcludcchatp1(r) > p2(t) forr < t•. Hencc,u•(1) = l for 
r in [0, r•]. The maximum principle therefore yields the following candidate for an optimal . 
conttoJ, in. the case when T > 2/a: 

. . f l if t E JO, T - 2/ a] 
" V) = 

0 ifr E (T-2/a, T) 
(T > 2/a) (ii) 

Fort in [O, T - 2/a]. we have u*(t} = I and so p1(r} "" -up1(t), i.e. p1(r) "' ce·-a• 
Because- Pi (t*) ""'P2V•) "": T - t• = 2/a, 1his yields 

t ~ [O. T - 2/a) 
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It is easy to tlndexplicit expressions for xj(t) and.l·z(t). (See Problem 2.) 
In the other case:, when T ~ 2/ a, one bas 1• = 0, so the candidate. for ,Ul optimal 

control is 

u*(1) = 0 for all r in [O, TJ (T ~ 2/a) 

1n this c:1:ample the maxtinum principle yields only one candida1e for an optimal control (in 

each or the ca,e~ T > 2/ a and T .'.o 2/ a). 

The Hamiltonian is not concave in (x l, x2, u) (because of tbe product uxi). Thus tl1c 
Mangasarian theorem does not apply. For x? ~ 0 and x2 ?: 0, however, the maximized 
Hamiltonian fi defined io (10.1.16) is 

if PI> P2 

if Pt :<o p2 

For ca.:h I in LO, T], the function ii is linear in (x1, x2). lt is therefore concave in the set 
A = f(x1,x2) : x1 ::: 0, x2 ?. 0\. According ro Theorem 10.l.3 and Note 10.1.7, the 
solution to the two•scctor problem has beeu found. I 

ROBLEMS FOR SECTION 1 .2· 

1. Solve the problem 

max [4(10-x1 +u)d1. 
•<(-1.IJ lo [ 

X1(I)""' X2(I), 

X2(I) "'U(l), 

x1 (0) ,., 2, x1 (4) is free 

x2(0) = 4. x2(4) is free 

@ 2. In Example 2, for the case when T > 2/a, find the functions xj(r) a.id x2(1) corresponding to 
the cootrol fuoctioo given io (ii). · 

@ 3. (a) Solve 1be pl'Oblcm 

ma,: {1 <.ix1 + !x2 - u1 - ui)dt. 
la - [ 

i1 (1) "'' U1 (I), 

.t2(t) "'u1(I), 

.t1 (0) "'0, Xi(T) is free 

x.(O) "'0, x2(T) is free 

wi1h O ~ u 1 (t) S I. O :'.: u1 (1) S I, and with T a~ a fixed number greater than 5. 

(b) Replace lbe objective functiolllll by f. (Jxi + ~x2 -- "1 - u2) d1 + 3x1 ff)+ 2xz(T) and 
find the solution in this case. 

@ 4. Solve the problem 
max for (x2 + ,:(I - u, - 1<2)) dr 

.i1(r)=au1(t). xi(O)=xf, x1(T) fw; 

whe-re T. a. b, and care positive coo~UUJt. and T - ~/a. > T ·· 2/b > 0. (COtnp'<tU.<l wirh 
Example 2, an extra flow of iDcClme amounting to one unit isay I billion per ye.ar) can be 
divided berwccp c~ era capital investment in eidier the invesrmcnr or consumption good~ se..-iors, 
or consume.d dire.c!ly.) 
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8 5. Solve the pr.ohlern 

max {T(x1-cx2+u.0 -u)dt. 
••. 10.,.<>1 )9 

.t1(0) .,, xf, 
X2(0} "'' xt 

x, (l) is fn:c 

.t1 (t) is free 

whc~ T: ~, c, and u0 are positive consta11L< w.ith /icT > 2 and U,c < t. (Economic inlerp.ret­
at,on. 011_ ,s pro<loced at the rate of u0 per w11t af nme. The pmcecd.5 can be used to increase 
the ~1ty .t1 1n rhe sector_producing consumption goods. By adjus.ting the physical units, 
a.<SUmc Xt "." U · 'fbc protJuc!Jon Of CODSuiDption good.< is proportional lO XJ and, by ~djusting 
tbc ll1~c uml. the constant ~f proportionality is chosen a~ I. The pniduction of consumption 
g~~ 1D1,,T~es ~ gtock ot pollution, r2, al a constant talc per unit.· This subtracts cx2 from 
uttbty per urut ot lune.) 

6. Consider lhe problem 

max for U(c(r))e-" dt, {~(t) = f(K(t), u(r))- c(r), K(O) = Ko, K(T) = Kr 
.:c(r) = -u(t). x(O) = x0, x(T) = O 

whei:eu(t)?; O.,:(t) ~ 0. HereK1.r)denotescapitalstock.x(1) istl1estockofanaturalrcsource 
c(t) 1s consuroptioo, and u(r) is the ra1e of extraction. Moreover, U is a utility function and i 
is the producnon funcl!on. Tbe constants T, Ko, Kr, and XQ ate positive. Assume tbat U' > O 
U".~ 0. !:C, > 0, Ji> 0,andtbat f(K,u) is concave in (K,1<). Thisproblemhastwosta~ 
vanables l~ and.<) and two ~'Ontrol \'ari.ables (u and c). 

(a) Write down the condition~ in Tb0,'0rem 10.1.l, assuming that u(r) > O and c(t) ~- oat the 
Of>ll1!1UTD. 

(b) Derive from !llebc: conditions that 

c r-· fHK,u) 
~ = II> 

when: w is th<: elasticity of the marginal utility. See Section R.4. 

@ 7. Solve lhe prohlem 

ma~ f 
2 
(x - .lu) dt 

uE:LO. lj ) 0 7 ' 

10.3 Infinite Horizon 

{
~ =I<, 
y= u. 

x(O) ~; I, 

y(O) = 0, 

x(2) i~ free 

y(2) ~ I 

lnfinite horii.on control problems were introduced i.n Section 9. I I. This section extends the 
analysis in several <fucctions. Con~ider as a point of departure the problem 

.If]f~:1"" f(t, x(t), u(t))dt, x(t) = g(t, 1(1), u{1)). x(to) == xo. Jim x(t) == xi (1) 
"" ,~ .. oo 

where x! is a_ fixed vector in R". Suppose- the integral co11vergcs whenever (x(t). u(i)) 

sans!tcs !he differential equation and x(t) tends to the limit xl as I tend~ to 00. For rhis 
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problem the maximum principle hold<.. If we replace the couditiou Li.m, ... "" ,c(t) "" x 
1 

with 

liru,....
00 

x(z) ~ x 1 or lirn, ... "" x(I} free, then the maximum principle again holds, except for 

the transvenmlity conditions . 
Wben the integral in (1) does not converge for all admissible pairs, what is a reasonable 

optimality criterion? Suppose (Xlt), u(t)) is an arbitrary admissible pair, aud (x"(l), u•(r)) 

is a pair we wish to test for optimality. Define 

D"(t) = 1' f(r,:x*(r). u•(r))d1: -1' /o(r. x(r), u(r))dr (2) 
~ ~ 

There are several optimality criteria in economics literature which differ in how Du(I) 

behaves for large values oft. The simplest of these criteria is: 

OVERTA IN OPTlMAL l~-~~--·~------~---~-~i 

The pair (x"(l), u• (t)) is OT optimal if for each admissible pair (X(t), u(t)) 
there exists a Dumber 1~ such that Du(t) ,::: 0 for all t ~ T •. 

More important than overtaking optimality is the next criterion: 

I 
I 
I 

CATCHING· r OPTIMAL ······-------------------..... 

Toe pair(x'(t). u*(z)) is CU optimal if for each admissible pair (x(z), u(t)) and 
every t > 0 lhere exists a nwnber Tu.< such that Du(t) 2:: -f wheneve.rr :::. Tu.r.· 

(3) 

(4) 

NOTE 1 In general, let f (t) be a function defined for all r :?.: ro. Following the discussion 
of upper and lower limits in Sections A.3 andA.4, define F(r) = inf { /(T): r ~ t l- Then 

F(r) is an nondecreasing function of r, and we define the low.:r llinit of /(r) a~ I tends to 

infinity a~ 
lim f(t} = Jim F(r) =- Jim (inf ( /('r) : r ~ t}) 
t400 ,~oo t_,,.oo 

(5) 

Here we allow limHo,:; F(t) = co. The following characterization is useful and quite 

straightforward co prove. 

l
. f( { For each e > 0 there exists a r' 
tru ti > a {==? , 

Hoc ' - such that f(r) ,:::a -f for all t ~ t· 
(6) 

With dlis definition the requirement in (4} can be fonnulakd as: 

(x'(r). u"(I)} is CU optimal ~ lint Du(i) ?; 0 for all admissible pairs (x(r), u(t)) 
,-oo 
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i 

! 
I 
1 

We turu next t(> the bcbaviour of x(t) a.~ t approaches infinity. The tequir., ment tb.1t. :t(t) 

tends to a limit as I approaches infinity is often too restrictive. &> is tile alternative require­
ment lhar l.i.r:n,....o, x(t ) ~ x 1 because it excludes paths where :t(I) o~cillates indefinitely. 

Among nuiny possible tem,inal conditi.ons consider the following: 

lim, - 00 x; (1) ll:Xist~ and is ,;,qua! to x/, 

lli!:!,~,,..r;(r) ::: xf, 
oo coo.ditions impo.'\ed on x;(z) as t -,. oo, 

One cau show the following theorem (Hal.Ion (1974)): 

i "" l, ... , l 
i ..,[+ l, . .. ,m 

i = m -1-1, .. . , n 

llffOREM 10 3 I HIE MAXIMUM PRIN IPlE INF!tllff HORIZOtll ·:---- ---. 

Suppose the pair (.x:(1) , u "(r)) satisfies the differential equation in (I). the initial 
coudition :t(lo) = x0, and lbc terminal conditions (7). Ji I.h is pair is OT t) r CU 
optimal, tilen it must satisfy all the conditions in Theo rem IO. I.I except the 
transver~alit:y conditions. 

(7a) 

(To) 

(7c) 

'--·-·- - ------------ ------- - - --------------' 
The problem wiih this t.heorem is that wtu.,n l < n it gives too many solution candidates, 
because it includes no transversal.icy condition. 

Here is a re.suit that gives sufficient cooditions for CU optimality: 

10.3.2 (SUFFICIENT CONDIT ONS INFINITE HORIZON ··--·---­

Consider prt)bleru (I) wilh lhe terminal conditions (7). Suppose lhat the pair I 
(x"(I), u•(r)), together with the continuous l\lld piecewise difft:rentiable adj oint l 
function p (I), ~atisfy the conditions (A) and (B) of1beorem 10.1.l, with p0 "' l, I 
for all t ?.: to. Suppose to(l that u is convex, that I 

H (r, :t , u , p (t)) is concave in (i., u) 

aml 

!im [p(I) · (x(r) - x•(t))] :::; 0 for all admi ~~iblc x(t) 
1- 1-(;0 

Then the pair (x' (I) , u•(r)) is CU optimal. 

- --- --·-------- ·--

I 
I 
I 

(8) 

(9) 

Proof: Applying th.e arguments in the proof of111eorem 9.7. l and putting I t = , . we obtruu 
Du (t) ~ p(t)·(~(t) - x·(1)). Taking Jimon bothsides, it follows thatlim._oc Du(I) ~ 0. • 

The following conditions are. sufficient for (9) It) hold (see Seierstad and Sydsa-.tcr (1987), 
Sc.ction 3.7. Note 16). For 1111 admi~sible xv) : 

!irn [p,(t)(x} - x;(t))J ::. () 
I·--~ 

i -1 . .. .. m (10a) 

SE CT ION 10.4 I ~X,STF NC[ iHF.OREMS AND $E:-iS1T1VITY 

111crc exists a (·onstam M such tbat 
IP1(t)/ 5 M foe nll r?: tt) 

Either rher<·. exi.~l~ a number t' ::: to such that 
pi (t ) ::C:: 0 f()r all I ?. t', or tllere exist~ a 
number P such thiir l.r; (t) I :::: P for all t?: to 
and lim p;(t) 2:. I) 

r-oe> 

Thereexistsaoumher Qsuchtl.ultix,(t) I < Q 
for ail t ?: to, and lim p;(t) = 0 

r-+oo 

i = 1, ... , m 

i =l+! , .. . , m 

i,.,,m+l, .. . ,n 
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(lOh) 

(!Oc) 

(10d} 

NOTE 2 (Malinvaud's transYcrsallty conditioos) U the terminal conditions 7(a)-{c) 
are replaced by the conditions .x1(t) "=:, xJ for all t ?: t0 and ail i = I , .. . , n, then !he 
inequalitie.~ p(t) ? 0 for all t e.: to and l O(a) are ~ufficient for (9) to hold. 

PROBLEMS FOR SEC T!Ot 10 3 

10.4 

@JI 1. Given r E (0, 1 ), sc,Jvc the problem 

max L""(x - u)e-"dt , .Ye< ue- '. x(O} = .to ::: O. u e[O,lj 

@ 2 . (a) Solve the following problem wheo r > a > 0: 

{
it = tlUX J, 

.i~ = J(l - u}x,. 

(b) Show that the pc,,blem has no solution wheo r < a. 

x1(0) =xf > U 

:,:(0) = 4 = 0 

Existence Theorems and. Sensitivity 
At the e.nd of Section 9.3 we mentioned the role pfayed by existcnc~ !J:ieotems in optimal 
control theory. Not every control problem has an optimal solution. For example, in most 
control problems in economics it is easy to impose rcquireme11ts on the final state t:hllt are 
entirely unanainahle .. These arc trivial exampks of problems without optimal solution~. 
More,wer, when the control region O is OP<,-n or unbounded, it is frequently th~ cll:'e cliat no 
optimal solution citiscs. Even if U is compact and there exist admissible pairs, there is no 
guarantee that an optimal pair exists. 

As a practical con1ro.l prohlem without an opti..ollll solution, think of trying to keep a pllll 
of htliling water 31. a constant temperature of l00°C for one hour when it is being heated 
on ao electric burner whos,, only control is an oo/otr ~witch. If we disregard the cos t of 
switching, theTe is no limit to the m1u1ber of timt..°" we should rum tbe burner on and off. 
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In applicution.~ ouc often sees the argument that practical physical or ecooomic c<>nsid­
erarions strongly suggest the cltistcnce oi an optimam. Such considerations may be useful 
as heuristic a.rgulllent~. but they can never replace a proper mathemati..:al existence proof. 
In genenil. a ruxessa.ry condition for a mat!ierrultical optimiultion problem to g.ive a real­
istic representation of physical or economic reality is that 1~ problem ha~ a solution. If 
n praclical proolem appears to have no solution. the fault may li" w ith the tnalhcmatical 
description used IO model ir. 

Consider the standard end-constrained problem (!0.1. l }-(10.1.5). for every ( t, x) in 
R11+ l , ddiac the set 

N (1. x) =:= { (f(t , x . u) + y, g1(t. x. u), .. . , gn (r, :r, u)) : y S 0, u EU i (1) 

Tb.is is a set in J(n+l generntcd by letting y take al l values 5 0, while u varies in U. 
The nexttht.'Orem requires the set N (t, x) to be oonve.t. Tilis implies that when the systero 

starts in positioll x at time r, if ei ther of the two velocity vectors i i and :i:2 are feas.ible, then 

so is any convex combination of them. Moreover, tllc associated value of f is no smaller 
than the con~-excowbioation oftbe values associated with i 1 and :x2 . (For a proof see Cesari 
(1983).) 

'-'T"""E,..O._f\.;.;E:.:.,\l;._1:.;0;;..;·..;.4_' _.F..;.l.a;;LIPPOV-CES.\RI lXI TH/CE THE REM - - --- --- - --

' 

Consider the standard cod-constrained problem ( l 0.1.1)-( 10. 1.5). Suppose that 
there exists ao a<lmissiole pair, and suppose further that: 

(n) N(r, X) in ( l) is ccmvex for every (t, x). 

(b) U is c.ornpact. 

(c) There e.:<:ists a nurnbcr·b > 0 ~uch that fi(x(t)fl :5 b for all t in [10 • rd and all 
odrni~sible pairs (x(t), u(f)). 

Then there exists an optimal pair (x*(t). u• (r)) (where the control function u•(r) 
is measurnble). 

l 
I 
I ----- ··--··- -.. -... ·--·-- -------------~--....J 

NOTE 1 Condition (a) in Theorem J 0.4.1 cau be dropped if all the functions g, are of the 
fonn g;(t, x, u) := h;(t, -x) + k1(1, u) , where the fllnctions h1 are linear in x. 

NOT!: 2 Condition (c) in the theorem is implied. by the following sufficient condition: 

There e'A'.ist continuous function.~ a (t ) and b(t) such that 
Jig((, x, u}II ~ a(r)r,xl. + h(r) for all (1, x, u). u EU (2) 

NOTE 3 For an existence lhet)r<?,m for infinitchori1.on problems, see Seiersta<l and Svds:l:ter 
(1987). Section 3.7. Theorem 15. · 

NOTE 4 Con.~ider problem (I 0.1.1 )--{l 0. 1.5) where It is ff{'.e to take v-.,Jues in 8.11 iuterval 
[T1, T1.J with T1 ?: to. Theo ·Theorem 10.4. l i~ still valid if the requirements are satisfied for 
all c in (to , T)J. 
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A techni(·al prnbletn with the. Filippov-Ccsari e~i6tence cheorem is chiit, in order to ensure 
the cxisten<.:e of an optimal control. the d ass of admissible; control functinns mm;t be en­
larged to indude "measur11ble" functions. These can be "much more discontinuous~ th:i.n 
piecewise C(mtinuou~ functions . .But as long a.~ they are bounded, they will stiH yield in­
tt.grable functions of t a'l.ong t:he optimal path. (For a brief .survey, see Lee aJ:Id Markus 
(1967). pp. 55- 56.) In almost all control problems encountered in applications one-can 
ij$sumc that if tliere is a measurable control thttt solves the problem, then there exists a 
piecewise continuous control that solves the ~roblem. 

E AMPLE 1 Considerthc probkmmax / 0
1 

x 2dt . .i ==I - · u2 , xlO) = x(I) = 4, u. E r- l. 2) = U. 
The Hamiltonian H = x2 + p(l - u2) is not concave in (x, u) and Arrow's sufficieo~j' 
condition also fai h . In Problem 3 you are asked to find a uni q11t; solutioo candidate by using 
the maximum principle. Use Theorem 10.4.l to p rove that this candidate is optimal. 

Solution: Note first that (x(t ), u (r)) !I! (4, 1) is ao admissible pair. Also, 

N(t,x) = ((x2 + y , l- u2) : y~O, uE (-1, 21} 

which docs uot depend on 1. A~ u varies in f-1. 2], the secood coordinate ral-es all values 
between t and - 3 . For lhed x , the tirst coordinate takes al l values le.~s than or equal to x2• 

The ~et N(t. x) is therefore as illustrated in Fig. 1. 

Figure 1 The set N (t, x) in Example I i~ conv<eX. 

Obviously, N (r, x) is convex a.~ an ''inlinite rec.1.a.o.gle". so (a) i~ satisfied. The set U -· 

(-1,2] is compact. Sine~ li:(!)J ::c. II - 11'lf)I :S 3 for all admissible u(r) , any admissible 
x (t) satisfies l :'.: x (t) :'.: 7 for all 1 in [0, ]J, which takes core of (c). We concl"ude that the 
u.oique pair satisfyiJJg tilt: conditions io the maximum principle is opliro11l. I 

EXAMPtE 2 Show the e-xistcnce of an optimnl control for Example 10.2.2. (Him: Use Note 2.) 

Solution: Clearly, u(t) = 0 gives an adrnissiblc solurioo, and the ~t (I =:= [O, I) is compact.. 
Tue set N = N (1, x) is here 

N(t,x,,x2) = {(xi+ y, aux1. a (l - u)x ,) : y ~ O. u ~ (0 , l)} 

This fa the ~d of points (~1. ~7 , tJ) in ~3 with ~I ::: x2 and (~i . ~;) lying on th<! line segment 
tha!join., (0. ax, ) to (a.xi , 0) in IR~. Heuce Ni~ ct•nvex. 

'n,e inequality in (2) is also 5-atisfied hecause 

Ug (t..1·:. X?., u)II "" !l(aux1, a (l - u).rirl = ./0ii~;;)2 + (a(i - u)x;3'i 
---··- -· ,..... r·--

,,., a ixJiJ2112 - 2u + l '.:: a :x1I ~aJ.xr :; a\i Xf +.~ = a~(x,,X2)V 
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using the fact that 2u2 
- 2u + l ~ 2u(u - J) + I :::;: l for all u in [O, IJ. The ex;istcnce M 

an opcimal control follows from Theorem 10.4.1. I · 

Precise Sensitivity Results 

Here we sh.ali briefly pres..~nt precise conditions for the ,ensitivit:, mmlfll in (10.1.14) ro hold. Con.<ider 
ti:" standard end<onsr111.ined prohlcm (10.1.1)-(10.1.5) and as&ume that a<lmis~ible pairs e.-ost. Let 
x =, lx/ .... , x;) and define 

1
') 

V(x~, x1
, lo, t;) = sup { 1

0 

j{t, x(I), u(r)) dt : (,c(rj, u(t)) admissible J (3) 

(If m = 0, !hc right end point is free and V will not h~vex1 a~ an argument.) The function Vis called 
the (optimal) value fund.ion of the problem. 11 is defined only for those (.x.o, x1 , to, t

1
) for which 

admis~iblc pain exist. If for a give.TI (x0, x1, l-0, t1 J an optimal pair eiisis, then V is finite and t4ual 
lo the mtr:gial m (10. l.l) evaluated along the optimal pair. (This was the case studied in Section 9.6.) 
If the set in (3) ls nol bounded above, then V = oo. 

Suppose that (.x·(i}, u'(t}) solves problem (10. !.1)-(10.1.5) with ,;:C = io, x' = x1. 10 ,. 10, 
11 = 11 for Po = I, with corresponding adjoint function p(t). Then~! theorem gives suffici,::nt 
conditions for V to be de.fined in a neighbourhood of (x0 , i11 , i'o, i'1 ), and for V to be differentiable at 
(i0, x 1, i'o, ii) with !he following partial deiiv~tivcs: 

,W(r',i1.io.ii} -
0 0 -- "' P, (1~). 
(!Xi 

i = 1, ... ,n (4) 

i = l, ... ,n (5) 

qV(ii0,i1.io.i'1) _ ,.. • _ _ 
- ,

1111 
---- ~- -H(to, x l/o), u (to). p(toJ) (6} 

cV<x0,x1J~,i'1) _ _ · _ 
---&~~-- = H(lt, x

0
(t1), u•(t1), p(l1)) (7) 

THEOREM 10.4 2 ----­
/ -----, 

! Consider the standard end-constrained pmblem ( 10.1. l}"( 10.1.5) with a compact conO'Ol I 
region U, Supp(lse that I 
;; :::;':~ :::~~l:3

d::::t:;1;:'::;~sary conditions given x"(z), 11'(1), and I 
Po =:I. l 

(c) There exist l:;:::n~'.o::11:n:1;:~;x:(: ;,~ b(:.~rs:~h(:~:~ u) wirlt u ~ U I 
I I 
/ (d) TI1e sci N(I, :ic) in (I) is c(mv,·i,; for each (1, X'). ,. 

! Then (4)-(7) arc all valid. 

L ... - ........ -----·------------.. ---··-.... ·--··--·---·----·- ---·-·-·-------·----

(8) 

For a pn,of of. rhis theorem s,:c Cl.atkt ( 1983). 
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NOTE 5 As~un1e jn this note tfill.t the uniq,1<snc,ss conditioa in (b} is replaced by the coudition lhm 
the function ,c i-. ii (t, x. p(t)) i• concave. Then the function V i~ defined for ,0 = 10 , r! = ii;, 
aml (x'1, x') in a neie:hbourhood of (i°, if). und the partial derivative~ are given by (4) and (5) at 
(x0

, j:£). [{ j = n (a.~d so the cud p<>int is fixed), w if~'-+ H{t, x. p(r)) i<> stric:ly concave, I.hen 
all the pattial Jcri"11:11ivc.s (including d\osc in (6) and ~7}} .:xisL (Foe futthcrdctaH.s see Seil.'rslaJ and 
Syds&ler (1987), S,·ction,.3..5} 

!iliUBLlMS FOR SECTION 10 '1 

1 . Show the exislence of a optimal control an<! dr.1w a picture of lhe set N (t. x) for the problem 

max fo
1 

x(t)dt, i(t) = x(!) + u(t) . . t(OJ = 0. x(l) ~ 1. u e: l-1, ll 

~2. Solve the problem: mall. J.\1-r,)x2d1, i = ux, x(O) = xo > 0, x(l)fiee. 
••[0.l) o 

@ 3, Find the uniqut solution candidate in Example I using the ma.~imum principle. (1lin1: Argae 
why u'(t) can only take the values O and 2, and why any admi&sible x(t) i~ > 0 in [0, 1].) 

10.5 A Heuristic Proof of the Maximum Principle 
A full proof of the general ma.'l.imurn principle is <Joih: demanding an<l draws on seven,! advanced 
resnlts in the theory of differential equations which .uc not in 1he toolkit of most 1:conomisu. 1be 
heuristic argume.nts for 1he main results given below, although not precise., give a good indication of 
why the maximum principle is correct. We restrict our attention to problem., with one slate and one 
control variable. Consider the following conrrol prnblem with two altem.~tive tenuinal conditions: 

!.
,, 

max /(1,.t, u)di. 
11~.o '<I { 

x(ti) liee x ,,. K(t, x, u), x(r0 ) ,= x0 , 
X(t1) ,·.·, Xt 

(i) 

Think of X = x(t) 3.S a firm's capitahtOCk and r [(, .. t, u) di as the total profit over lhe planniug 
period [to, r;). ill line with our itc1,ctll l cco1tc}mfc inl.crpretation in .Section 9.6, Defint th~ value 
fum:tion by 

V(t. x) = m~.\ {J'1

J (s, x(s). u(s))ds: .i(a) = g(s.x!s). uMJ, x{t) = x, { x(ii) free } (ii) 
"F..lJ r x(/1) ::•.: ·'I 

TI11ts V (1, x J is the maximum profit ob1'tinable if we sta11 al timer with the capital stoc.k x. SUJ)EJ<'S<' 
the problem in (ii) ha.s a unique solution, which we denote by ii(s: I .. <). i (.t; 1, x). for lo 5, t ~ ,i .::: It, 

Then. by ,tefmi1.11>r1, i(t; t. .,) ·" x, 
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Figure 1 Toe case. of x (rtl free. 

~onsider any &tarting point (r', x') that lies 011 the optima[ p9II-J r defined by the original solutioo 
x{s; r, x). lfthere were a bener path r' starting at (11 

• .r'). ir would have been optimal for the solution 
stan:ing at (1. x) to follow r' over the time interval [t', t;].' (See Fig. l. which deals with the case 
when x(r1) is free.) For thi.s rea~ott, an optimal so\11tion startin~ at (1. x) b aulomatically an optimal 
solution from (11

• x') a.< well: th~ "rail" of an optif711ll solution must be optimol. Using the uniquenets 
of (x (s; 1, .x ), u (s; 1, x)) for all (t, x ). this implies Llie rcla1ion$ 

u(~;i'. x') = ii(s: t. x), i(s; r', x') = .i'(s; r, .<) 

whenever 11 Es [r, r] and x' = i(t'; t. x). Hence, 

1
,, 

V(r',i(r';r,x))=. f(s,x(s;r,x),u(s;t,xi)ds 

Differemime I.his e.111ation w.r.t. 11 at r' = r. Because d.i:(r'; ,. x)/dt' = l((t'. i(t'; t. x), u(r'; r,x)), 
we havt: 

l','(r, x} + v;(l, .t)g(1, x, 11(1; 1 • .1:)) = - f(t, x, ,,{r; 1, .,)) (iii) 

Hcnct:., if we deane 
f,(1,.,) = v;{, . ..r) 

and.introduce the Hamiltouian functioo H(1, x, u, p) '"'- f(I, x, u) + p ~(r. x, u). then equntion (iii) 
can be written in the form 

v;(t, .r) + 1/(t, .r, ii(t; I, x), p(t,x)} = 0 (iv) 

Starting at the point (1. x), consirlct an alternative control which i& a constant 11 on an interval 
(r, t + ll.t] and optimal thereafter. lee the com.:sponding stale variable be x''(s) for.~ in [1. r + :lt). 
Then 

f
t+~r 

·V(!.i) ~ , f(s, r''(,r). 1,)d.r + V(1-+· ~r,x'(t + ll.1)) 

amJ !,:O 

l
r+&..r 

V(1+t.1,x'(t+ll.1)}-V(t,x)+, f(s,x:"(s),v)ds.::,0 (v) 

Dividing this inequality hy !l.1 and Jr;uing M --+ 0.,.. we get }, V (t. x" ( tJ) + f (1 .. , , 11) :.~ 0. Now, 
t V(t. x) = Y,'(1, x(r)) + v;c,. x).i". Since v;c,. x) = p(r, .r) and ..r'(1) ::: g(t, x, !!). we must 
have 

V,'(1, x) + p(I, x)g(t, x, v) + j(t, x, tr):::_ 0 

-------·------.-.-- .. ·-··-
! .. Bc11r.r path" I'' is intuitive lan~age. It means thac theJe exists an a(hni~~ible pair (x(s), u(.r)) 

(wirn <.:orre.sponding path r') that gives a higher value to the. in,~gral off (!Ver fr', 11 l when 
(.t (s), u.v )) is iit~ened, a., co111p:1n:d with th<' ,-aluc re•ulting from (i(s; r, x), ii(.,; 1. x}J. 
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Thu.s for all v in U, 
V,'(t,..c} + H(t, .t. v, p(r, x)) ~: 0 

Because of {iv). thi.< implies 1'1~t che optimal c-0t1tn)l ii(r; r, x) must tt\JUllllW: H(.1, x, "• ;}(r,x)) 
w.r.t. u .;. U. fn addition, 

(vi) 

This is called the Hmoillnn-.Tacobi-Bellman equaliuD. 
Next. defin.e x"(1) •. , x(t; '<>, x0) and u'(r) = ii(t; f<I, x0). These fanctions &<ive th.:. <)ptimal 

solution to the origi11al problem. Also, let p(r) = p(t. x"(:)). Then ii1.1; 1, .,'(r)) = u'(r), and 

lhereforc 
u => u'(r) maximi7.es H(r, x'(r). u, p(I)) w.r.L u Ei U (vii) 

l'inally, differenti,11ir1g (iv} w.r.t. x and a.sing the envelope theorem (see Section 3.10), we get 

Because v; =panda;= /1, this yields p; + p\g(r, x. u{t; 1, x)l = -H;. If we let x = x'(:J and 
use u"(t) = u(t; r, x), then j, =- ;,: + K< = j,: + gg(t,x, u'(r)). so 

j,(1} = -H;(r, x'(t), u'(t), p(r)) (viii) 

By definition ,,f V. if x(r1) is free, then V ( r1, x) = 0 f('(' all x. Thus ji(r1, x) = 0. and so w~ ha1;c 
the transveroality condition 

p(l1) = 0 (ix) 

Conditions (vii) to (ix) arc the nc~essar:y conditions in th~ ma.ximum principle (wi(h 11 lb.ed "ml 
x(ri) free). ff .1:(11) is. lix.ed. co11dition (ix) is not ,a\id (,md oot needed). 

We havt: shown that 
v~ = -H*(to}, v;-0 = µ(10) (x) 

ln fact, th£ first equality follows from (iv) and 1he ~eeo11d one from the definitions of the functions p 
l!J\d p. l11ese arc two of the fonn11las in (10.1.14). Reven;ing time gives the orher two fonnul;is: 

(.xi.) 

Variable Final Time Problems 

Consider problc111 (i) with ti fo:c. Suppose (x'(t), 1,'(rj) is ~n optimal soluLion defined ,m [10, zj]. 
Then conditions (vi}-(vili) m~t be valid on lhc interval [r~, rj). hecause (x"(t), u·(t}) mus, l)C an 
optimal pair for lhe correspon<li1Jg fixed time problem with r1 = tj. Moreover. at the terminal time 
tj 1h1: value function's detivaiiw w.r.l. 11 must be O. (As a funct:ion of r, it ha.$ a matimum at tj .) 
Because of (xi), Chi~ implies lh>t! 

H'(tf) = IJ(lj,x'(rj), u'(tr1, Will= v;, (ti, x'(ri')) = O lXii) 

This equali()n gives an extra conditfon for determining •i, a,1d is pr~.cisdy coudition (9.8.2). 

NOTE 1 In enc :ibov,~ heuristic "pr•.•)f'' nf the ma.umum priucipl~. diffe.rmtiahility of lhc function 

V wa~ a.<sumt"<I without proof. 
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10.6 

f A!vll'tE 1 

Mixed Constraints 
This section describe.• control pmblems where the admissible pairs (x, 11) are required m 
satisfy additional constraints involving the state variable o[ tbe form h(,. x, u) ~ O. Such 
rc-.strictions ot1en OC..'ur in economic models. If the control variable u as well as the state · 

vt'.cto, x appear in the function h, the restriction is often reforred to as a "mixed consrraim" 
while n:·strictio~1s of the type h(1, x) ~ 0 are called "pure srate constraims ". ' 

Whether or noc mi.tcd constraints are present il1 a given conrrol problem ii; partly a 
question of the forw in which the problem is stated. Consider the following problem. 

Consider the growth problem 

r 
m}" 1 !.l((l-u)f(K))dt, K ""u, K(O)"" ~o. K(T)"" Kr. u:::. 0, J(K)-u?. o 

Heretherearctwoconstraintsforea.cht-namely, thesimplcconstr-.i.inth 1(t, K, u) = u ~ O 
andthcmixedco11s~nth2(t, K, u)"" f(K)-u ~ 0. However, if we specify anew control 
variable v so that K = v f ( K), then tlte simple constraint O ~ v ~ I replaces the mixed 

constr.iims. (If we require f (K) - u 2:. k > 0, this nick: does n<>t work.) I 

We eonsider the general nlixed constraints problem 

max 1'' f(t, x, u) dr, x = g(t, i,:, u), x(r,,) ""xo 
u to 

h(t, X, U) ~ 0 for all l 

with the terminal conditions 

(a) x;(11) ""x/, 
(h) x;(t1),:: xl, 
(c) x;(r1) free, 

i =I, ... , I 

i =l+I, ... ,m 

i=m+l, ... ,n 

(l) . 
(2) 

(3) 

As usual. xis n-dimensional and II is r-dimensional, while h is an Hlimensional vector 
function, so that the inequality h(t, x. u) ~ 0 represents the s incqualitie,.~ 

hk(I, x(t), u(t)) :::· 0. k"" 1, ... , s (4) 

All rile restrictions on u(t) ;ire assumed lo have been incorporated imo (2). 'Dms, no ad­
ditional ccquircment of rhe fonn u E U is imposed. fn addition lo the usual requirements 

on f and g, it is assumed that his a C 1 function in (1, :r, u). ThC' pair (x(z), u(r)) is ad­
nlissibk if ur(t), .... u,(l) are all piecewise continuous. and xu) = (.r1(t), ... , xn(t)) 

is the corrc-sp<>nding conriuuou~ and pit'.ccwise differentia.ble vector fuuction that sati~tics 
x = i:(t, "· u), x(to) = x-0, (2), and (3). The rheoreru below gives sufficienrconditic,ns for 
the sntutiou of the mi,:cd constraints problem (l)-(3). To economixts, iT will corneas no 

I 
i 

I 

I 
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swpri.se that we a.,soc;ate multiplier~ qi (r), ... , q,(r) with the constraints (2) and define the 

Lagnmgian function, wiih q"' (qi, ... , 11,), as 

.t.(r. :,:, 11, p, q) "" fl (1, x, u, p) + L qkh~(r, x, 11) (5) 
.• .t-:-.~ 1 

with the Hamiltonian H(r, x.u,p) == f(t, x, u) + I:7=1 p;g;(I, x, u) (with po"" 1). 

In the following theorem o.C' /ih,i and J.e' /Jx, iD (6) and (8) are partial derivatives of 
,l evaluated at (l, x*(r). u"(l), p(t). q(r)). 

TH OREM 10.6. 1 UrFICIENT C NOrTIONS -·---------·---·--·--·--1 
Suppose (x"(1), u*(r)) is an admissible pair in the mixed constraints problen, I 
(l)-(3). Supposefu1therthatthcreexistfunctionsp(1)"" (p1(t), . .. , p.(t))and I 
q(t) = (q1 (I), ... , q,(t)), where p(t) i.s continuous, while p(f) and t1(r) are I 
piecewise continuous, such that the following requirements arc all satisfied: ! 

a.c 
--;;0, 
OUj 

j "" l, ... , r 

qk(t)::: O. and q*(l) ""0 if h1(J, x*(r), 11"(r)) > 0, k"" I, ... , s 

. a.c• all . . . "' • p;(i) =--;--at contwuny points o, o (t), 
QX; 

No conditions on p; (ti), 

p;(t1) ~ 0, and p;(t1)"" 0 if x;"(t:) > x;', 

p;(lt)=O, 

H(t, x, u, p(r)) is concave in (x, u) 

hk(r, x, u) is quasiconcavt in (111, u), 

Thl"n (x"(1), 11'(1)) solves the problem. 

j,..], ... ,n 

i = l, ... ,/ 

j,../+l, ... ,m 

i:=:m+l, ... ,11 

! 

I 

I 
I 
I 

(6) 

(7) 

(8) 

(9a) 

(9b) 

(9c) 

(10) 

(11) 

I ---·----,··---··-·-----·-

____ k_""_'····' J 

EXAMPlF 2 

A proof of this theorem h given in Seierstad and SyrJs(eter (1987). Section 4.3, which also 

discusses necessary conditions, generalizations, aud examples, and ha~ further reference~ to 
other literature. A simpler treatment can be found in Leonard 8JJd Long (1992), Chapter 6. 
Note that a~ in nonli.near progiamming a constraint qualification is often nece,.~sary for 

the existence of a pair (x(t), u(1)) of the type occuning in the theorem. The constraint 
qualification, more or less, requires that the control u appears in each constraint. 

Solve the miu:J constminLs problem 

l' 

maxfo ud1, i""ax-··u, x(O)""x0, x(T)free, l
h!(l,x,11),..u-c~O 

h:(t. x, u) =-- ax - u 2'. 0 

H= xis Che ca·pital stock, u is consumption, and c is a .subsistem.:e level. The constams 1', 
a. c, and .r0 an, positive, with T > 1/a and ax0 > c. 
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Solution: Tue Hamiltonian and the Lagrangian arc 

If e: u + p{ax --u). 

Herc Has weJ.lash1 andhz are linear and hence concave in (x, u). TucfoUowingconditions 

from Theorem 10.6.1 are therefore ~ufft<.;rot for opt.imality: 

a.c• 
~.,., I ·- p(t) +q1(1) -q2(1):::. 0 

q1(r) 2: 0, and Q1 (1) ==- 0 if 11'(t) > c 

q2(t):: 0. and q2(t) = 0 if ax•(r) > u•(t) 

a.c 
p(t) = - -.J- = -ap(I) - aq2(r), p(T) = 0 ,x 

u"(t) ~ c, ax'(t) - u"(t):::. 0 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

Becauscx'(O) = xD > O and x•(1) = ax"(t)-u"(t) ~ Oforallt,onehas x"(t) 2:: r 0 for 

all t. If 11*(1) = c, then ax"(t) - u"(t) = ax•(t) - c :::. ax0 - c > 0, and then from (iii), 

q2(r) ""0. On the olher band, if u*(t) > c, !hen (ii) implies q1(r) = O. Hence, for all tin 

[0, T ], at least one of q1 (r) and Q2(1) is 0. 
Because p1,T) = 0. it follow~ that p(t) < l for r suffidenlly close co (and less than) T. 

Equation (i) shows chat for such I we have q~(t) = 1 - p(I) + q1 (r) 2::: 1 - p(r) > 0. Then 
q 1 (I) must be O. so q2(t) = 1 - p(t) and (iv) gives p(t) = -a whenever p(r) < 1. 

We see from Problem 5.4.8 that the solution of (iv) is p(t) = J,T aq2(,)e-a(t-<) d,. 

wnich is clearly> Ofor t < r. Hence, p(t) = -ap(r) -aq1 (t) ~ -ap(t) < 0 for 1 < T, 
so p(t) is slrictly decreasing in the interval [O, T]. 

St1ppos.: p(O) i. I. Thcon for all t in (0, T] we get p(t) < 1 and p(I) = -a. This in 

tum implies p(t) = p(O) - at and, in particular p(T) = p(O) - aT ·~ 1 - aT. But this 
is impossible because T ;,, I/a and condition (iv) says that p(T) = 0. It follows chat we 
must have p (0) > J • Since p is strictly decreasing, there is a unique point 1 • in (0. n such 

that p(t") = I. For I in (t', 'f) we hav.,; f,(t) = -a, so p(t) = a(T - t). By continuity, 

a(T - r*) = p(t") = I, so 1• = i - l/a. 
For r in (0, r•) we have p(t) > l, so !i) implies that q1 (t) > Q2(r) and, because at 

least one of q1(t) and q1(r) is 0. in face q2(t) == 0. Then from (ii), u"(t) = c so that 
x'(r) = ax*(r) -· c, with .t'(O) == r 0. Solving thi5 linear differential equation yields 
x'(t) = (.t11 - c/a)e'" + cfa. The differential equation for p(t) is j, = -ap because 
q. = 0. Hence, p(t) = Ae-a' with p(t') =!,so p(t) = e-<l(<-<'l. 

Since x&(r) is continuous also at r•, and .x• a O in (t*, TJ, x*(r) has the co11stant value 

(x0 - c/ak"'' +c/11 fort in (t\ TJ. 

We have found the following candidate for sn optimal solution, with t' = T - l/<1: 

Theorem 10.6. l implies Lita! Ibis candidate is optimal. Note that io this example the multi­
pliers q1 (I) and 1n(r) are continuous. I 

P.R 
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@ 1. (a) Wnt~ down the conditions in Theorem 10.6.1 fnr the problem 

maxfo\--{,/-x)dr. i·,,.-u. x(0)=1, x(2)free, x;::u 

(b) Solve the problem. (Hint: Guess that u'(t) == x*(t) <>O some interval [O. t"], and u"(1) < 
x"(r) on (I', 2). Then q(t 0

) = 0, and r,'(1•-i = x•(1') ::::. u.•(r·.,.). We c:-an use the 
following arguruent2 to show 1hat q(I' ·-) "' 0: from J.r /~u ···, 0 we getq(t) = -p(t) -
u•(1). In particular, q(r'-) = -p(t') - u'(r•-.i :5 -p(l'j - u'(r•'·) = q(r*+) = 0.) 

~ 2. Solve the problem 

max Lz (x - !u2)dt, i"' u, .x10) = 1, x(2) free, .t:::: u 

(Hint: Guess that u'(t) = x•(t) on ~ornc intel"val [0, t'], and u.'(1) < x·(t) on (t". 2]. As in 

Problem I, q (t"-) '" 0.) 

@ 3. Solve the following vuriant of E.umple 2: 

max foT udt, ;i =ax -u, x(O) ""/J > 0. x(T) ,=.t,, c:;;: u::: ax 

wbere a > 0, c > 0. T > I/a, ax0 > c, ao,1 x0 ~ xr < (x0 - c-/a)e•T + ,:fa. (This moJel 
can he intc.q,reicd as a simple growth m~>del with a ~ubsistence lev~I c.) 

~ 4. Solve the. problem 

l
h1(r,x,1t)=l-u:::,O 

.i: =.<+11, x(O) = 0, x(l)frec, li2V,x,u) = I +u:::. 0 

hJ(t,x,u)=2-x ··U :::.0 

(Hint: S,;., d)t. solution to Example 9.4.1. Try with u•(t) = I, x'(1) =- e' ·- I in the beginning. 

Pure State Constraints 
lbis section briefly discu~~es a restllt giving suffident condition~ for a purt state-constraiuecl 
problem. lt gives an indication of the type of results that can be proved, but we refer to I.he 

cout(ol lhcory literatun•. for proofs, examples, and generalizations. 
Consider the follo"'ing pure state-constrained problem. 

1
., 

max f(t, x, u)dr, 
OJ 

X(lo) :::- .XO. x = g(t. x, u), 

h(t, .x) ~. 0 for all! 

1 111e same af',.:ume.nt is useful in orhcr protik·1m, ~lso. for ciAmple in Problem 2. 

(l) 

(2) 



384 CHAPHR 10 i C01'l,~OL THEORY WITH MANY VARI/\SlES 

I 

I 
I 
i 

l 
I 
I 
l 

with the terminal <X>rulitions 

(a) x;(tij "'"'x;', 

(b) X;ll1):::_x/, 

(c) x;(r1) free, 

i = !, ... ,/ 
i =l-;- l, .. . ,m (3) 

i """'+ 1, ... ,n 

Note that, in contrast to the mixed constraints case, we now allow a restriction of the form 

u E U. The vector function h is s-dir.ncnsional, and the pure state constraint. (2) can be 
wri1ten 

k,:: 1 •... , s (4) 

The sufficient conditions eivcn in the n1,;xt theorem are somewhat more complicated than 

those in Theotem 10.6. l. r~ particular. !he adjoint functions may have jump~ at the terminal 

time. 
The Lagrangian associated with this problem is 

, 
£(t, x, u. p, q) = H(t, x. u, p) + I>.1h.1(f, x) 

k=l 

with H(z, x, u, p) as the usual Hamiltonian (with Po= 1). 

THEOREM 10 7 .1 (5UF ICIENT COND ITIONS~ 

Suppose (x·(r), u•(r)) is admissible in problem (1)-(3). and that there exist 
vector functions p(t) and q(t), whexc p(r) is continuous and i>(t) and q(t) are 

piecewise continuous in [r0 • r1). and numbers flt. k = 1, ... , s. such that the 
following conditions arc satisfied with Po = I: 

u = 0•(1) maximizes H(1, x'(z), u, p(1)) for u i11 U 

· u· all · · · r ·< > Pi (I) = -- at• COlltUlUlty points O U 1 • 
/h; 

Al r1, p;(r) can have a jump discontinuity. in which ca.~e 
' aht(I;, :1*(11 )) 

p;(r1) - Pi(1r) = I: IA iJ • 
k':"1( f X; 

with /h"" 0 i( ht(l1, x*(11)) > 0, 

No coaditions oo p; (tr). 

p;(ri) ""0, 

H(t, ,r, p(t)) ,.,,- max0 ,-u H(r. x, u., p(r)) is concave in x 

k = 1, ... ,.< 

i = l, ... ,1l 

; = l, ... '>t 

k = 1, ... ,., 

i = 1, ... ,{ 

i =l+ l, ... ,m 

i .::m+l, ... ,11 

l 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(lla) 

(I I b) 

(I le} 

I hk (1, x) is qua.~iconcavc in x, 

I ·men (x'(t), u·un solves the pruhlem. 

k= l, ... ,s 

(}2) 

(13) 

I I l--------·-----.. ---... --... ---··-·----------------
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Here p(r; = (p1(r) .... , p.Ct)) and q(l): (q 1(t) •... , q,(t)). while a.t.· /:/x; rlenoies the 
value of iJ,/'./,h, at (t, x*(r). u•(t), p(I), q(ij). 

NOTE 1 The conditions in this theorem are somewhat restrictive. In partic.ular, ~ometimes 
the solution requires p(!-) to have discontinuities at interior points of [IC), t:]. for details ll.lld 
a proof. see Seierstad and Sydsrett>l' (19R?), Chapter 5. 

Solve the problem 

.. 
mat f (.t -(u --2f)dt, x = u E !It, x(O) =0, x(4) free, .x(I) :o: 1 

0 

Solution: The Lagrangian is.£ ""H + q(l - x) = x - (u - 2)2 + pu + q(l - x). Here 
H is concave in (x, u) and li(t. x) ::::: l - xis quasiconcave. The conditions (i)-{iv) below 
are therefore sufficient for optimality. Equation (i) below results from lhe observation chat 
Hi~ concave in u and u E Ft so condition (6) is equivaknt to the condition iJH' /;Ju""' 0. 

u'(r) = }p(t) + 2 

q(t)?; O. and q(1) = 0 if x•(t) < l 
. a£• .. 
p(t) = --- ::::: -1 +q(t), p(4) = 0 ox 

p(4 .. ) - p(4)::::: -ti::: 0, and /3 ""0 if x'(4) < I 

(i) 

(ii) 

(iii) 

(iv) 

We can guess the form of tho soluiion as long as we cvcntua.lly verify that all the conditions 
in the theorem are satisfied. Accordingly, we guess that x"(t) < l in an interval [0, r*) and 

thatx•(t) = l in(Z°,4].111cnin(t*,4), u•(I) = .i'(l) =0,and from (i), p(I) = -·4. But 
th.:nfrom (iii) and (iv), /3 = p(4) - pc4-) = 4. On [O. 1•), from (ii) and (iii), j,(1) = -1. 
Since p(t) is continuous at,•, p(r•-) = -4. Hence. p(r) = -4 + (r• - r), and from (i), 

u"(r) = 1(r• -t), Integratingi'(t)""' !(t• -r) yicldsx•(t) = -i(t• -1)2 +C on [0, r*). 
Since x"(z') = l, we get x•(,*) = C = I. But x·(O):::. 0, so r• = 2. Our $Uggestion is 
lherefore: 

In [O, 2]: u"(r) = I - f1,.~'(t) = 1 - }(2 - 1)2, p(t) "" -r - 2, and q(t) = O. 

Jn(2,4]: u'(t) ""o,x•(t) = l,p(r) = -4(exceptp(4)=0),ruulq(r) = I with/3=4. 

You should now verify that all tlJeconditions (i}-(iv) arc satisfied. Note that p(r) has a jump 
at 1 = 4, from -4 to 0. I 

P. OBlcrft.S FOR SE TIOt 10 7 

~ 1. Sulve the pmhlem 

~ 

min/(u+x)dr, .i~,u-r. x(OJ=l, x(5) free, xc:_0, 11?.:0 

0 

(Hin,: It seerr•s a good idea to k:eep x(i) a~ low :is possible all rlrc time.) 
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@ 2. S,)lvc ilie problem 

2 

max !(1-x)dl, .i,.:u, x(O),=l. x(2) free, .t:;:0, uE[-1,1} 

~ 

(Hint: Start by r('.dUCing x(t) a.~ quicldy a.~ possible until x (1) = 0.) 

@ 3. Solve the problem 

,n 

ma.~ f (-u2 - x)dt. x == u, x(O) ,.,, I, x(LO) free, x::: 0, u ER 

fl 

@ 4. Consider the problt!'.m 

3 

max/(4-r)udr, .i=uE{0.2). x(O)=l, xf3),.,3, r+l··x:::.0 

0 

(a) Solve 1he problem when the constraint r + I - x ~ 0 i~ nol imposed. 

(b) Solve pn.'hlem (*). 

10.8 Generalizations 
In Chapter 9 and the previous sei;tions of this chapter we have discnssed how to sol vt·. 

the most conunooly enco11ntered prohlems in optimal control theory. Nevertheless, many 

important economic problems require methods that go bey,)nd those presented so far. 

More General Terminal Conditions 

In ~oroe dynamical optirui:Latiou problems the standard tenninal conditions arc ropla.:ed by 
the requirement that ,c(t) at r.ime t, hits a target defined as a certain curve or snnace in IRn. 

The optimal path in such a problem must end at some point x I and therefore, in particular. 

will solve Lhe corresponding control problem where all the admissible palhs end at x1• The 

conditions in Theorem 10. l. l are therefore still valid, except the traosve1sality conditions. 

which muse be modifii:d. See e.g. Seierstad and Syd~rett."T { 1987), Chapter 3. 

Markov Controls 

The optimal "olutiuns wc have been looking for have heen functions of rime, u*(t) and 

x•(r). Soch control functions are calkd open-loop controls. Face<! with the problem of 

steering an ecouomk system optimally. such open-loop controls arc ofa:,n iMde.qnarc. The 

problem is that ''disturbances" of many types will almost always occur, which will diwrt the 
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system from the. optimal path initially computed. If one still uses the "old'' control u"(t), 

I.he resulting development of the economy way be far from optimal, and it may end up at an 

undesirable final state. 
Ibis problem is panly re~olved if we are able 10 ".s~11thesi7.e" the. optimal control, i.n the 

"enlit! of expressing the Gptimal control a$ a function of the present citne s and the pre.sent 

state y .. In this case, for each times and each pointy in the state space, we ~peci fy tile optimal 

control ii = ii(,,yl to u.~e. Such controls are called closed-loop or Markov controls. We 

can find such Markov controls by solving tbe c()ntrol problem with an arbitrary start point 

(s. y), s e [lfl, c1). The coutrols u•(t) ohtaincd .,,,;11 depend on the starting point (s, y), 

u· (r) :::: u;,
1

(t). Of course. al times, the concrol ii(s, y) :::c u;,1(s) is used. Then ii(s, y) is 

the required Markov control. 
But tbesc .Markov cooirols are ()n]y couditionally optimal. They I.ell us which control 

lo use after a disturbance ha~ occurred, but they arc optimal only ili the absence of furlhcr 

disturbances. 
If we stipulate the. probability of furore distnrbanccs and then want to optimi1,e the 

expected value of the objective functional. this gives a ~tochastic control problem, i.n which 

optimal M:arkov controls are detenuinoo by a different set of necessary conditions. Discrete _ . 

time versions of stochastic control problems are discusscdex.teusively in Chapter 12 of this 

book. 

Jumps in State Variables 
So far we have as~umed that the control functions are piecewise continuous and that the 

state variables arc continuous. In ce11ain applications (e.g. in the theory of investment), the 

optimum may require sudden jumps in the state variables. For example, rnmebody who 

buys an aparnnent worth, say, $200.000 will experience a corresponding downward jump 

in their bank balance. See e.g. Seicrstad and Sydsieter (1987). Chapter 3 



He ian f.>COllOmis() must study rhe present in rll€: light of rhe pa;;t 
for the purpose of the fLJture. 

-J. N. Keynes1 

·"·'; 

M any of the quantities economists .study (such as income. consumption, and ~avings) are 
recorded at f,xed tune 111tervals (for example. each day, week. quarte:. or year). Equa­

tions tha1 relate such quantities at different discrete moments of time are called difference 

equations. For ex.imple. such an equation might relate the amount of national income in one 
period to the national income in one or more previous periods. In fact difference equations can 
be viewed as the discrete time counterparts of the differential equations in continuou$ time that 

were stadied in Chapters 5-7. 

Section 11.1 introduces first-or(for differi;,nce equations. The almost trivial fact is pointed 
out that. for given initial conditions, such equations always have a unique solution, pr011ided 

the relevant function is defined everywhere. This is followed by a s:tStematic study of linear 
equations, which can be solved e~plicitly. 

Section 11 .2 starts with a discussion of a cobweb model of the hog cycle that has received a 
great deal of attention in ec.onomics. Economic applications of difference equations to mortgage 

repayments and compound interest follow. 

Second-order equations are introduced in Sec.tion 11.3. Their solution depends on a doubie 
!nitial condition. Then attention turns to linear equations. and we ~ee in this section and the 
next that the tr.eory closely resembles the corresponding theory for linear differenti;il equat,ons. 

In Section 11.S the theory in tht> preceding section is generalized in a straightforward way 
to higher-order eq~ations, except that the stability criteria in Theorem 11.5.4 probably would 

stril(e you as ,es.s than obvious. 

Section 11 .6 is concer'.'led with systems of diiference equations. It explains the obvious matrix 

formulation of linear systems. and discusses their (global) stability properties. 

The fin.ii Sec.tion 11.7 gilles somi;, stability res:Jlts for nonlinear first-order differe:,ce equa­

tions. Some result.~ on periodic solutions complete the chapter. 

-··--·····--·------
! John N~"Ville Kcyne.s (1852-1949) was the fu1ber of John ·Maynard K.;yi,~. 
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11.1 First-Order Difference Equations 

Let, = 0, 1, 2, ... denote differeD! discrete time periods or moments of time. We usually 
call t == 0 the initial period. If.:*) is a function de.fined foc t ':" 0, 1, 2, ... , we often use 
xo, .r1, x2, ... 10 denotex(O), .x(l), x(2),, ..• and in general, we ,,;rite x-1 for x(t). 

Let f(r, x) be a function defined for all positive integers t and all real numbers x. A. 
firsc-orderdifferenceequation:(or recurrenre.relatfon) inx, can u.~ually be written in the form. 

Xt+I = /(t, Xr), I =0, l,2, ... 

This is a first-order equation because it relates the value of a function in period r + 1 to the 
value of the same function in the previous period t only. l 

Suppose xo is given. Then repeated application of equation ( 1) yields 

xi= f(O • .ro) 

xz == f(l . .r1) = f(l, f(O, xo)) 

X3 = f(2, X2) = /(2, f(l, /(0, Xo))) 

and so on. For a given value of xo, we can compwe x, for any val,~ oft. We call this the 
"insertion method" of solving (1). 

Sometimes we can find a simple formula for x,, but often thi~ i~ not possible. A gent!ral 
solution of (1) is a functioo of the fomi x, = g(t; A) that satisfies (l) for every value of A, 

where A is an arbitrary con.slllllt. For each choice of XQ there is usually one value of A such 
that g(O, A) = xo, 

We have seen Ihm when xo is given, the successive values of x, can be compmed for 
any natural number t. Does this not 1dl us lhe whole story? In fact, economists often need 
to loiow more. Io niaoy economic applications, we are interested in establishing qualitative 
results such as the behaviour of the solution when r becomes very large, or how the solution 
depends on some parameters thar might influence the ilifference equation. Such questions 
are difficult or impossible to handle if we rely only on the above insertion method. 

Actually, the insertion method suffers from another defect even as a numerical procedure. 
For ex.aniple, suppose that we have a difference equation like (1), and we want co compute 
x100. A time-consuming process of successive insertions will finally yield an ex.pre.ssion for 
XlfJO· However, computational errors can ea~ily occur, and if we work Y.ith approx.imate 
numbeci; (as we are usually forced to do in serious applications), the approximation error 
might well explode and in the end give an entirely misk.ading answer. So there really is a 
need for a more systematic theory of difference equations. 1de.ally, the solutions should be 
expressed in tenns of elementary functions. llnfonunatcly, this is possible only for rather 
restricted cla.~scs of equations. 

~ It would be more appropriate to call (I) s "recurrellce relation", and 10 rc~rvc 1bc cerm "dill'cn.'llce 

equar.inn" for ane41iJ'Uion oftbc fonn t:,,x, = j(1. x,}, wbcrc ,\x, denotes thediffe.rence x, ... , -x,. 
Howcwr. it is obvious how lo 11:M~form a difference equation int(> an equivaleru recurreJlce relation. 
and vice verso, s,., we make no distinction betW<'.en tbe two bnd$ of equation. 

EXAMPLE 1 
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A Simple Case 
Consider the difference e4uation 

Xr+1 =ax,, 1 ::.:::0, I, ... ·(2j 

wher~. a is a constant. It is called homogeneous because if x, is any solution, so i~ ax, for 

any constanl'. 
Suppose x0 is given. Repeatedly applying (2) gives first xi == axo, next x2 = t1x1 

a · ax0 = a2 x0• then x3 = a.t2 = a · a1 xo .:.: a3 xo. and so on. 1n general, 

.tr= a'xo. t == 0, 1, ... (3) 

The function x, = a' xo satisfies (2) for all t, as can be verified directly. For each given value 
of xo, there is clearly no other function that satisfiC8 the equation. 

Find the solution of the following difference equation which ha.~ xo = 5: 

Xt+l = -3r,, I= 0, l, ... 

Solution: From (3) we immediately get x1 = 5(-3)'. t = 0, 1, .... 

(A multiplier-accelerator model of growth) Let Y, denote national income, I, total 
inve.sunent, and S, total saving-&l in period r. Suppose that savings are proportional to 
national income, and that investment is proportional to the change in income from period r 
to 1 + l. Then, for t = 0, I, 2, ... , 

(i) S, = aY, (ii) [,.H = /J(Yr+t - Y,) (iii) S, = 11 

The last equation is the. familiar equilibrium condition that saving equals invescincnt in each 
perio<l. Here a and fJ are positive constants, and we a~sume that O < 0/ < fl. Deduce a 
difference equation determining the path of Y,, given Ye, and solve it. 

Solution: From (i) and (iii), t, = OIY1, and so I,+ 1 = aY,+1. Insert:ing this into (ii) yield~ 
aY,+1 = f/(Y, ... 1 - Y,), or (a - Jj)Yr+l = -/ff1. Thus, 

Y,.t1 = _ _P._y, == (1 + _a_)y,. 
{J-a {J-OI 

t=0,1,2 .... 

Using (3) gives the solution 

r,"" (1+ fJ :J'ro. t =0, 1.2 .... 

Tu~~ difference equation ( *) constitutes an inst.111ce of the equation 

Yr+i ·:e: (1 + g)Y1, t: 0, I. 2 .... 

which describes growth at the coustaat. piopo1tional rate g each period. The ~olution of !he 
equation is Y,:::: (1 + g)1Yo, Note that g = (Y, ... 1 - Y,)/Y,. I 
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l 
EXAMPU 3 

Linear First-Order Equations with Constant Coefficients 
CoasjJer next the inhomogeneou~ difference equation 

x,.;.i = ax, + b, t = 0, l. ... (4) 

where a and b are con.~tants. The homogeneous equation (2) is the special case with b "" O. 
Starting with a given xn, we can calcul:uc x, algebraically for small t. hldccd 

x1,,,., axo +b 

.r2 =ax, +b ;;:.a(,lX(I +b) +b = ,i2xo +(a+ l)b 

x.i = t1:t2 +b =a(a2 xo +(a+ l)b) +b = a~xo+ (a2 +a + l}b 

and so on. This makes the pattern clear. ln general we have 

x,=a'xr,+(a'-1 +a•-2 +···+a+l)b 

According to the summation fom1ula for a geometric scrjcs, J +a+ a2 + ... + af-1 

(I - a')i(l - a), for a 'I- I. Thus, fort = 0, !. '2, ... , 

x,+1 =ax, +b '( b ) b x,=<1 xo--- +--
1 -a 1--·a 

(a i= I) 

For a = l, we have l + a + · · · +a'·· 1 """ t and x, = x0 + 1 b for t = l, 2, .... 

Solve the following difference equations: 

(a) x,+1 = !x, + 3, (b) x,+1 = -3x1 ~·· 4 

Solution: (a) Using (5) we obtain the solution l', = ( { )' (xo - 6) + 6. 

(b) ln this case, (5) give~ x1 = (-3)'(x0 - I)+ I. 

Equilibrium States and Stability 

l 
I 

(5) 

Con,icforthcsolution oL!,...i = ax, +b given in(5). If x0 = h/0-a), then x, = b/(1-a) 
for all 1. In fact, if x, = bj(J -<1) for any s 2: 0, then x,+1 "'a(b/(1 .. -a})+ b = b/(1-a), 
anll again x.,-2 =-- b/(1 - a), and so on. We conclude thal if x, ever hecome& equal to 

b/(l - a) at some time. .r. then x, will remain at this coa,tant level for each 1 ;:: s. The 

(·(mstant x• = b/(1 - a) is called an equilibriwn (or stationary) state for x,.,. 1 ""ax,+ b. 
An alkmative way of findi11g an <XJUilibrium ,t.tte x• is ro seek a solution of x,+ 1 :-:-, ax, +b 

v.ith x, = x • for all t. Such a ~olution must satisfy x,.,., c.-, x, = .x• and ,ox• =a.,• + b. 
Therefore .• for a f. I, we get x• = b/(l -·· a) as hefore. 

EXAMPLE d 
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Suppos~ the cuustant 12 in (SJ is less than l in absolute value··---that i~, ·-· l < a < l. 
Then a' --> 0 a., r -> oo, so (5) implil'S that 

x, -+ x• = b/(1 - 11) I-+ 00 (6) 

H"nce, if lal < I, tbe s~huion converges to the equilibriwn state as I -+ oo. The equation 
is then called globally asymptotically stable. 

Equation (a) in Example 3 i~ globally asymptotically stable because a = 1/2. The. 
equilibrium 5tate i.~ bi ( l - a) ::: 3 / (I _ .. l /2) = 6. We see from the solution given in that 

example that x1 -+ 6 as t -,. ,XJ. 

Equation (b) in Example 3 is nol stable because la! = 1-31 = 3 > I. Toe solution does 
nor converge to the equilibrium state x• .,, I as t -,. oo, e:'lcept if ro "" I-in fact, there are 
explosive oscillations. I 

Two kinds of stability are. shown in Figs. l(a) and (b). In the first case, x, decreases mono1on­
ical\y and converges to the equilibrium state x·•. In the second case,.,, exhibits decreasing 

fluctuation5 or damped 05cillations mound .x" . 

.r 

x~j----
'l·· ···-. ····----... ·····- ·• .. 

---~· -·~···•·-··• . -• r 234567 

• b 
(a} -'~ > x = ·{~, 0 < a < I 

X 

... L _______ . -··- ·-·-----------------· 
"o!--- .. _ 

: -- ·o ...... D • 

...... ,, ........ 
3 4 ··-r-·-1· 

'·,, 
· .• 

• b 
(c) .(o <x = l·-a' "> I 

Figure 1 

X 

h ,:\ ;/'· ... 
--·----,----:·--·•,- : -·-
,,_ ·-~J.~l- ··.. :' 

: t 2 3 11 5 ',,6: 7 
,: 
~ 

(,i) X,) < _,• •'·'• _b_• G < ·-J 
I-· a 

If lal > I, then ,he ab.solute. valo« of a' !end& w oc:: as I -> oo. From (5.l, it follows that x, 
moves fanhcr and farther away from the equilibrium s1.ate. ext·cpl whcu xo =.: b/(J -·- a). 
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1\vo versions of thi~ phenomenon are illustrated in Fig~. I (c) and (d). In the first case, 

x, tends to -oo, and in the second case. x, ex.b:.ibirs increasing fluctuations or explosive 

oscillations around the equilihriwu state. 

Variable Right-Hand Side 

Consider brielly the case when the comlant b in equation (4) is replaced by an arbitrary 

given function oft: 
t =-= 0. I, ... (7) 

where a is still a consL.'lllt. Starting with a given .to, we can again calculate x, algebraically 

for small '- Indeed 

x1 =axo +ho 
xz = ax1 + hi = a(ax,i + bo) + b1 = a2xo + abo + b1 

X3 =- ax2 + i'1 = a(azxo + abo + b1) + bz = a3xo +a2bo + ab1 + bi 

and so on. This mak.-s toe pattern elem. In each case. the formula for x, begins with the 

1crm a1 xo, and then adds the terms a 1- 1bo, a1- 2b1, ... , ab,_1, b,_1 in turn. We thus arrive 

at the following general result (which can be proved by induction): 

r------···-·------·-··--------- ---, 
,-1,2 J / 

+b · I +"' f·•tb x,tt =ax, , = x, =II xo L..,a l-1. 

t.=l 

(8) 

Linear Equations with a Variable Coefficient 
Somclime;; ,:cooomists n~cd lt) consitlcr " m<>rc gcneral Conn of 1hc linear djjTcreocc equ.ition (7). 
where the coefficient a can vary over time. This will be !he case in Example 11.2.3 concerning the 
present value of an incuroc .stream wbco the infcresl rnt,; Yaries. 

The general fin;t-cmler lin~ar differrnce equation takes the form 

t =0, 1.2 .... (9) 

where. unlike in (7), the coefficient a, depends on t. Proceeding as befoi:e, we calculate x, exrlicitly 
for the first few values oft. starting with a given x0 whe.a t ,·. 0. We have 

XJ = U(fXO +b~ 

X1 = rt;.>:1 + bi = <'t ("<JXO -0- bo) + b, '"'"l''OXc + a;bo + 171 

Tben, omitting the details of the next two calcuL1tioos. we have 

x~ = fl'J,d;fJ(J.tr1 ~ llz,1/'0 ~ a1b~ + 117. 

X4 = fl}flJ.tlt<i.,X{I + U}tl;:a:ho + U1d2b1 + a~b~ + b,3 
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Thi~ is c,msit.lcrahly more corap!i=ed chan whe.n a, w:,s inoependeot of t, yet you should ~tilt be 
able to discern a pattern. Jndttd. the successive codflcic.nll: of .to are 

Using an obvious notation' for the pro.iuct we have 

I 

n"· f.or t '" 0. l. 2. 3 (1'J) 

.~=O 

lo fact, fort"" l, 2 .... , lhe genernl formula for x, be<:<>mcs 

(1-l ) ('···I ) (1-I .) ( , .. t ) 
.t, o= !] a, .ro + Du, bo + [! a, b1 + · · · + )}, a, b,-2 + br-·i 

This can be written as 

x, ""(fia,)xo+ f:( fl a,)1,k 
'"'° !~ ,:l·tl 

(ll) 

provided we agree thal 1hc product n:-::: o, of 1-ero terms is J. A formal pruof of (11.11) can b<: given 

by malhcll1at.ical ind11ction. 

NOTE 1 (Di.trei:enlial versus difference equations) Consid~r the analogous differential equation 
.i(t) = ax(t) + b studied in Sec1lo11 5.4. If we use the (rough) approximation .i(t) ~ x,H - r,, 
the equation becomes x,+1 - x, = ax, + b, or x,~1 = (I.+ a)x, + b, whose solutio11 according 
to (5) is r, = (1 + a)' .. 1(Xo - b;a) + bia. Toe equilibrium state is h/a for both ~quations. The 
difl,:.-rential equation x(t) == ax(t) + b cooverges to /,/a provided a < 0. The differtnce equation 
x,+1 = (1 +a)x, +a converges to b/" provided !l +al <. 1, i.e. ··2 < " < 0. So convergen~ of the 
solution to the differential equation impJie• the same for the diffe.rencc <'.quation, but not conversely 
- wh~-n u s -2 the differential equ:itio11 has a convergent solution even though the difference 

equation doe.s not. 

Pl\08LEM$ FOIi SECfJON 11 1 

1. !:'ind the solutions of the following ,llfference equations with the gi,en values of Xu: 

(a) Xii-I = 2.t, + 4, XQ = 1 (b)3x, .. ,=,x,+z, xo=2 

(c) 2xr+t + 3x, + 2 = 0, xu "'· -1 (d) x,~1 - x, + 3 '" 0, xo = 3 

@) 2. Consider !he lliffcrence equation x, 1. 1 "' ax, + b in ( 4) an.! explain how it~ solution behave& in 
e.~ch of !he following ca.ses, with x' = hi(! -· a) (for" f, I}: 

(a) 0 <'.ii< I, X{) < _'C• (b) -l < (l < o. ro < .I' .. (c) a> J, .t-0 > x"' 

(d) a•< -1, Xn > x' (e) a 'f I. xo :-.: x• (f) Q = -··i.~ , 0 -,, x' 

(i;) lJ ~.-- l, b>O (h) a "" !, b ,: 0 (i) {.::. I, b=O 

3. By su~tiluting y, "' .~, ····· /J/(1 - a) transform equ.:1ion !.4) into ,1 hl>mogcneous diff1:r<sn.:e 
<'quation in y,. Solve it and rin<l a new cootirmation of l5). 
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11.2 

EXAMPlf 1 

4. (a) Consider the di/Terence equation 

Y•+' (a-'- by,)= cy1 , t ,,., 0, I .... 

"'hen, a, b, and c 3rc positive con~tant.s, and y0 > 0. Show thar. y, > O for all t. 

(t,) Define. a new Iun~-uon x, by x, = liy,. Show that by using thi8 s11bstitution, the new 
difference C<JUation is of the cype in (4 ). Neit[ solve [he difference .:quation Ys+r (2 + 3 y,) "" 
4y,, a.~su1!ting that _"rl , .• l /2. What is the limit of y, n~ t -+ oo? 

5. Consld,;r the difference cq11a:ionx, " ,1'.'i; .. 1 - I with Xe. :r.. 5. Compute x1_ .x1, and x.1. What 
about x. '/ (lbis problem illusttates that a &olution may not cxi,t if the domain of the function 
fin (I) is resttictcd in any way.) 

Economic Applications 
.In this section we consider .several interesting applications of the theory studied in the 
previous section. 

(The hog cycle: a cobweb model) Assume thar the total cost of raising q pigs is 
C(q) = aq + {Jq2

. Suppose there are N identical pig farms. Let the demand function for 

pigs be given by D(p) = y - l,p, a., a function of lhto price p, when~ the constants a, fJ, 
y, and o are all positive. Suppv~e. too, that ea.:h fanner behaves competitively, taking lhe 

price pas given and maximizing prollts n(q):::: pq - C(q)::: pq - aq .. f]q1. 
Toe quantity q > 0 maximizes profits only if 

rr'(q) = p -a -2{:Jq = 0 at1d so q = (p -a)/2j3 

We see that ;r'(q) > 0 for q < (p -a)/2/J, and rr'(q) < 0 for q > (p -o.)/2/J. Thus, 

q = (p ·- a)/2p m.uimi.,,es profits provided p > a. 1n aggTegate, the total supply of pigs 
from all N farms is the function 

S::::N(p-a)/2/J (p > a) 

of the price p. Now. suppose it takes one period to raise each pig, and that when choosing 

the nrunber of pigs to raise for sale at time t ;- I, each farmer remembers the price p, at 

timer and exlh)CtS p, ... 1 to he the same asp,. Then the aggregate supply at lime t + 1 will 
t:>e S(µ,) = N(p, -a)/2/:,. · 

Equilihrium of supply and demand in all periods requires that S(p,) = Dfp,.1.: ), which 

implies that N (p, - a) /'2/3 == y - i'ip, •·, , £ = 0, l, ... - Solving for Pt+ 1 in terms of p1 and 
the parametr::rs gives the differeuce cquario11 

N aN+2fJy 
Pt+I "'· - 2/J//11 + -ijj'f. , . I= 1,2, ... 
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This is a .,pecial c,Lse of equation (11.l .4), wiw µ, replacing x,. with a :::a - N /2{38, and 

with b = (,lN + 2{.ly)/2/Jl,. TI1c sohitiou of(*} c,m be expres~edas 

p, ""p' + (-a)'(po - p') (a= N/2{J8) 

where p• is the equilibrium price p' '"' b/ll - a)== (aN, 2fJy)/(2fJ8 + N). Equ.atio11 

(*) is stable if l·-al < l, which happens when N < 2/H. In !hi~ case. p, -. p• as r-+ oo. 

The solution in this case i~ illustrated in Fig. 1. 

/J 

S = N(p -· ")/'lfi 

PO 

I 

' I -"---·----~ D=;--,lp 

--~·____L_______l-----'------'-~--- q 
q• ,,~ ,10 r 

Figure 1 The cobweb model in Example 1-tbc stable c.tse 

Here, qo is the supply of pigs ar time 0. The price ar which all these can be sold is po. This 

dc1ermines the supply q1 one period later. The resulting price at which [hey sell is p 1• and 

soon. 

In the stable case when N < 2/Jn the resulting price cycles are damped, and both price 

and quantity converge to a steady-state equilibrium at (q', p•). Tilis is also an equilihrium 

of supply and demaud. Jf N > 2/J~. however, then the oscillations explode, and evenmally 
p, bi:comes le8s than a. Then some pig fam1s must go out of business, and the .solution has 

to be described in a different way. There is no convergence to a steady st.ate in tbi& case. A 

third, imermediatc. case occurs when N ""2f,~ and a::::: J. Then the pair (q,, p,) osc.illatcs 

perpetually between the two values (y - Spo, po) and ~0(1,0 - ct), a+ y /~ - pc} in even­

and odd-numbered periods, respectively. I 

(Mortgage repayment~) A particular ca&e of the difference equation (l l .1.4) occurs 

when a fawily bo11ows an amount K at rim.: 0 as a home mortgaie. Suppo;e thete is a fixed 
interest ral.: r per period (usually a munlh rather than a year). Suppose too that !her,, arc 

equal repayments of amounc a each period, until the mortgage is paid off after n period~ 

(for example, 360 m.ont.hs"' 30 years). Tue ou1st.anding balance or princiJ><ll b1 on !he loan 

in peliod t sati,~fie.~ the di.lferc:ncc ~xiualion b,.rt = (I + r )b, - a, with bn = f( and hn = 0. 

Tlli.s difference equal.ion can be solved by using (11.1 . .5). which gives 

b, = (I +r)' (K -aj,') +a/r 
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But b, = 0 when t = 11, so O = (l + r)"(K - air)+ a/r. Solving for K yields 

The original loan, therefore, is equal [O the present discounted value of II equal repayment~ 
of a.mount a each period, starting in period 1. Solving for the payment a each period instead 

yields 
rK rK(l+r)" 

a= ~-----
1 - {l + r)-• (1 + r)" - I 

Formulas ( *) and ( **) are the same a~ chose derived by a more direct argumcm in EMEA. 
Section 10.6. I 

EXAMPLE. :a, (Comp1>und interest and PDVs with constant interest rate) The result iu (11.1.8) 
can be applied to describe the changes over time in a savings account whose balance is 

subject to compound interest. 
Let w1 denote the valu~ of the asse1s held in the account at !he end of period r. Further, let 

c, be the amount withdrawn for consumption and y, Ult:'· amount deposited as income during 
period t. If the interest rate per period is a constant r. the rele.vant difference equation is 

t = 0. l, 2, ... 

Using {11.1.8), the solution of (I) is 

t 

w, ""(l + r)' wo + L(l + r)'-\>'* - c,), 
,~1 

I= ),2, ... 

(l} 

(2) 

let us multiply each ierm in (2) by {l + ,)-,, which is a factor of sufficient economic 

impo11ancc to have earned a sta.n<lard name, namely the discowit factor. The 1csult is 

I 

(J + ,)-1 w; =Wt)+ I)t + r) .. A(Yl: -q) 

l:~.1 

(:3) 

ff tin1c U is now, then the left-hand side is the pre.wnt discout1ted value (PDV) of 1:he assets 
in the account at time 1. Equation (3) says that this is equal to 

{a) i.nhial assets wo; 

{h) plus the to~tl PJJV of all f uturc <lo,posits, I:L 1 ( I + r )-• y,; 

(c) minm the total POV of all fi.m1rc withdrawals. I:(~1 (l + r)-*c,. 

Jf time t i~ now, rh" fonnula for m, in (2) cau be interpre1ed as follows: 

Current assets w, reflect 1he inu:.n,st ea med ,m itiiti.al asuts we. wirh odjustmertts for the 

imere.,t earned on all Ima deposit•, m'forc;;om, b(1(1wse of later withdrawals. I 

5fC~ION 11 .2 I oCONOMIC APPLIC.A.llONS 399 

(Compound interest and PDVs v.ith nriablc interest rates) W¢ modify 1:he com­

pound intere~t an<l prL:SCllt discounted value calculations in the previous CXIWlpk to allow 

imcmn rare.s that vary from period to period. The relevant. difforence equation bet'.Omcs 

w,+1 ""'(! +r,i.i)w, + Yr+i -c,.,l, t:;-;0,1,2, ... 

Fom,ula (J l. I.I I) yields 

or, equivalently, 

Define the discount factor D, by 

D, = -,--1--- = [10 + r,)-1 

n,~1(l+r,) s=\ 

(4) 

(5) 

(6) 

Note that when'• = r for all s, then D, = ( l + r )-', the discount factor use,J in Example 3 

(sec (3)). In the spc::cial case of no deposit~ or withdrawals, equation (5) reduces to 

t 

1//r = u:o no+ rt.) 
s=I 

just as one would expect. After all, "'O invested initially becomes ico(l + r1) after one 
pe.riod, then w0 (1 + , 1)(1. + r2) after two periods, and so on. So the discount factors have 

an entirely appropriate form. 
Multiplying each [erm of (5) by the discount factor D, yields 

But 

Hence, 

fl=Hl(l +r.,) 

n:=f(l +r,) 

(1 + r,+t) · · · (l + r1 ) 

(l +rd··· (1 + 1"t)(I + r1; 1 l · · · (l +· r,) 

I 
---. -- -·--- = D, 
(l +,-1)···(l+r,) 

I 

D,w, ""wo + L Dt{Yk ··- ed. 
,~! 

1 "" l. 2, ... 
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The imcrprr.tation in tem1s of presellt discounted values (PDV s) is exactly the same as before 
(sec fonnula (3)). 

Incniduce the intuest factor Ri, defined by 

R, :a Dt-/ D, "" n (1 + r,) 
,,·.-k+I 

Then formula (5) can be wriucn as 

( 

u;, = Rowo + L R,(Yk - ,;k) 
k=l 

which is the appropriate generalization of formula (2). 

(8) 

(9) 

PROBLEMS FOR SE TION 11 2 

1. Find the solu1ion of (I) for r = 0.2, w0 = 1000. y, = 100, and<', = 50. 

2. Supp,)sc that at time i => 0, you borrow $100 000 at a fixed inrcres1 rale r of 7% per year. You 
;ire supposed to repay the loan ;n 30 equal annual repaym1:nls so thal after n = 30 years, the 
mortgage is paid off. How much is each repaymem? 

@ 3. (a) A loan of amount $Lis taken out on Jan\lary l of year 0. Tn~tahncnt payments for !he 
princ.ipal ;md interesl are paid anuually. commencing on Jaouary l of year l. Let the interest 
rare be r < 2, so that the intcres1 amounts tor L for the fil'lit payment. The contract slates 
that th<' principal share of the repayment will be half rhc. size of the interest .~hare. Show 
that the debt after January I of year n is (I - r /2)" L. 

(b) Find r when it is known thac cxac1Jy half the original loan is paid after l.O years. 

(c) What will the remaining payment~ be each year if the contract is not changed'! 

@ 4. Work ttirough the morrg~ge example in Example 2 when intere8f rates are variable. Note tha1, 
in practice, va.-iahlc interesr. m(•rtgages have repayments rh"t increase when the interest rate 
increases, and decrease when it de.:rea.<es. Why is this? What would happen if there were a 
large enough unfurc.ecn increase- in interest rate, witbom any increase in repayment~·! 
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11.3 Second-Order Difference Equations 

AMPl!i I 

So far th.is chapter has considered first-order difference equations, in which each value x,-1- t 

of a function is expressed in temL~ of its value. x, in the previolls period only. Next we 
present. a typical example f.-om economic~ where it is necessary to consider se.cond-order 

difference equations. 

(A multipJier-accelerator growth modeli Let Y, denote national income. C, total 

consllmption, imd / 1 total investment in a country at time t. Assume that for I= 0, I, ...• 

(i) Y, = C, + I, (ii) Cr+l = aY, + b 

wh.:re a, b, and care positive constanrs. 
Equation (i) simply states that national income is divided between consumption and 

invesunent. Equation (ii) expresses lhe assumption lhat consumption in period t + 1 is a 

linear function of national income in the previous period. This is the '"multiplier•· pact of 
the model. Finally, equation (iii) states that investment in period I + 1 is proportional to the 

change in consumption from ~- pre~ious period. The ide.a is that the existing capital stoek 
provides enough capacity for production to meet current. consumption. So investment is 

only needed when consumption increases. This is the "accelerator'· part of the model. The 
combined "muttipher-accelerntor" model has heen ~tudie<l hy sever.ti economists, notably 
P. A. Sa.im1clson. 

Assume that consumption Co and investmenl lo are known in the initial period 1 = O. 

-ni.:nby (i), Yo== Co+ lo, and hy (ii). C1 = aYo+b. Fron1(iii). we obtain /1 = ciC1 -Co), 
and then (i) in rura gives Y1 =Ci+ 11. Hence, Y1, Ct, and 11 arc all known. Tumilig to 

(ii) again. we find C2, then (iii) gives us the value of /z, and (i) in tum produces the value 

of Y2. Obviously, in this way, we can obtain expressions for C,, Y,, and/, for all 1 in terms 

of Co, Yo, and the constan1s a, b, and c. However, !he l'.-..:pressions d.:rivcd get increa~ingly 

complicated. 
Another method of studying the system is usually more enlightening. It consists of 

eliminating twil of the unknown funclions so as to end up with one difference equalion in 

one unknown. tferc we use this method t.o end up "'ith a difference equation in Y,. To do 

su. nole that equations (i) to (iii) are valid for all t = 0, 1, .... Replace t with r + I in (ii) 

and (iii), and r with 1 + 2 in (i) to obtain 

(iv) C,+2 = aY,+1 + b (v) /,+2 = c(C,.1-2 - C,.,t) (vi) f,+2 =- C,+2 + l,+2 

Inserting (iv} and (ii) into (v) yields I,+2 = 11c0',+1 - Y,). lnsClrtlllg this result and (iv) into 
(vi) gives Y,-1-2:::: aY,+1 + h ~. tic(Y,""1 ··- Y,). Rearranging we have 

Yst,z - a(l + r.) Y,+1 + acY, '"' b, I:: 0, !, ... (vii) 

This is a secon,1-ordcr linear difference equatiou with Y, a~ the unknown function, and with 

constant cocfiicicnt~ of Y,~1 ,wd Y,. The next section :;;ets out a general method for solving 

such equations. (See Problem I l .4.3.) I 
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TI1e typical ~el,ond-order difference equation can be wri.nen in the form 

x, .•. 2 "° f(t. x,. x,+a), r:::. 0. J, ... (l} 

Suppose that f is defined for all possible value8 of the variables lC, x,, x,..-1 ). Suppose x0 
and Xt have fixed values. u:ning t = 0 in (I). we see that x2"" /(0, xo. xJ. Letting. t: I 
yields x~ = f(l,xi, /tO . .:co,xi)). By succes&ively insening 1 = 2. r""' 3 .... into(!). 

the value.s of x, for all I are uniquely det.ennined in terms of xo and x1• Note in particular 

lhat there are infinitely many solutions, and that the ~olution of lhc equation is uniquely 
determined by its values in the fir.\! two periods. By definition, a genera) ~olution of (1) is 

a function of the form 
x1 :::: g(t; A, B) (2} 

that satisties ( 1) and has the property that every solution of (I) can be obtained from (2) by 

choosing appropriate values of .4 and B. 

Linear Equations 

The general second-order linear difference equation is 

(3} 

where a1 , b,. and c, are given functions oft, with b, ¥' 0. The associated homogeneous 

equation 

x,+2 + a,x,+1 + b,x, = 0 (4) 

is obtained from (3) by r.eplaci11g c, with 0. Compare these equations with the linear d.iff eren­

tial equations (6.2. l) and (6.2.2). By aTguments which arcru11ch the same as for diffe.-e11tial 
equations (but simpler), the following results are easy to establish: 

,..._..... -- - --------------------- -·-·--··" ~ 

(a) TI1e general solution of the homogeneous difference equation 

x,+2 + a,x, 1, + b,x, = 0 is x, := 11u?J + Buf 

where u}1> and 11:2) arc any two solutions thal are 11ot proportional, and A 

and B are arbitrary cons!ams. 

(b) The general solution of the nonhomogeneou, difference e.quation 

x,+1 + a,x:+J + b,x, = c, i.s x, = .4uj'l + Bu?) + u.; 

where Au?1 + Buf2> i~ the general solution of the associated homogeneous 

equarion (with c, replaced by zero). and u; is any ~)articular soh1tio11 oft.he 

nonhomogcneous cquariou. 
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NOTE 1 In order to use the theorem. we need to know when two solutions of ( 4) are linearly 

ind~pendcnt, i.e. not proportional. The following necessary and sufncient condition is ca~y 

to apply (ttnd gencrali:t.es easily to the case of n functions): 

(5) 

See Problem .5 for a proof. 

A General Solution 
There is no universally applicable method of discovering the two linearly in&pcn,1.::nt solutions of 
( 4) that we n~cd in otdet to find the general solution of the equation. But if we know two linearly 
independent ,;..)Jutiorn; u)1> and u)~l of the homogeneous equation ( 4) and thereby its general solution. 
then it is always possible lO find the general solution of the nonhomoi;encous equation (3). 

In,iced. de.fine 
D,:::. uP)u~!\ - ui~1 r4:Z) 

Then, provided L>, 'F O for all t = l, 2, ...• the general solution of (3) is given by 

: ~) ' (1) 
_ .,. rn + B {2) O) '° C,t-tU.t + CZ}'°' Ci-P'i ·'"l - n.u, U: - u, L.J --- u, L ., .... __ .,, .. 

k-1 Dk k~I D1. 
{6) 

where A and Bare arbittary con.mmts. (See Hildebrand (1968).) 

When the coefticiencs a, and b, in (4) are constants independent of I, then it is always 

possible to find a oimple formula for the general solution of (4). The next section shows 

how to do this. 

@ 1. Prove by direct substitution that the following func1i0n~ of I arc solutions of the a.<sociated 
diffetence equatioll (A and Bare constants): 

(a) x, ., A + B 2', 

(bl x,••A3'-"B4', 

X1+1 - 3x,.,.1 + 2x, = 0 

x,.,.1 ... 7x,+L + 12x, = 0 

2. Prnve. that x, = A + Br is the gcn~Tal sulu1i,:,n of x,.,.1 - 2tr+! + x, = 0. 

3. Prove !hilt x, = ,!. 3' -;- .8 4' is the general solution of .x,~2 - 7x,_; + l2x, = 0. 

4. Prove !hat .x, = A 2' + 8 t2.1 + l is the general solution oi .x, .. 2 - 4.x, H + 4x, = l. 

~ 5. Pr<wc the equivalence in (5). (Him: lfthe detenninant h zero. rh~n the two colnrnn~ are line.tl·ly 
dcp.;11d,m1:. and. ,ince hoth u;11 and"~\ are solutions of e,Ju«tion (4), this dependence will 
propa;,:ato: I<> u;1

J and u:21 for all 1.) 

@ 6. (a) Fiud an expression for the solutionofx,+2 ·- 2x,.,.1 ·1-x, = c., using 1hc an$wer ,o Problem 2 
along with o::quation (6). 

{b) Find the solution when e, = r. (Hi,rt; Prove th,,t L.~=I tic ··- I )k = ] (1 - I )1 (t + 1).) 
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11.4 Linear Equations with Constant Coefficients 
Con.~·ider the homogeneous linear e.quation 

Xr+2 -i• OX1+I + b.t; = 0 (l) 

when~ (t and bare arhitr,uy con.5tants. b fa 0, and x, is the unknown function. According to 
Theorem 11.3.l(a), finding the general solution of(I) requires us todiscovcrtwo solutioos 

u~11 and u?J that are linearly indepcnden!. Ou the ba.~i.~ of experience gained in some of 
the pre.vious problems, it should not he suq,rising that we try to find solutions to ( l) of the 
fonn x, = m'. Theo x,+1 = m'+1 = m · m' and x, .• 2 = m1+2 = m2 • m1

• Inserting these 

expr..-.ssions into (I) yields m'(m2 +am+ b) = 0. If m f 0, then m' satisfies (l) provided 
that 

m2 +am+b =0 (2) 

This is the characteristic equal.ion of the difference equation. Its solutions are 

(3) 

There are thre.c differe.nt cases, which art?' ~ummed up in the following theorem: 

THEOREM 11 4: . t --------··-··--·-------···--·------] 

The gener-.11 solution of I 
I 

I 
I 

(bi, 0) 

is as follows: 

(I) If a2 - 4b > 0 (the characte1istic equation has two distinct real roots), 

x, ==Am\+ Bm;, 
I 

I 
nm 1r a'" - ,ib < o (the. char..cleristic equation has no real roots). I 

a I 
I x,::: r'lAcosOt + BsinOt), r = ./b, cosO:::: ---;::: , 6 E 10, :rJ ! 
I 2./b I 
L-·--------·--·----------·-·-···-----····-·····-·-·-------

(Il) If a 2 - 4b = O (lhl~ characteristic equation has one real double root), 

x1 =(A+ 81)m1
, 

NOTE 1 [f xo and xi are giveu numbers, then in all three cases the constants .4 and B 
arc uniqu,~ly determined. For ins1auc~. in case (I), A and Bare uniquely detennined by the 

simultaneous equations xu .-::o A + R and x1 "" Am1 + Bmz. 

NOTE 2 The solution iu case (Ill) can be expr~ss,;d as 

x1 a •. • Cr' cos(6t + ,,,) (4) 

where 1v and C arc arbitrary constants. (Sec. the corresponding case for differential equation., 

in Se.clion 6.3.) 

EI\AMPLE 1 
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Proof of Theorem I 1.4.1: ll) The case u2 -· 4b > (} is the simplc:sl. Theu the roots m1 
and m2 of l2) are real and different, and u}ll ""m~ and u}J}"" m; are both Sl'lutions of (1). 

The determinant in (ll .3.5) has the valne m2 - m! j 0, $0th<! two soluHons are linearly 
independent, and !he general solution is con~equently as given in (I). 

(IT) If a2 -4b = 0. the';i m = ·-!a is a double root of (2). This means that 111' +am·•· b"' 

(m+ }a)2
. In addition to1,~I) = m'. the function u}2> '"" tm' ahosatislit!s(l) (seeProblem6). 

Morcovc.r, these two func.tions are linearly independcnl because the detemtioant in (11.3.5) 
is equal !om = - ~a. (Note that a f- 0 because b i: 0.) Tue get1e1al solution is, therefore, 
::1., indicatc.d in (IT). 

(ID) If a2 
- 4b < 0, the roots of (2) are complex. The two functions u}tJ = r' cos (11 and 

11~
2
) = r' siu 01 are linearly independent. Indeed, the determinant in (11.3.5) is 

: l 
[ r cos6 

0 I I,' ~·- --. ,, =rsin0=vb-./l-cos2 8=./F,vi-a2 /4b=+v'4b-a2>0 
r sm" • 

Moreover, direct substitution shows that both these fum;tions satisfy (l ). 

Indeed, let us show that u}l) ,,.. ,, costir sati:<tie~ (]). We find tha1u:~!
1 

= r•+ 1 cos8(t + 1) and 

11;~2 = r1+2 .:os8lt + 2). Hence. llsing the fommla lB.1.8) for the co,;ine of a surn, "'" get 

u;~2 + au:~1 + bu)ll = ,n·2 cos (/(t + 2) + a,•+i cost:l(r + l) + br' co8 91 

= r' fr2(cos lit cos 20 - sin 91 sin 29) + ar(cos~t cosO - sin 9t sine)+ bcostlr] 

= r
1
1(r

2 co& 28 + ar cos 9 + b) cos Be - (r2 sin 29 + ar sinO) sin 6'1] 

Here the coefficients of cos 8t and sin e.1 t are both equal to O ooeause r 2 cos W + ,ir cos 8 + b 
"" r 2(2.:os2 ti - IJ + arcos,9 + b "" b(2a2 /4b - I)+ a./b(-a/2/b) + b = O, and likewise 
,
2 sin W + ar sin 19 "' 2r2 sine cos O + ar sin 9 = 2rI(-a/2r) sin {I + ,rr sin I) = 0. This ~bows that 

u;1l = r' cos 01 sati~fies equation (l}. and a. •imilar nrgument.shows that so doe.s u?l "',,sine. • 

NOTE 3 An alternative aq,:omem for the solution in (1TJ) relies on prop..i:tics of the complex 
expou~ntial function. It, 1rigont•metric form th" roots iu (3) are m1 = u +i/3 = r(cosO +i sin&) and 
m~ = rx -i/3 = r(cos/l - i sinO), with i9 e [O, ,r]. r == j;f+'pi = Jh, cosv = a/r ,~ -fl/2./b, 
and sinO "" ftlr = (.;b ·- ,lZ/4 )/../b. 

By de Moh,:e's formula (B.3.8). m\ =·, r' (co;;l/r + i sinOt) and m;. = r' (cos 91 - i sin er). Toe 
complex fuor.;Lions m\ and mi_ both satisfy (1), and so does every complex linear combination of 
them. In particular, ~(m\ + m~) = r' co~&t and -!,(m\ - mf) = r' sinOt both S:<ttbfy (I). The 
general wlotion of (I) is therefore a~ given in ~•s,, \III). 

We see that when the characteristic equation has comple11. roots, the solution of ( I) involves 
oscillations. The number r is che growth factof. Note thac when lrl < I, then I Ar'; ..... 0 
a~ r ..... OC· and the oscillali()ns arc damped. If jr I > I. the oscillation.~ arc ei,.plosive, and 
in the c:ts.:. [ r I "" l, we have undamped o~cillations. 

Let. u~ now consider ~ome examples of <liffercnc~ equations of thL, form ( J ). 

Find the general sollltions of 

(a) X,+1. •.... Sx, .. 1 + tix, "'· 0 (bl Xr+? . •.. 6.rt+, + 9x, ""0 (C.l x, ,.1, - X:, 1 +· x, ,;; 0 
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Solvtion: (a) The charac.-tcristic e..iuali.on is m2 - Sm + 6 = 0, wbos~ roots are m, = 2 
aad m2 = 3, so th,, general solution is 

x1 '""A2' + B3' 

(bJ The characteristic.- equation is m2 -6m + 9 = (m - 3)2 = 0, so m = 3 is a double root. 

The gen,•ral solution is 
x, =(A+ 1Jt)3' 

(c) Tbecharacteri~tie equation is m 2 - m + l = 0, with complex roots m1 == !(1 + i.J3) 
and m2 = fO - i./3). Here r = ,,/b = 1 and cos9 = 1/2, so & = !:'I'- Tue general 
solution is 

,r B . :rr x, = A cos 3r + sm 3 r 

The frequency is (:rr (3)/(2.r) = 1/6 and the growth factor is ../b = l, so the oscillations 
~~~~ I 

The Nonhomogeneous Case 

Now consider the nonhomogeneous equati,)n 

(b :ft 0) (5) 

According to Theorem 11.3.1 (b ), its general solution is 

x, = .4uf1l + Bufl + u; (6) 

where .4u:0 + Bu}2
i is thti general solution of the associated homogeneous equation (I), 

and u; is a particular solution of (5). Theorem 11.4.1 tdls us how to find Au?) + Buf>. 
How do we find u;'1 The general formula in (11.3.6) gives one answer, but it involves a lot 

of work, even when r., is a simple function. 
In some case~ it i-s much e.isier. For example, suppose c, = c, where c is a con.stant. 

Then (5) takes the form 

Xt+2 + ax:+l + hx, = C (c is a constant) (7) 

We look for a solution of the form .t, ::: C. where C is a con~tant. Then x,+1 "'x,+i.,,,. C, 
~o inserting x, = C into (7) gives C + aC + bC = c. Provided 1 + a + b :f. 0. we get 

C = c/(1 +a+ b). Hence, 

lt t 
u = 

' I +a+b 
is a particular solution of (7) when 1 + r. -I· b f 0 (l!) 

(ff I +a+ b"' O. no constant fun.:tion satisfies (7). To handle this case, see Problem 4.) 
Consider mon.~ gc·nernlly !he case in which r., i.n (5) i, a lim,.ar comhination of tenn, of 

the fonn 
a'. t"', <·osqt. or sjn,1r 

l 
... I 

I 
I ,: I .. 
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l'f products of such terms. Thc.11 the method ofundctcm1ine<l coefficie.nts can be u~ed to ob­
tain a particular soluli.oo of (5). (If thefuncrion c, in (S) happens to satisfy 1he homogen<'ous 
equation, the procedun:.s descrihe<l below wust be modified.)l 

Solve the equation ~t"-2 - Sx,.i-1 ~ 6x, = 4' + t2 + 3. 

Solutior,: A.:cordinl! to Ex.ample I (a), the a5$0ciatedhomogeneous equation bas the general 
solution ,1 21 + 8 31~ To find a particular soltltion we look for constants C, D. E:, :uid F 

suc:h that 
u; = C 4' + D t2 + E 1 + F 

is a solution. (You cannot put E = O. even though there is no I term on lhc rig)lt-band side 

of the original equation.) Inserting u; into the given equation yields 

c4•+2 + D(t + 2)2 + E(t + 2) + F- 5[C411': + D(t + 1)2 + E(r +I)+ F] 

+6(C4' + Dr2 +Er+ F) a:4' +12 +3 

Expandingandreammging, 2C4' +2Dr2 +(-6D+2E)t+(-D-3£ +2F) = 4' +12+3. 
For this to hold for all I = 0. 1 .... one must have 2C = 1, 2D = 1. -6D + 2£ = 0, and 
-D-3E+2P = 3. JtfollowsthatC = 1/2, D = 1/2, E = 3/2,andF =4. The general 

solution of the equation is. thaefore, 

_t, = .4 2' ·t B 3' + i4' + }r1 + !t + 4 

Stability 
Suppose a.n c::.:onomy evolves accordi.11g to ~om.e difference equation ( or system of difference 
equations). If the right nwnber of initial conditi~n& are impos.:d, the syRtcm has a unique 
solution. Also, if one or more initial c:ondirions are changed, the solutio11 change~- An 

importaut question is thi.s: Will a small change in the:: initi.·\I conditions have any cffoct 
on the. long-run behaviour of the solution, or will its effect die out as t -+ oc? In cite 
latter ca.se, the syst1:m is called stable. On the oth~r hand, if a small change in the initial 
conditions might lead to significant differences in the:: long-run behaviour of the solution. 
then the svstem is unsli1hle. Becau.~e- an initial state cannot be pinpointed exactly, but only 
approxim;tely, stability in the sense irnlicatcd above is sometimes a minimum requirem.mt 

for a model to be economically useful. 
For the remainder of this section. u/1> aJld uf> will denote lhe two solutions of (1) that 

emerge in the proof of Theorem 11.4-1. 
Consider the second-order nonhomogeneous difference equation (5 J whose general solu· 

lion is of the form x1 ,.,., Au }1) ... Ru;2J + u;. Equation ( 5) is called globally asymptotically 
stable jf the general solution Au):) .,. Bu}2> of the a.,sociated homogenelln., equation tend, 
to O as 1 ~ oo, for a.l.l values of .4 and B. So the effect \lf the initial conditions which 

dct.:nnine A and B dies out a.s t _.,. .:,o. 

~ For more de;~ils:·;;,.., refex to Goldberg (195~) or G?.ndolfo (]%0). 
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If Au)l) + n ... ::n tends t(' 0 a.s t --~ oo for all values of 11 and 1:1. then in particular 

u}
1
J -·• 0 as t ··> co {choos~. A..,.., l, B ~~ 0). 11.ml u;2l -7 0 as t --+ oo (choose A = O. 

B co; 1). On the otber hand, the.se two conditions are ob\iously suHicient for Au~I) + Bur2
) 

ro approach O as t -. oc. 

We claim that u?> ·-4 0 and u?J --+ 0 a.s 1 ..... oo if and only if the moduli of the rool~ 
of m2 + am + t,:.::: I) are both lc~s than 1.• 

Fir~t, in the ca$e when the characteristic polynomial has two distinct real roots m 1 = m2, 

tbe two solutions arc u?> "" m~ and uf21 = m;. 1n this .::ase, we see that 11!1) -. 'o and 

u}2J-. 0 as I -~ oo ifand only if lmrl < land lm2( < I. 

Second, when the ch:uactt'rhtic polynomial ha.s a double root m = -a/2. then the two 

linearly independent solutions are m' and 1m1. Again, /ml -~ I is a necessary and sufficient 

condition for these two solutions to approach Oas t--+ oo. 

Third, suppose the characteristic polynomial bas complex. roots m =a± i{J. Then a"' 
- ~a and,8 =- !.J4b - a2. So the modulus of each root is equal to Im!= .Ja2 + /32 :::: ,,;'b. 
We argued before that the two solutio11~ r' cos€/r and r' sin 6t tend to Oas 1 tends to iolinicy 
if and only if,. == .fij <. I-that is, if and only if b < I. 

To summiiri1,e, we have the fol.lowin1; r,'sult: 

I
I 1 

~~~ 1· 

I '', .x,i-z +a..t,+1 +bx,== c, 

I, . I b if ! i~ globally a.~ympronca ly sta le· and only if the following two equivalent con-
I ditions arc satisfied: j 
I (A) The roots of the characteristic equation m2 + am + b = O have moduli i 
f strictly less than l. j 
L ____ CB) lal < I +band b < 1. --··----·--·- ___ J 

E'XAMPt;r 3 

It re.mains ro prove that (B) is equivalent to (A), Assumt! firsr thar b > a2 /4. TI1en the 

char:icterfatic equation has complex roots m 1.2 = c, ± i{J. Hence, Im ti = lm21 "" ,,/b, so 
(B) obviously imp.lies (A). 

On the other hand. since f(m) ::::c m2 +am+ bis ncven.ero when b > aZ /4, ruid since 

/(0):::: bis positive, tbe parabola y = f(m) i~ always above them-a.us. so f(m) mu~t be 

positive for all m. In particular /(I)= I+ a+ b > 0 and fi-1)"" 1 - a+ b > 0. Bue 
thcs~ conditions together are equivalent ro 1al < I + b. ~o (A) implies that rhc conditions 

in (D) are also nc.cc~sary. Problem 11 asks you to analyse the citsc of real root~. 

li1wsti,g:1rc the srnbility of the equation x,+7. ,. ix:+1 - !x, = ,:1. 

• Sec $,>etion l:l.3. Note. that, if mis a rt:tf r111ml.er, the modulus of m ix1uals the abwl111c v.ilue. of m. 
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Solution: In th.i.~ case a "'" - l /6 and /J = -l /6. so lai '- l/6 and l + b :..:. 5/6. Thus, 

a.:-cording to lneorcm l l.4.2, the l'.quatioo is stabk. Ibis conclusion can be co11fi.rmcd by 
lookin~ at the gc.ncral solution t)f the assodated homogeneou., equation, which is x, = 
A(l/2)' + H(-1/3)1. Clcarly,.x1 -+ Oirrcspectiveofthe values of A an<l fl, so the given 
equation is globally asymptotically stable. I 

Investigate the stabiliiy of cc1uatio11 (vii) in Example 11.3. l, where a and c are positive, 

Solution: From 1l1corem 11.4.2 lhe equation is stable if and only if a(I + c) < I+ ac 
and ,ic •c I-that i~, if and only if a < I and ac ,:: I. (Sec also Problem 3.) I 

Find the general solutions of the difference equations in Problems l and 2. 

1. (a} -'i+2 - 6-<,+1 + Rx, "' 0 

(c) .t,+2 + 2.x,T: + 3x, ""' 0 

(§ 2. (a) X,+z+ 2:c,., I + Xr = 9 · 21 

(b} .t,+2 - &.,,~, + 16x, = 0 

(d) 3x,~z + 2x, = 4 

(b) x,-,.2 - 3.ts+L + 2x, "· 3 · 51 + sin(!nr) 

3. (:1) Consider die difference equation (vii) in Eit:lmplc: l I. 3.1. wich a > 0. c > 0. and a f.: l. 
find a Spe<,'ial .solution of the equation, 

(b) FinJ the characlcristi<: t.:quation of the associated homogencoOL< equarion and determine 
wbcn ii has rwo different real roots. or a tlouble real mot. or two corn1ilcx root.$ . 

@ 4. Consider e.quation ( 7) and assume that 1 + ,r + b = 0. If a ,f ·-2, find a const.lnl D •u~h that 
D1 satisfies (7). If a "" -2, find a constant D such that D ti satisfies (7). 

5. A model of location uses the difference equation 

D.+2 -4(ab + l)D0 +1 +4a2o2Dr. = 0, n=O, l .... 

where" and bare constant.<. and D. ,s the unknown func1ion. Find the solution of thfa ,-.quation 
a.<sumiog d1at I + 2u.b > 0. 

~ 6, Consi(for equation (l) iissuming that \a1 - b = 0. $0 that the characteristic equation has a real 
double root m = -11(2. Let.<, = 1'1(-a/2)' !\nu prove. that x, satisfies (I) provided thm u, 
sati~Jie.s the equation u,+= - 2u1+1 + "' = 0. Use the r;;~ulc irt Probk1n l t.3.2 ui find x,. 

7. Investigate the global asymptotic stability of the following equations: 

(a) .t,+>. - ! .x, ::: sin T (b) X1+1 ·- .<1 .. \ - X: = 0 

8. (;,) 1\ model due to R. J. Ball and E. Smolen3l-y i\ hased on the followmg sy&t~.m: 

C,=d',···1· X., =cY, .. 1. Y,. = C, + K, - li:,-1 

Herc <-, denotes consumption. K, capita! slock., Y1 net nationiil product. wherca~ c ancl t1 

are p<,sil>Vt constants. Give ,ineconomk illlerprelationoftbe equations. 

(bl Pcrivc a diften,-n.;c "'luarfon of the second order for Y,. Find ne..-essary ~nd sufikii,nr 
con<li1io11.s for the solut.ioo of 1his c<111:1flon to have explosive oscillatio;i.s. 



410 CHA~TER 1 t i OIFFERlNCE EQUATIONS 

~ 9. (a) A model by J. R. Hick.~ ll.jc~ the fol!owing dif.fcn:n«> equation: 

.Y,.2 - (b + k)Yr+I + k.Y, , .. u(l + g)', I =0, J, ... 

where"· /,, g. and Jr: are cou~tanK Find a p.trticular solution .r; of the ~quation. 

(b) Gi•c· conditions for !he cb:t1acteris1k equation r.o have two complex roots. 

(c) Find the growth factor r of rbe oscillations wht:n the conditions obtained in part (I:>) at~ 

sat,~fieJ, and dectrminc when the oscillation~ ~re d:ui:~d. 

10. (a) In their study of the. "'wagc-·pri<.:c spiral" of inflation, Frisch, Haavclmo, N91rrega,ird­
Rasmussen, ~nd Zeutben considered the following system for 1 = 0, 1 .... : 

(i) W,.;-2 - W,+!. = P,.1 -· P, 
W,+ 1 P, 

(ii) P. = y + ,llW, 

Here W, denotes the wage level and P, the pticc index at time 1, whereas y and fJ are 
constants. Giv~ economic interprct.ilions for the two equations. 

(b) De.duce frorn (il and (ii) the following equation for IV,: 

I =0, 1, ... (tii) 

(c) Use (iii} co prove that w, ... 1 = c(y + ,BW, ), t = 0, 1, ... , wherro c = W1/ Po, aod find 
a genera) expression for W, when cfi -t- I. Under what cor1ditions will the equltit>n be 
globally a~ymptt•tically stable, am.I what is then the limit of W, as t -, oo'/ 

HARDER PROBLEMS 

@ 11. Prove that the conditions il1 (B) 111 Theorem 11.4.2 are cc1uivalent 10 the ~ocdition in (A} fot the 
cnse when die characteristic polynomial bas real roots. by studyiog the parabola y oo f(m) = 
mZ .!.am +b. (Hi111: Considcrthc values of f(-l). /(1), f'(-1), ~nd f'(I).) 

11.5 Higher-Order Equations 
In this section we hrie.fly record s()me results for general nth-order difference equations, 

Xio·• = f(t, x,. x1~·,, ..• , x,+11-1). I= 0, (, ... (I} 

Suppose f is defined for all "al Iles of the variahlt:.s. Tf we rC(JtLice that xn. x 1, ••. , Xn-l have 
given lixcd values, then hy letting 1 = U in (J ). we find that x. "" f (0, xo .. f 1, ...• x. _i) 
i, uniquely detennined. Then letting t ,,: I in (1) yields Xrr+I = .f(I, .r1. xi, .... x,.) "'"" 

f(l. xi, .t2, ... , f (0. xo, xi ..... x •... , l). And so <.m. 1lms the rnlution of equation (1) for 
all I 2: 11 (if il exists) i, uniquely determined hy the value.~ .r, takes in the first. n periods, 
0. I, ... , n ··· l. ,. 

I· 

i 
! 

l 
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The general solution of (l) i, a function x1 := g(t; Ci, ... , C,) that depc~ds <.•n n 
arbitraiy constanl~ C 1, ... , c., sari~ fie~ (1 l, and ha.~ the property that every sol.ucmn of l l) 
can be obtained by giving C!, ... , C. appropriate value,. 

Linear Equations 
The general theory for second-order linear di.fkrence equations is ea.~ily genera(i2ed to 

nth-order linear equations. 

·-""" -----~ 
Tue general solution of the homogeneous lim:ar difference equation 

x,+,, + a1(1)x, ... n-1 + · · · + a,._,(t)x,+i + an(l)x, = 0 

with a.(r) ;6 0 is given by 

x, :::, C1u}1
) + · · · + C,u)") 

where 11?\ ... , u~•) arc n linearly independent solutions of the e.quation, and C1, 
...• Ca arc arbitrary constants. 

; 

! 
i 
! 

_.J 

l'HEOREM 11 5 ·----------------~--.-·-----------~ 
Toe general solution of the nonhomogene~>u, linear difference equation 

wiih a,(t) ¥' 0 is given by 

x, :::. C111~
1
> + · · · + C.,u}"> + u; 

where c1 url + ... + c.utl is the ge11eral &olution of the oorrcsponding ho· 
mogeneous equation, and u; is a particular solution of the nonhomogeneou~ 

cquatioll. 

j 

I 
! 

' 
L ... ----·-------

i --------~--------·--···-----' 

NOTE 1 To us.: the$e theorems, it bclps to know the following gen~ralization of (l.l .3.5): 
If ufl, ... , 11tl arc solutions of lhc homog~n('.OUS difference equation in Theoteni 11.5. l. 

then 

u?J, .... u~n·, are linearly indcpcnr.knt 
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Constant Coefficients 

TilC geneml lineat difference equation of nch order witll con.-naru eoefficieots ~es the form 

r = 0, l, . .. (3) 

The corrcspouding homogeneous equation is 

I "' 0, J, ... (4) 

We try to find solutions to (4) of the form :r1 :: m' . Inserting tbis solution and cancelling 
the common factor m' yields !he characteristic equation 

(5) 

According to the fundamental theorem of algebra, thi:; equation has exactly n ro<Jt.s, when 
c.ach is counced according to its multiplici ry. 

Suppo:.e first that equation (5) has n different real rnors m1, m2 , .. . , m •. Then m\, m~. 
... , m~ aU sati~(y (4). These fuocrions are moreover linc.ftrly inde.pendcot, .so the geocr.il 
solution of (4) in this case is 

This is not the general solution of (4) if equation (5) has multiple roots and/or complex 
root5 . The general method for finding n linearly independent solt1tions of (4) is as follows: 

Find the roots of equation (5) togctbt:r with their mu11iplj city. 

(A ) A teal root m; with multiplicity I giv~~ the one solution m;. 
(B) A real root mj with multiplicity p > l gives the p solutions m1, tm1, ... , 1P-1mj. 
(C) A pair of complex roots a±i/3, each with multiplicity l. g,ive.s Lhe two solutions r' cos lit , 

r'sio l)t, wherer = Jr,2 + {J2, and Ii E [0,n:J satisticscosO = a/ r,siJl8 = {J/ r. 

(D.l A pair of complex roots a± ip, each wii:h multiplicity I/ > l, give~ lhc 2q solutions 11, 

11, tu, Iv, ... , r~-1u. ,1-1v, with u = ,.,cos /It and v = r' sin/It, wherer == .;a2+ f,2, 
and fJ E {0,ir] sati8ficsco~O = a/r audsinO = fJ/r . 

In order to find the gener.u solution of the uonhomogcneous equation (3). it remains to find 
a particular solution u: or (3). If b, is a lin~::ir combination of product.~ of terms of tile form 
a', t"', cos qt and sin qt, as in Section 1 1.4, the method of undecennined coefficient!' a:;A.i.n 
can bc used. 

Stabil ity · 

Equarion <3) i.~ globallya~ymptutically stable if the general solutio11 c,u?> + ... -I Cnuf'·'i 
of the a~~ociatc-d homog<:n~ous equation (4) !ends b) 0 a.~ t ~ co, for all values 01' the. 
con~tants C, , .. . , Cn, Thetl tile effect of the initi:u t'.Onditi,:,ns "dk s cmt'' a.~ t --,. oo. 
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Asinth.ec<1~n = 2,cquaLion {3)isgloballyasymp!Oricallystallleifandonly ifu)'' -+ 0 
a, t --+ -,o for a.II i "'"· I , . . . , n. Each u; corresponds to a mol m I of the cbaracleristic 
polyuomial. Again, u:" --. 0 as t -+ oo if and only if modulus of the corresp,)ucling 
solution of the cltarac1eri,lic equariou is < 1. 

H lf F.FM 11 5 3 - ----- .. - ·-- - ···- ····--- ·----.. -·-·------·-· 1 l',..:..;_.~,1,;.;.,;,.....;,...,,_., I 

I A necessary and sufficient condition for (3) 10 be globally a,ymptotically stable is j 
! that all root~ of the charactcri,tk polynomial of the equation have moduli strictly ; 

I !es~ than L I 
L__~~~~ -~~~~-J 

! 

Tut>. following result gives a stability condition based directly on tbt.: coefficients of the 
cha(acteristic equation. (The dashed lines have been included to make it easier to ~ee the 
partitioned structure of the determinant:; .) See Chipmnn ( 1950) for discu.ssion. 

THE OREM 1'1 .54 I SC K UR --·-·-·-·----- -·-·" '··- --·-·-·····-·, 
Let 

be a polynomial of degree n. with real coefficients. A necessary aud sufficient 
condition for all roots of the polynomial 10 have moduli Jess than l i~ that 

0 

a, l 

f an - 1 Dn -2 

a. 0 

0 j a,, a •.• , I 
a, : 0 a. 1 

,~:~:-.. :.-·;·--i----~l· 1 > 0, 

0 

0 

0 

0 

a,. tJr.- 1 

0 a. 

0 0 

an- t 

>0 

I 

i , a , a 2 ,1~ 0 0 
I I 

t__. _ _ __ ··-· . ......... ~-·--··--------- ~-- ·------···- --·-- ·--- -·---····-···-··~l 

In !he ca.~e when 11 -,., l, The.orem 11 .5.4 .<.ay~ that m + a: "'· 0 bas ·~ root with modulus 

< 1 if aud only if I I a 1 i > 0. i.e. if ruid only if a? < 1. (Of CO\IJ'Se, U1is i~ dear wi1hout 
- OJ l ; 
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u.~ i ng the lheorcw.) N<'w, ar < 1 {=? Jai 1 < I. so 

Xe+! + aix, = c, is globally asy1uptC1tkally slabl.: ~ lad <. l (6) 

W:hen n = 2, Theorem II .5.4 says that holh n)o ls of m 1 + 111 m + a1 = 0 have mo<luli < l 
if 2nd only if 

\ l O : ai 111 

1

1 : az I 
Di = -- ---~ -- -- ;;- 0 

az : t 

'a1 l : 0 112 

D,- 1::-··r f·;; (,;) and 

.Evaluating me determinants yields 

}{ere Di > 0 ~-,,:. 1021 < I. If Di > 0, llien 1 + a2 > 0 antl I - · a2 > 0, so that 

D2 > 0 <=> (1 +111 +a2)( l - a1 +az) ;.-- 0 ~--} lad <. 1 +a2 

¢:..::? -(1 + 11,2) < a, < J + a2 {a=} I + a1 + a2 > 0 and l - a1 + 1.12 > 0 

Hcnc.:, if Di > 0 an<l D2 > 0, then 

On the other hand, if these i.nequalitie!. are satisfied, then adding the first two shows !hat 

2 + 2a2 > 0, i.e. l + a1, > 0. But then we see. that (**) implie.s char D1 aad D2 <kfined 
by (•·) are botlt JJO,itive. Thus the condit.ions in(*) are equivalent to the conditions in (**). 

Since I + a 1 + oz > 0 and 1 - a1 + a2 > 0 nre equivalent 10 la,! < I + a~. we. see that 
Theorem 11.4.2 is the particular c.1.&e of Tht<>rrn1 11.5.4 tb3t h11lds wkn n = 2. 

PROBLEMS tOR 

1 • Solve the followinii di ffet"cnoe equation~: 

{a) .r1+, - 3x,~, + 2.r, = 0 

2 . Examine the ~t.lbilily ()f the following diff<:rcnce eguatioos: 

(~) x,~i - ~x, = sin t (.b) x, .1.2 - x,-., - x, = 0 

(c} x ,+2 - f.t.,;.1 + !.i, -:.· c1t! {d} .r,+1 + ~X,+1 - 4.t, ., l - I 

4. f:xiilni,ie when the ~111atio11 m Pmhlem ll.4 .9 is globally asympcotically st11bk, a.<:&umingk > (1 
:,ndh > 0. 
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@ 5. ,", !'1\lCI' by Akcrlof and S11glit1. sntdk:s tl,c. c:quarton 

K,+2 .;- (cf,ia - 2)K,+1 + (I -- q{J) K, ""d 

where the constants u, fj , und" are positive:. Find a condition for both roots of the <:h:\l'3Ctcris:ic 
polynomial to be complM, and fiJld a neee-~iw.ry and s1.1fficieo.t conditi,i11 for stability. 

11.6 Systems of Difference Equations 

EXAMP E l 

A system of first-order differeoce equations in then unknown functions .r1 V) . . .. , Xn ( I ) 

can usually be e~prcssed in Uie normal form:l 

x1(t + 1) = / 1(1. x,(r) . . .. , x.(t)) 

1 =0.J ... . (1) 

xn(t + 1) = J.(r . .r1(t), . . .. x.(t)) 

ff .r1 (0), ... , x. (0) are specified, then x ; (l) ... . , xn(I) are found by sub~tituting r = 0 in 
(1), next x1 (2) •. .. , x.(2) arc found by substituting t = 1, etc. Thus the values of:r1 lt), 
. .. , x~(t) arc uniquely det.:nni.ucd for all t (assuming that /;, ... , fn are defined for all 
values of the variables). ThlL~ the solution of ( I) i~ uniquely deter:mined by the values of 

x 1(0), ... • x,. (O). 
The general solution of (1) is given by n functions 

witl1 the propeny that an arbitrary solu tion (.r1 (t), .. . , Xn (t)) is obtained from (*) by giving 
Ci, ... , Cn appropriate values. 

Of course, there are no general methods that lead to explicit solutions of (l) in "closed" 
form. Only in some special cases can we find closed form solutions. 

Find rbe general solulion of tbe sy~re rn 

(i) x1.; t == {x, + !Y,, I :<: 0, 1, ... 

Solution: Guided by the m,,U1od we u.-;ed in Section 6.5 to solve sysl£'ms of two dif­
ferential equation •. we rry lo derive a sec<1nd-ordcr difference equatiun with x, as the 
only unknown. From (i) we obtain (iii) )', = 3x, .. 1 - ~.x,, which inserted into (ii) yiel<l~ 
(iv) y, •. 1 = 2x,n - {x,. Rcplaci11g r by 1 + J in (i). we get (v) x,+2 = ! xH-·! + h·, -1-1. 
Inserting (iv) into (v), then n:arraug.ing. we grl 

~ In this ;e<:1i,,n, the argument t is usually included in parentho:tcs. wli.:n subst.ripts are ll'-'Cded t,) 

mdicare diJlcreur ,.triable-s hi the system. 
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'Ille characteristi~ equarion fa m2 - tm + i ""0, wirh the roots m1 == 1, mi = l- The 
general solution for x(r) is then easily found. In turn, (iii) is used to find y,. The result is 

x, ~ A+B/])'. 3 · 'I)' y, = ~A .. B(i 

Matrix Formulation of Linear Systems 

If 1he functions !1, ... , f. in(!) are 1:inear, we obtain lhe .. ~ystem 

.:q (t + 1) = au (r)x1 (t) + · · · + ut,,(t)x. (t) + b1 (t) 

x.(l +I)= a.1(t)x1(t) + · · · + a •• (l)x.<t) + b,.(t) 

Suppose we define 

(

x1(r)) 
:x(t) = :_ . 

x.v) 
( 

au (t) 

A(I)= : 

a.1 (I) 

Then (2) is equivalent to the matrix equation 

a1. (1)) 
a.,~(t) ' 

t=0, 1, ... 

(

b1 ~t) )' 
b(t):::: : 

b11(t) 

x(t + 1) = A(r)x(t) + b(I), t = 0. l, ... 

('.?) 

(3) 

The method sngge~ted in Example l allows one, in general, ro derive a linear nth order 
difference equation in one of the unknown~, say x1. When x1 ha~ been found, we can also 
filldX2,. ,, ,Xn, 

If all the coefficients a,j (1) are constants, 4ij(l) = 4ij, then A(t) is a constant matrix A. 
In this case, with constant coefficients, (3) reduces to 

x(! +I)= Ax((J + b(t), I =0, l, ... (4) 

Inserting 1 = 0, l, ... , we get successively x(l) = All(O) + b(O), x(2) = Ax(l) + b(I) = 

A 2 x(O) + Ab(O) + b(l), xi})= A .. ~(2) + b(2) = A 1x(O) + Azb(O) + Ab(t) + b(2), and. 

in general, xii) == A'x(O) + A'- 1b(O) + A'-?.bl 1) + ·, · + b(I .... I), or, equivalently, 

x(r'i ""A'x(O) + LA,-.,b(k - I) (5) 
t~I 

which is obviously an n-dimensional version of (11. 1.8) ( with AO = I as the identity matrix). 
If b(1) = 0 for al( r. then 

11(1 + I)=- Ax(r) <,,:::.> x(r) ""i\1x(O), 1 :;, 0, I, ... (6) 

Stability of Linear Systems 

The linear system ( 4) is said to be globally ai.ymptolically stable if, n,i matter what the initial 
condirions, lhc generdl solur.ioo of the coiresponding homogmeous syste1ux(t + 1) = Ax(t) 

I 

l 
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tend~ to Oas I tcndx tu infinity. Acconling to (6), the homogenC'ous sy~tem ha.s the solution 
x(I) = A'x(O). Hence (4) is glohally asyrnptocieaHy st.1bic if and only if A' rends to Oas 
1 -• oo, for each choice of initial vector x(O) "" x0 . 

Tht' n x n matrix A' is said to convergi: to On><n as r --. oo if and only if each component 
of A' converges to 0. Obviously, A' -+ 0 implie.5 that A' xo ~ 0 fur every x.1 in IR". 
Conversely, if A'Ko -+ 0 for every "° in Rn. tben in particular A'c1 -+ O for each unit 
vector ej = (0, .... l, ... , 0) in R". But A'ei is just the jth column of A', so we infer that 
A' -~ Onxn, Thus we have proved that 

A'Xo-->0 for all xo in fl" = /\1 --.0 
-00 -00 

(7) 

A necessary and sufficient condition for this is: 

A' --. 0 ~ all the eigenvalues of A have moduli !cs.~ than T 
t-+oo 

(8) 

Proof of (8) if A is diagonalizable: According to Example 1.6.2, if J.. 1, ... , 1.. are the 
eigenvalues of A, then A' ==- P diag(J..~, .... ;..~) p-1• Toe conclusion follows. • 

The following result follows immediately: 

THEOREM 11 6 1 -------·------··--·--· 

A necessary and sufficient condition f(l{ system x(I + I) = Ax(t) + b(t) to be 
glohally asymptotically stable is that all the dgcnvalues of the watrix A have 
moduli (strictly) less than L 

·----------------------
Suppose in particular that the vector b(t) is independent of r, b(r).:::: b. According to (5) 
the sohniou of the system is 

x(t) = A'x(O) + (A'-1 + A'' 2 +· .. +A+ l)b (9) 

Suppose that the system is globally asymptotically stable so that all the eigenvalues of A 
have moduli less than L Now, .:xpanding the left-hand side. 

(l+A+A2 +- .. +AH)(l-A)=l-A' (to) 

Since)_ "'- I. cannot tit· an eigenvalm,. of A !.it has modulus e,1ual /0 I), we have I I-A! ; 0, 50 

(l-A) .. 1 cxisls. Multiplying(lO)on thcrightby (l-A)--1 yields I+A+A/+ .. ·+A•-1 ""' 
(I - A')(l - ,'\)-1. As r-,. oc, bt-.eauxe (8} implies lhat A'-+ 0, we get 

I+A+A?.+···+A'··l ·-> (I-A)' 1 as t-> oo (ll} 

Wt' conclude that: 
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1-f!.:..TH;..,.;;.E()""R""E""'M,._t .. 1_6_'.2_.j-"-·---·---·--------·~-·-----·----------···--- , 

l 
! 

i 

If all th .... eigenvalue~ of,\ = (aij)r..a have moduli (strictly) less than !, the 

difference equa£ion 

x(r + l} a: A,i:(t) + b, t = 0. !, ... 

is globally a.~ymptotically ~tab!~. and ev<:ry solution x(t} of the equation con­

vcrgt,s 1.0 the constant vector (I - A)-1b. 
' ' i 
l ,__ ______ , .... ----·-·---,- ....... ---........... -,. ... _. ____ .... .._ ·------··-·------~ 

The following theorem can often be us~d to show that a matrix has only eigenvalues wi[h 
moduli less than I (see e.g. Corollary 6.1.5 in Hom and Johnson (1985)): 

THEOR M 11 6 3 ---------·--··------------------1 
I Let A = (aij) be an arbitrary n x n matri.'l and suppose that f 

I L jaij I < 1 for all i = l, ... , n I Thea all the cigenvalu~;~f A have moduli less than l. I 
L---·--------------·------------------------ I 

PROBLEMS FOR ECTION 1 .. 1 .:.li __ 

~ 1 • Find the solution.~ of the following systems of difterene<.' equations with the givt,n initial condi­
tions (in each ca.<e 1 '" 0, l, ... ): 

(a) 
x,~i = 2y, 

x~=Yo"'l 

Xr..;.L = -··Yr - ~t + 1 

(h) Y1+c=-x,-:.1 +1 
~r+I = -x, - 'f: + 21 

2. Find the general iolutions of the $ystems wh.en a > 0 and b > Q . 

. lr+l = <IY: + ck.' 
(b) . 

y,.1-1 = bx, + dk' 

.<¢"'Yo= 0 

zo '"' l 

3. A s1.udy ofd1e l'S economy hy R. J. Bal.I aod E. So1olensl..--y uses the sys•cm 

y, , ... U.49y, .. 1 + O.li8i,-1 . i, = 0.032y, .. 1 + 0.43(_, 

where y, denotes production and ;, denotes it1vcsui1e-11t at time r. 

(a) Deriv~ " di fT~rence equation of order 2 for y,, and find ils cbaracreristic equation. 

(b) Hnd apprnximate soliu.ions of the charu"tcristic equation. and indicat~ tbe general solution 
of che system. 

11.7 
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Stability of Nonlinear Difference Equations 
Stability of ,Ul equilibrium state for a first-order linear differen<:c equation with con~tant 

coefficients w:i.< con~itlt'red in Section 11.1. In the preser\t st'oetion we take a brief look at 

the nonlinear C3S<::, and ~ho the possibility o.f cycles of order 2. 
Consider an. autonomous fu~t.-ordcr difference equation in one variable 

x,~1 = f(x,) (lJ 

where. f : I --~ T is de.fined 011 an interval J in R. An e11uilibriwn or stationary statt= for 
(I) is a number x•· such that .r• = f(x*), i.e. the const.<111t function x, ;:cs x• is a solution 

of(!). In the language of Chapter 14, x• is a fixed poim off. As in the case of differential 

equations. equilibrium states for ( I) may be stable or unstable. 

An equilibrium state x• for { l) is called locally asymptotically stable if every solution 

that starts close enough to x# converges to x•, i.e. there exi&t.~ an F: > 0 such that if 

lxo - x*I < P., thcn !im,....,,,x, = x•. The equilibrium statex• i-s unstable if a solution that 

starts clo&e to .t' tends to move away from x•, at lea~t to be!,<in with. More precisely, x • 
is unstable if there exists an e > 0 such that for every x with O < Ix - x• j < g one has 

J(x) - x*I ~; !x - x•i. 
The following re.still is analogous ro (5.7.2): 

j Let x• be an equilibrium state- fnr the <litfcrcnce equation (l ), and &uppose that 

L 
f is C 1 in an open imcrval around x•. 

(a) If i/'(.t')I < l, then x• is locally asymptotically stable. 

(b) If lf'(x*)I > 1. then x• is unstable. 

--~----------·---------·-... ·· 

Proof: The mean value theorem ~ays that, for some c between x, :ind x•. one has 

lxr+l -· x'I = lf(x,) - f(x•)! = lf'(ci(x, ··· x·)I 

(a) Since f' is continuous and J' (x··): -~ 1. there. ex.is! an o > 0 and a positive number 

k < I su.chthatlf'(r)I ~~ kforallxi.Ji(x'-e.x•+e). Pmvide.<ltha{i.t,-x'I < f.,wcinfer 

from(*) cbatl.t,+1-x'I ~ k[x,-x*I. By induction 001, itfo.llowsthat ix,-x*I :S k'Jxo .. x"! 
for a.ll t ?- 0. and so r, ~ x • as I ..... oc. 

(b) !-low suppose that 1/'(x*)I > 1. By continuity there exist an F. > 0 and a K > 1 such 

that [f'(x)I > K. forall.t in (x' -1:.x• +.s). By (,~).if.tr E (x" -e,x' +e). then 

IXr+t - x"'. = J(x,) - f(x')1 c'.: K Ix, - .r·i 

Thu$ if x, is clo~e Lo but not equal to r•, the distance between the solution x and the 

equilihrium x• is magnified by a factor K or more at each step as long as .t; reniains in 

(x"-e,x'+e). • 
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NOTE t If J'(xH •: l for all x iu l, theo x' is ac.mally globally asymptotic.ally stable in 

the obvi()us seose. 

An equilibtium star.c x·• of equation (1) corrl'spontls 10 a point (x*, x•) where the graph 

y = f(x) off interse-cts the .stmight line y = x. Figures I and 2 show two po~sible 

configurations around a stable equilibrium. J..11 Fig. l, f' (x') i.~ positive and the sequenc.e 

xa, xi, ... converges monoro.nically tox'. wherea.~ in Fig. '2, /'(x") isnegative and we get. a 

cobwd)-like behaviour v.ith x, altemating between values above and below !he equilibrium 

:s.tate x' == l.im, .... .., x,. 1n both cases the. sequence of points P, ~ (x,, x,+d =• (x,, f (x, )), 
I= 0, I, 2, .... on !he graph off converge,, toward~ the poim (x', x'). 

y 

' ' 
. ' : 

' 
' ····-- -.., ... 1. I xr, xi 

/" 

?::t(x) 

···········--+X 

Figur~ 1 x• stable, f'{x') ,; (0, l}, 

y 

l Po 

' ' I 
I 
I 
I 
I 
I 
I 
I 
I 

. I 

i /), 
/: /j ~o 

I 
I 

: : v= f{.t) 

' ' ' ' 
' I 
I 

··-----.. . x 
x2 x• x3 x; 

Figure 2 x• stable. j'(x') c (-1, 0). 

In Fig. 3. the graph off near the equilibrium is too ste,~p for convergence. Fi~ur(· 4 ~hows 

that an equation of the form (1) may hav.: solutions Ihm exhibit cyclk behaviour, in this 

case a cycle of period 2. This is !he lopic of the next subsection. 

y 

--/1 
__ J ___ L\ , 

I I · I I 
I I : I , 
I ' : I . 
I ; . I : 
I ' ; I : 

: '. : : J ~ f(:t) 
--"------'---· :,: 

X? x~ xu x=: 

Figun, 3 x· 1111,1:d:>ko, 1/'(:r.·)I > l 

y 

t 
! 

~ 
' /// i :\ 

/ : : ) ~ [(X) 

: : 
' ' ' - __ ____J __ ~ X 

SI h 

Figure 4 A cycle of 1>eriorl 2. 
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Cycles of Period 2 

A cycle or periodic solution of(l) with pc1iod 2 is a ~olution x, for whichx,+2 = x, foe all r, 

but x,+: ;i: ):1. In olher words, x1 i- xo, but xo ::s x1 == x4 = · · , and Xt = x3 = x~ =. ...• 

Thus equation ( 1) admit~ a cycle of period 2 if and only if there exist distinct cycle point~ 

t and ~2 such that/(~;)=--' ~2 aud /(I;~) = ~1- If we let F == I" j, it is clear that 1;1 and 
~~ must be fixed points of F, i.e. !hey are equilibria of the difference equation 

Yt+I = F(y,> == f(f(y,)) (2) 

Such a eyde is said to be locally a~ymptotic1tlly stable if every solutiou of ( 1) lhat comes 

close tot I or {2 converges to the cycle. Thus the cycle is locally asymptotically stable if and 

only if ~I is a locally asymptotically stable equilibrium of equation (2), or equivalently, if and 

only if~~ is such an equilibrium. The cycle is unstable if ~1 and~ are unstable equilibria of 

f of. By the chain rule. F'(x) = f'(f (x))j'(x), and so f'(~1) = f'(~2)/'(~t)"" F'(;2). 
Theorem 11.7.l therefore implies the following: 

·---, 
1f equation (1) admits a cycle of period 2. alternating berween the values {1 and;2, I 
then: I 
(a) If IJ'({1)/'(~2)I < I, the cycle is locally asymptotically stable. 

(h) If lf'(~t)/'(~2)1 > l, the cycle is unstable. i 
I 

The Quadratic Case 

(3) 

A linear di1fcrence t'qu.ation x, • 1 = ax, + b with rnnstant coefficient~ ha~ no interesting 

cycles. The simplest nonlinear case is the case of a quadratic polynomial. So kl f(x) :::: 
ax2 + bx + c (with a -i 0) and consider the difformce equation 

(4) 

Toe equilibrium .states of ( 4), if any, arc 1he solutions 

I - b + ,/ (b - I )2 - 4ac 
.ti= 2a ~ 

of the quadratic cqua.ti,in x "" j(x), i.e. a.x1 + (b - l)x + c"" 0. These ~olutions exist 

if and only if (b - 1)2 ~ 4<1c, and !hey a,e distinct if and only if (b - 1)2 ;, 4ac. The 

values of I' at these points are f 1
(:x1.2) ""2a.t1,2 + b "'' l ± j(b- 1,2 __ ~;.It follows 

!hat if the equilibrium point.~ exist and arc dixtinct, then ~1 is always unxtahlc, while x2 is 

locally asymptotically stable if (b- l.i -· 4ac <. 4, and unstable if (b- I )2 ... 4'1c > 4. Uf 
(b ··· ()2 · 4ac = 4, th<-1u2 is "locally asymptotically stable on on~ sitle." and unstable on 
the Nher s.ide.) 
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Equation (4) admit~ a cycle of period 2 if there e:ti&t distiuct numbers~! and ~2 such that 
f(~1) = ~2 and f(hJ ""~;. These numbers must besolutionsofthcequationx"" f(j(:x)J. 
Sin,.e f(f(:x)) is a polynomial of deb'Tet: 4, it seems at first sight' thar we have to &olve 
a rathe.r diffic11lt equation in or.deT to find ~1 and ~2· fo11unately the equation simplifies 

bcca.L1:se any solution of x :::: f(x) is also a solution of x = /(ftx}), so x - f(x) is 
a facwr of the polynomial x - f(I(x)), A simple but tl'Xlious computation shows th:tt 
:x - f(f(x)) = (x - f(x})g(x), whcr,, 

g(.t) = <t2x2 + a(b 7 l)x + ar + h + 1 

The cycle points a.re tbc root& of the equation g{x) :::::; 0, which are 

-(b + 1) ± v' (b - 1)2 - 4ac - 4 
hz=---· 

2 a 

These roots exist and arc distinct if and only if (b - 1)2 > 4ac + 4. Hence, if there is a 
cycle of period 2, lhe equilibrium points x1 and xi also exist, and are both unstable. (See 

also PTOblem 1.) 

Because-/'(~)== '2a~ +b. while~1 + ~ = -(b+ 1)/a and~1~2 = (,1c+b+ I)/a2, a 
simple calculation ~hows that f'((1)f'(~~) = 4ac - (b ·- 1)2 + 5. Then 

II'<stlf't~~)t <: 1 ¢::::::> 4 < (b - 1)1 •·· 4ac < 6 (5) 

It fol.lows that if both inequalities on the right are satisfied, then equation (4) admits a stable 
cycle of period 2. (The firn inequality o.n. the right is precisely the nece~sury and suffkicnt 
condition for a period 2 cycle to exist.) 

1. Show that if f : I ....,. I is continuotLs a.nd the djf!'erence equation x 1+1 =·" f(x,) admit,; a cycle 
,; 1, s2 of period 2, it ~bo has Rt least one equilibrium solution berween ~1 and ?2, (Him: Consicfor 
the function f(x) - x over !he imerval with endpoints;; and~ •. ) 

~ 2. A solutioor• ofthecquaEion.x "' f(x) can be vie.well as anequilibriumsohnit>n of1hediffcrc11,;e 
equati,)n 

r,+1 cc f(x,) 

If this c,Juilibrium is stable and .x0 i.• a sufficiently good approximation to x•, then 1he St'lutio11 
x0 • x1, r:, ... of ( *) ~tarting from x0 will converge. to x •. 

(a) Use !hi< technique to detemtinc the negative 80lution of x = e' -3 r,, at least three decim:t.l 
place~. 

(b) The equation l' = ,,-< -- 3 also ba.s a positive solution. but this is an ut1stable equilibrium of 
x,"-1 ,.,. e'' -· 3. Expl"in how n~scrt.hcle.,s we can find the positive solution hy re.,niting the 
equation and usir.l,! the same Lcdiniquc a.s above. 

3. Toe function fin fig. 4 i; given by f(J.) ·,· -x?. +4x .. 4/5. Find the v:iluesof the cycle points 
s1 and s1, and use (5) w d<:tr.rrninc whether the cycle is s1.1ble. It is clear from the figure that the. 
dH'fel'eoce equation x,_1 = j(x,) has two equilibrium states. Find the.«:: t.quilihria. show th:it 
they are boih unstable. and ve,rify the n~sult in Problem I. 

In sci~nce. wMr is susceptibie to proof 
mus, nor be believed without proof. L 

-rt Dedekind {1887) 

This chapter give~ a brief ir.troduction to discrete rime dynamic optimization probiems. The 
term dynamic is used because the problems involve systems evolving over time. Time is 

here measured by the r,ur,ber of who•e periods (say weeks. quarters. or year;) th~t have passed 
since time 0. So we speak of discrete time. In this case it is natural to s t.udy dynamic ~ystems 

whose development ts governed by difference equations. 
If the hcrizon is finite, such dynamic problems can lle solved, in principle. using classical 

calculus methods. There are, however, ~olution techniques that take advantage of thE' special 

structure of discrete dynamic optimization problems. Section 12. i or. dy11.imic programming 

st1Jdies a standard problem with one state and one connol variable. 
1n the economics literature a dynamic programming ver;icn of the Euler equat;on :n con­

tinuous time control theory is much used. Section 12.2 gives a bri~f description. 
When discussing optirnizatio1) problems in di~crete time, economists oiten prefer rnodeb 

with arc infinite time hori;:on, just as they do in conti nuou~ time. Section 12 .3 tre'iits such 

models. The f•md,1nwntal result is the Bellman equation. 
Wt:en a discrete time dynamic optimization problem has restrict,on~ <>n the terrrinal va,ues 

of the st<1te v,iri3ble, there is a discrete time version of the maximum principle which m.:iy work 
better than dynamic prcgramr.iing. s~ctions 12.4 and 12.5 ~et out the relevant d,scret~ i;me 
maxim!.lm principle. first for .; single state variable. then for many. ln contr ,1st to the continuous 
time maximum principle. the Hamiltonian is not neuiss,1rily maximized at the optimal control. 
Section 1?..5 ,1lso presents a very briPf discussion of infinite horiwn problems in thi5 5ettin9. 

Section 12 .6 offers an introduction to .stochilstic dynamic programming, including the ~:o­
ch.astic Euler equation th,it plays such a prominent. role iu current macroeconom,c th.,ory. The 
concluding Sec;,on 12.7 i$ devoted to the important case of stationary problems with ,in inf,n­

ite horiwn. (Sect.ions 12.6 an<:: 17.. 7 ;m~ the only par:s of the book th;it rely on some know!edge 
of probability theory. 1ho1;9h 011iy at a basic levP.I.) 

··- -----'"·····---"··--·--
' Thcr<: is no idc~I fatglish transl~Hon of 1he Gwnan origirutl: "Wa~ b<iwcisl\ar i~t. sol! in dcr 

Wi~s<:o.<chaft ni<'ht nhne B(,wc.is ~eglauht wcr.dcn.'· 
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12.1 Dynamic Programming 
Consider a sys1cm lhat changes at di~crete times t "". 0, l, .... T. Suppose the state of the 
8ystem at time t is characteriu.d by a teal number .t, . For example, x, might be tbe quamiry 
of gr.iin that is stockpi led al time t . Ass\l.nte thai the initial state xo is historically given, 
and mat from then on the sy~tem evolve.~ through time under the influence of a Se!quencc 
of control,; u1, which can be chos(:u .freely from a given set U, called the cvntrol region. 
For example, 111 might be the quantity of grain rcmove:d from the stock x, at 1iole 1. The 
controls influence tile evolulion of the system through a difference equation 

x,+: = g(t, x1, u,), xo given, ,,, EU (l) 

where g is a give11 function. Thus, we assume that the Sta!£' of the system at time t + I 
depends explicitly on the time t , on llie slate x, in tbc precedin.g pcri.otl t, aod on u,. the 
value chosen for the control at time t. 

Suppow that we choose values for uo, ui •... , ur- 1- Then (I ) gives xi = 8(0, xo. uo) . 
Swccx1 is now determined, so too isx! => g(l, x ,, ui), then next x~ = g(Z, x1, u1). etc. Tn 
this way, (I ) can be used to compute recursively the successive. staJ.es xi ,x1, . .. , xr· in terms 

of the initial state, xo, and the control~. Utj , .. • , ur_ ,. Each choice of (uo, ui, . .. , ur-1) 
gives rise to a sequence (x 1, x1 , ... , .xr ), for iilstance path I in Fig. I. A different choice of 
(u0, u 1, •• • , u1·-i) would give another path, such as path 2 in the figure. Such controls u1 

that depend only on time ate oft¢n called open-loop controls. 

-· _.,. ... ----+--~·---~-· ·~' 
0 2 ·1 

Figure 1 Different evolutions of sy~1eo1 (I) 

Different paths will usu:illy have different utility or value. Assume that there is a function 

J (I , x , u) of three \'ariables such that the utility a.~sociated with a given path is represented 
by lhe S\Ull 

T 

Lf(t, x,,u,) 
t& 

The sum is called the objective functi,,n, and it represents the ,uin of utilitie~ (values) 

o bUJined at e.ich point of time. 

NOTE 1 The o~jo::ctivc funclion i~ solllclim<>s s11eciticd a.~ I:,;.~1 f (t, x,, u, ) + S(xr), 
where S measures Lhe net ~-:UUI! a,sociated wirh the t..:rmirnll pc;;riod. This is a special ca.se 
of (•) in which j (T, .t,. ur) -= S(xr). (Sis o[ten called a ~p valne function.) 
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Supp..-isc that we cltoos.e valueS for uo, u1, • • • , UT •. 1, u-r, :i.11 from lhc s.:t U , a.~ specified 
in (I). The initial state xo is given, and as explained above, (!) gives us xi, ... , xr . Let 
us denote corresponding pai rs (X,}. ...• xr). (u,1 , ...• ur) by ([x,} . fu,l), and call them 

admissible SE-.qnence pairs. For each admissible sequence pai r the objc..:live function b.as 
a definite value. We shall stud}' the following problem: 

Among all .:ulmissibl~ sequence pairs ((x,), fu, \} J;ml one, ({x;l, {11;1), that 

maks the value of tlw ,>bjecri11e function ,is large 11.f possible. 

Such an admis.,,ible sequence pair i , called an optimal pair, and~ corresponding control 
sequenl·e [u~J;=O is called an optimal c,»ntrol. The dis=te time optimization problem can 

be briefly formulated a.~ 

T 

wax Lf(r,x,,,,, ) subj.:ctto x,+L ""g(t.x, , u,). xo given, u, E U 
t=O 

(2) 

Let x, be an individual's wealth at time 1. At each point of rime l, the individual has 
to decide the proportion u, of x, to consume, Je.a,i 11g the remaining proportion I - ,,, 

for savings. Assume that wealth earns interest at tb.c rate p - · 1 > 0. After u,x, has been 
withdrawn for consumption, the. remaining stock of wealth is ( 1-u, }x,. Be.cause of interest, 
this ~ ow, to theamountxfi.1 = p(l - u,)x, at the beginning of period 1 + l. This eqaatioo 
holdsfoH = 0, ... , T - 1, " i rh X') a positive constant. Supp<)se lbat the utility of consuming 
c, = u,x, is U {t , c,). The.n the total utility ovtr perirxi5 r = 0, ...• T i~ I:;;=O U(r, u,x,). 
The problem faci ng the iudividmll is therefore the following: 

r 
max L U(t, u,x,) suhjectto x,+1 = p(l - ,,, )x,, r == 0, . . . , T - l (*) 

,~o 

withxo given and with u, in [O, 1) forr::::: 0, . . . , T. This is astandard dynruuicoptimiw tion 
problem of th~ lype described above. (See Prublems 2, 3, and 8.) I 

The Value Function and its Properties 
Returning to tb.e gcncr.il problem described by (2), suppose that at ti.we I = s the state of 
tbe ~ystem i~ x (any given real number). The best we can do io lhe. remai11ing periods is 
to ctioose u,. u.,, .. 1, ... , ur (and thereby also x.,+ 1, ... , X'f) ti> ma)(inJ.i:te I}.~, f (1. x,, u,) 
with x., = x. We ddine the (opfim~l) Yalue function for 1he problem at times byl 

'f 

J, (.t) = mux Lf(r, x,, u,) 
u~, .... u ri::U l=s 

(3) 

x, = X and X1+1 ;;.: g(I, x,. u,) for I > s, u, le U (4) 

At t.lJe Lercninal timer'-' T, definition (3) imr,lies that Jr(x) = max.._,u f(T, x, u). 
·-····· ·· _ ..... - ·-··-······"" .......... .......... _,, 
z We assume tb,IL the maximum in ('.l) i.s anaio,:d. This is true if, foe ~xamp:r~ the functh)n.s f a, .. 1 

g are rontiouous :Ind U is compact. 
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We n<>w prove an important llrope1ty of the value function. Suppose that a[ time 1 = s 
(s < T) we are in stat.ex.,= .t. What.is the optimal chuke foru,'I lfwechooseu, = u, 
tbeu at time t = s we obtain !he immediate reward f(s. x. 11). and. accor<liog to (4), the ~late 

at t.ime s + 1 will b.i x,+! = g(s, x, u). Using definition (3) again, the. highest obtainabl~ 
value of the t()t.al reward I::;~,H f(t, x,, u,) from times+ I to time 1', &tarting from the 

state x.,+I, is J,+i<x,-1.i) ""la+!(g(.s, x, u)). Hence. the hest choice of cl = u, at times 
must be a value of u that ma:timi7.es the sum 

f(s.x. u) + l,+1 tg!s, x, u)) 

1his leads to the following general result: 

THEOREM 12 1 ~ 1 '<fUNDAMHH AL EQllJ>.TlONS Of\ DYNAMIC P-ROGRAMMING) , 

For: each s = 0. I, .... T - l, T, let J,(x) he Che value function (3) for the 

problem 

T 

tntL,;Lf(1,x,,111) subjectto x,.1=g(t,x,,u,), u,EU 
,~o 

with XQ given. Theo !he seiwence of value functions satistics the equations 

J,(x) = ma.,~ [/(s, x, u} + J,,.i(g(s, x, u))], s = 0, 1, ... , l' - 1 ··~ 
Jr(x) = ~~~ f(T, x, u) 

(5) 

(6) 

(7) 

NOTE 2 If wt> rninimi:r.c raiher than ma.umize the sum in (5), then Theorem lZ.1. l holds 
wirb "ma_~" replaced by ''min" in (3), (6) and(7). Tilis is becall~e minimizing f is equivalent 
to maximizing - J. 

NOTE 3 Let X,(xo) denote the range of all possible values of the state x, that can be 
generated by the difference equation (I) if we ~tart in state xc, and then go thr.ough all 
possible values of 110, ... , 1t,-1. Of course only the values of l;(x) for x ~ X,(xo) are 
relevant. 

Theorem l.2.1.l is the basic tool for solving dynamic optim.izatfon problems. It is used as 
follows: First find the function Jr (x} by using (7). The maximizing value of u depend~ 
(usually) on x, and is denoted by u;.<x). The next step is to use (6) to determine lr-.1(x} 

and the corresponding maximizing control ui-_1(x). Then work backward~ in chis fashion 
to det.em1ine recursively alhbc value function, Ji, (x ) •.... lo(x) and the maximizers u} (.i: ). 

.•. , 110(x). This allows us 1.0 construct the solution of the original optimization problem: 
Since the stale at r = ()is.to, the best choice of uo is U~(xo). After uo(.i:o) i, ft;und, the 

difference equation in (I) dcterutincs the stale al time I as x~ = ,s:(O • .:ro, r,!j(x0)). Then 

uj(_-1:j) is the best choice of u 1. and thi, choice de1.emiine(; ;,:~ by (1). '!'hen again, ui(.t7) is 

the hesl choice of uz, and so on. 
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EXAMf.lE 2 UscTIJeorem 12.J.I Lo solve the problem 

3 

rnaxL(l+x,-u:). x1-t1-,,,.i:,+u,. t=0,1,2, .to..=U, u,E~ 
,~o 
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Solution: Here T = 3, f(t, .t, u) = 1 +x - u\ and g(r, _t, u) = x+ u. Considedir~t(7) 

and now that )J(x) i~ the maximum value of 1 +.x -u2 for u E (-oo. oo). This maximum 

value i, obviously anained for u = 0. Henc.:, in the notation introduced above, 

h(x)= l+x, with uj(x)zzzU 

Fors= 2, tl1efum:tion to be ma.icimizcd in (6) ish2(u) =I+ x -u2 + hlx+u), where(*) 

implies that h(x+u) = J +(x+u). Thus, h2(u) = l +x-u2+ I +(x+u) = 2+2x+u-u2. 
The function h2 i& concave in u, and >i; (u) ""' I - 2u = () for u = t i2, so this is the oplimal 

choice of u. Tbe maximum value of h:;.lU) is h2(1/2) o= 2 + 2x + 1/2- 1/4 = 9i4 + 2x. 
Hence, 

"2(x)=~+2x, withu;(x)=! 

Fors= l, lhe filnctionto bemaximiz.ed in (6) is given by hr(u) = l +x-112+h(x +u) = 
I + x - u2 + 9/4 + 2(x + u) = 13/4 + 3x + 2u - u2

. Be.cause h 1 is concave and 

h~(u) = 2 -211 = 0 for it= 1, the maximum value of h 1(u) i~ !3/4 + 3x +2- I= 
17/4 + 3x, so 

J1(x) = ¥ + '.b;, wilh u1(x) ~ l 

Fiually, for s = 0. the function 10 be maximized is ho(u) "" l. ·+ r --· u2 + J1(x + rJ°l = 
l + x ··- u2 + 17/4 + 3(x + u) =- 21/4 + 4x + 3u - u2 . TIJ.e function ho is con~avc 

and ho(II) = 3 - 2u = 0 for 14 = 3/2, SO the maximum value of ho(u) is ho(3/2) 

21/4+4.c +9/2-9/4"" 15/2+4x. Thus, 

Jo(x) = ·\~ + 4x, with llo(x) = ~ 

In this particular case the opcimal choices of the controls arc. constants, independent of the 

sta!A':.s. Toe corre~ponding optimal values of the state variables arc x 1 = x,1 + uo =- 3 /2, 

r2 = x, + u1 = 3/2 -i- l "'5/2, .x~ ""x1. + u2 = 5/2 + 1/2 = '.l. ~. maximum value of 

!hC' objective function is 15 /2. 

Altemarive solution: In simple ca.~e, like lhi~. a dynamic optimi7,ation prnblcn, can be solved 
quite easily hy ordinary cakul11s methods. By leuing t = 0, I, and 2 in the diflcrencc 

equation x, H = .~, + u,, we get x1 "" xo -i- uo = u 0 • x2 = x 1 + 111 = "O ;- u1, and 

..:~ "'· xz + u2 = uo + u, + uz. Using these results, the objective function becomes the 

following function of uo. ui, uz, and u;: 

I= (I - ul) + (1 + 110 - uf) + l1 + uo + ui ·- ui) + (I ;- un-:... "I+ 112 - ui) 

~, 4 + 3uo - "& + 2ui - ui + 112 - uf - u~ 
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The prohlen1 has been redU('ed to that of waxi.m.iz.ing 1 v.'ith respect 10 1hc control variables 
uo. ui, ui, and ctJ. We see tbat l is a sum of concave fu.uctions and sois concave. Hence, a 
stationary point wil I maximize /. The first-order tle.rivativei< of l are 

Equating these partial derivatives 10 zero ~ields the unique stationary point (uu, u 1 , u2• u3) "" 

(~. 1, -}. 0). This gives the same solution as the one obtained hy using Theorem 12.1.1. I 

In principle, all detenninistic finite horizon dynamic problems can be solved in this altern­
ative way using ordinary calculus. But lhe method becomes very un1.11ieldy if !he. horiwn T 
is large, or if there i~ a stocha.~tic optimization problem of the kind considered iti Sections 
1 2.6-12. 7 below. 

In the next example the lenninal time is an arbitrarily given natunil nu!llber and the optimal 
control turns out to depend on the state of lhe system. 

Solve the following problem: 

1'-1 

max(L -iu,x, + lnxr ). x,+1 = x,(l + u,x,), xu positive constant, u, ~ 0 (*) 
,=0 

Solution: Becausexo > 0 and u, ::: 0, we have.~,> 0 for all 1. Now f(T, x, u) = lnx is 
independent of u, so Jr(x) = ln.x, and any ur is optimal. 

Neu, putting s = T - 1 in (6) yields 

h.-1(.x) = ~1[-iux + J.i-(x(l + ux))] = '!1:t[-~ux + lnx + ln() + ux)] 

The maximum of the cot1cave function h(u) = -}ux + ln x + In( l + ux) is at lhc point 
where its derivative is 0. This gives h'(u) = -lx + x/(l + ux) = 0, or (since x ;. O). 
u = l/2x. Then Ml/2.x) = ln-t - l/3 + ln(3/2). Hence, 

lr-1(x) = h(l/2x) = lnx + C, with C = - J /3 + ln(3/2), and uj-_1(x) = l/2x 

The next step is to use (6) for s = T - 2: 

h-2(.x) ~ max[-iux + h-1(x(I +ux.JJ] = m.u.[.-lux +lnx +ln(l +ux)+C] 
t1~0 · Jlf•O .J 

Again u = u1._.z(x) = l/2x gives the. maximum because rhc ftrst-order condition is the 
same, and we get 

Jr .2(X) = 111.t + ZC, with C ,- - · 1/3 + ln(]/2), aL1d Uy_I(x) ~ l/2x 
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lbis pattern .::ontinut,s and so, for k :-.: 0, 1, ... , T we get 

Jr_~(.x) =I.ox+ kC, with C "' -1/3 +ln(3/2), a.ud u1--~(x) ,= l/2x 

So far we have been woriing backwanls from rime 1' to time 0. Puning t = [ - k for each 
k, we find that J,(x) = lnx + (T -1)C and u2: l/2x fort= 0, 1,.,., T. 

Finally, inserting u: = I /2x,* ill the difference equation gives .x;H .,.~ O)xi". So xt = 

m' Xo, with u, = HJ' /2xo as oprimal con1rol values. I 

NOTE 4 Theorem 12. l. l also holds if the control region is not a fued set U, but instead a set 
U(r, x) that depends on (r, x). Then the ma)(imization in (2), (3), and (5) is carried out for u, 
in U(t,x,). In(6)and(7),themaximizationiscarricdoutforu E U(s,x)andu e U(T,x), 

respectively. Frequently, the set U (t, x) is deteunined by one or more inequalities of the 
form h(t. x, u) ::;: 0, for some function h that is continuous in (x, u). If U(r, x) is empty, 
then hy convention, the maximum over U (t, x) is se1 equal to -cc. 

NOTE 5 In the. above fonnuhuion, the state x and the control u may well be ~-cctors, in 
say ~· and o;!,', respectively. Then g must be a vector function as well, and the difference 
equation is a system of difference equation~, one for each component of x. No changes arc 
then needed in Theorem 12. l.1 (except that we would use boldface letters for .t, u, and g). 

EXAMPLE 4 Let x, denote the value of an investor's assets at timt• t, and let u, be consumption. 
Suppose that assets at time t + l are proportional to ~avings x, - i,, at t, with a factor of 
proportionality depending on 1, i.e. 

_t,+1 = a1(x1 - u, ), a, given positive numbers 

Assume that the initial asset~. xo, are positive. 11te utility associate.d with a level of con­
sumption u during one period is supposed to be u 1 ··y, while lht) utility of the assets at time · 
Tis Ax;.-¥. Herc A is a positive constant and y E (0. l.). The investor wamsto maximize 
the discounted value of the sum of utility from comumptiou and lenninal assets. Define 
{3 = I/ ( 1 + r ), where r is the rate of discount. Assume that both savings and consumption 
must be positive each period. so O < u, < x,. The investor's problem is thus: 

T-1 

max[.I::.B'u:··y +IF A.t;.-•J. x1+1 =a.,(x, - u,j, 111 E (O,x,) 
1=0 

(i) 

Solution: We apply Theorem 12.l.l, as amended by Nole 4, with the control region U(t, x) 
given hy the open interval (0, x). So f(t, x, 11) = /3'11 1-Y for I= 0, l. .... T --1. whereas 
f(T. x, u) = 13T Ax•-r. Since thfa function docs nor dept)nd on u, (7) yielrls 

h·(x) = max ,8,.Ax 1· r = p7 Ax 1-r 
uE((),x) 

(ii) 

I 
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aud any u·r in (0, x) is optimal. Moreover, s'(Juation (6) yields 

J,(x) ~ max [1ru 1··, +J.,.,-1(a,(x -11))] 
•r-(0.,) 

In paniculai:. (ii) gives Jr(ar-1 (.x - u)) = f:17 Aa/-=!i (x - u) 1-Y, so 

(iii} 

(iv) 

Let h(u) = u1-Y + cY(.x - u)1--r denott: the ma.wnand, as a function of u in (O,x), 
where er = ,8Aat.~- Then h'(u) = (t - y)u-Y - (1 - y)c'(x - u)-, = 0 when. 
u-r = cY (x - u)-Y and sou= (x - u)fc, implying that 

ur-1 = u = x/w, 
1-y 1/y 1/y 

where w = 1 + c =- 1 + (.f!Aar ... 1) = CT-I (v) 

for a suitably deline<l constant Cr-t, Because y E (0, l) and er > 0. the function Ji is 
easily seen to be concave over (O,.x). So the value of u given in (v) does maximize h(u). 

Then, because ,8Aa!-::.'; = er = (w - l)Y, choo.~ing the value x/w of u-r-1 gives 

h(x/w) =x1-Y11;Y-\ + (w- J)Y[x(l- w"1)]:-y 

= x 1-, [,oy-l + (w - l)Y (w ·- 1)1-l' /w 1-Y) = x 1··v wY = .:t 1-y Cr--1 

Hence, by (iv), 

(vi) 

Notice that lr-1(.x) has the same form as lrl.x). Next, suhstitute s ""T -2 in (iii) to get: 

Comparing this with (iv), from (v) we. see. that the ma:i:imum value is attained for 

h l .1/r (.ic t-r)l/y 
W CIC T-! == l + ~· T-IOT-2 

and that lr-2<:x) == 13T-2Cr-2x 1-r. 
Wro can obviously go backward& repeatedly in this w:iy anal, for every t, obtain 

11(.t)"" ,8'C,x1-r (Vii) 

From (ii), Cr = A, while C, for t < T is determined by backward rt'.cursion using the 
first-<rrd.or di(forencl:l equation 

Ctir ... l + (f!(' l-,)1/, _ l -t· (" 1-,)lircl/y 
i .. _ .. :+1a, - ,,at ,-1-1 (viii) 

that is linear in c,1 fy. The optimal control i~ 

u~(x}"" x/C/1'. r •:. r (ix) 
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We find the optimal path by sucxe.,sively in.,t•rting Uo· ui . ... Ull'O the difference equation 

(i) for :x1. 
Wi:. ~Ill obrain an <!Xplidt solution in the special.case when a,,,,. a for all t. Then (viii} 

reduces to 
c11.-l'. _ .!..citt ... _.!_ 

r l-1 W I (t) 
where w::: (pa 1-r)'!r (~) 

This is a first-order linear difference equation with constant coefficients. U~ing Cr "" A, 
and solving the equation for C; ir, we obtain 

I"" T, T -1, ... , 0 

NOTE 6 Controls 11,(.:t} that depend on the slate x of the system are called closed-loop £onrrols. 
whereas r.:ontrol.s u, that only depend on time arc called open-loop controls. 

Except in rare special cases, the controls u;, ... , ui that yield lhe maximum valu~ J,(x) in 
(3) evidently do depend on x. In particular the finit control u; does so, i.e. u; = u;(x). So. de­
tennining the functions J, (.x} defined in (3) requires finding optimal closed-loop controls u; (x ), 
s .. 0, 1, ... , T. 

Given tbe,iuitial swe x0 and any sequeuce of closed-loop concrols u;(x), the evolution of !he 
stale x1 is uniquely de[enni11ed by the. difference t>quation 

Xr+1 = g(I, x,, u,(.xt)). .to given 

Let us denote by 1,, "' u,(-<,) the coutrol values (numbers) g,:,nera1e1i by this (>311icular sequ<-'Dce of 
states \x, J. Next insert these numbers u, into the difference equation: 

X:+I = g(t, x,, Ur), .to given 

This obviously ha.s exactly the same solution as equation ( *). 
Hc11cc, we get the sam,; result wbcthcr we insert the closetl-loc.-.p controls "~ (x) oc the t>quivalent 

open-loop control~ ii.,. In fact. once we have used the closed-loop .::on1rols 10 calC11late the equivalent 
open-loop contro.llS, it would s~.em that we can forget about the former. It may ntvertheless re useful 
not 1(1 forgcc entirely the form oi each closed-loop control. For suppose that at some time r, there 
is an uncxpec1c:d disturbanct> to th,· state x; obC3.ined from the difference cqWLtion, which bas the 
effect of changing the srate 10 £,. Theo u;(.i,) scill gives the. optim:11 oontwl 10 he used at that time. 
provided we assume thut no further distu.tb:inces will occur. · 

PROBlEMS FOil 5-EC toN 12 1 

~ 1. (a} Use Theorem 12. LI ro solve tl1e problem 

2 

m:,x I]1 - (xl + 211:)], .<,.,i = x, - «,. 1 , ... O, l 
J•·G 

whereX() = Sand u, "R (CompuK,J,(,)itn<lu_;(x) for., ,.-.2, l,0.) 

(b} Us~ thcdjfferenceequation in(*) to compucex1 and x2 in terms t>f u1 aodu1 {witl1.ro "" 5), 
,md lio<l I.he sum in(*) as a function S of u0 • u 1• and 1<2 . Next m,uimi1" (hi~ fancrion as 
in B»u:tiplc 2. 
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~ ( l 'J' ,-·-max L -·- , , u,.t,, 
a.:li!'J.J} ,....o l + r 

x,.,.1 "' 1'0 - u, )x,, t ~,· 0, .. . , 1' - I, xo .,. 0 

whe.rer i~ tl.crote ofdiscount . Compute J ,1x) and u; 1,x) for s ,, T, 1' - l , T-·2. 

3. (a) Replace 1he utility furtclion in Probk.m 2 by Ef~1(1 + rr'u,x,. Compute lr(x). u j. (x), 
Jr _,1(,t), and nj-__ 

1
(x) for X ::'. 0. 

\b ) Pro, ·e that. thcre e.:tist co11stao1s P, (depe,ldiog on p and r ) st1ch tb.ll J, t.x ) ., P,,x for 
s "" 0. \, . .. , T. Find lo(x) •ud optim3l value~ t>f uo, " ' · ... , "1'· 

® 4. Consi&r the problem 

T 

max L (3 - u,)x?, x,.,., =11,x,, t ,~o .... , T ·· l, .Yo isgivc{I 
•• ~ro.11 '"'° 

(a) Compute 1be value functions Jr\x j, h -1 (Y), Jr .. 1 ~ ). and 1be Q.'(tC..<ponding control fuflC-

1ions, .. ;.(x), u;._ ,(x), ijnt! 11;_2(x). 

(b) find an expression for J7 _0 (x) torn = 0, l , . ..• T , and cbe corresponding opl imaicouirols . 

5. Solve-the problem 

rnax, [f (· ju,)+ ln x1 ], x,_, ,., -<,(I+ u,), t '" 0 , ... , 'I' - l, xn > 0 given 
Cirl:"l0.,J , -.{I 

~ 6. (a) Wri1e down !he fundamental equation$ fut 1h~ proble11\ 

r 
mu L (t, - .. :). .'<,+J = 2(.r, + u,i, 1 = 0, l. . . . , T - I, -'(• = 0 
Nr€M' f....0 

(bl Prove thal rhe value funclio11 for Lh('; problem is i;iven by . 
h ... (x) == (2 . .. , - l)x + L(2f :... n 2, n '''" o, J, ... . T 

, .• o 

Detcrlllinc the optimal ~ontrols u, ,., u; aJ1d rhc ma:ti mum value V = J"{O). 

@ 7. (a) Consider the pn)blcm 

x,.,1 =2x, - u, . 1 = 0, l .... , J'-1. x~ gi~n 

whcri: rr and y are positivc ,·onst.mts. Compute .Tr(-~), Jr_,(x ), nnd lr-2(xj. 

(t>', Prove that .TJ.<) c :m ~ wriuen in ih,: form J,(x} : , ... u,,,-,,. and tind adilforcnce equation 

fixac. 

SF.CT !ON 12.2 J ril l f.Ulf.R FQUA,;ON 

8 . Cocsidr,t !he following speci:tl case of Prook,m 2, w~rc r = 0: 

1' 

ntaX L .. /,;;·;:;, 
f.lt ti(O, l ) i=<l 

X«·l = p ( I - u,)x,. t = 0, ... , T - l , ...-~ > O 
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(a) Compute J,,.<x );-)r_.1 (x), lr- i(x) . (HirJ: Pro\·e that max [ v'i, + A./i -=-i,] = ./i"+Ai 
.i:t.:fiUl 

wilh u = J/(1 + A2) .) 

lb) Show lb.It the opdm:,[ cootrol func1ioo is u.,(x) ""' 1 /(I + p + p 2 .;. ... + p r-, ), attd find 
th.: ~"Orn".$ponding J, (x), s ::., 1. 2 ... . , T. 

12.2 The Euler Equation 
The e.::ouomics literature sometimes coosider., the following fornmlatinn of lhe b~sic dy­
oa.mic programming problem without an eJtplicit control variable (e.g. Stokey et al. (1989)) 

T 

mux I::·F (l, x,, x,+i), xo given am! x 1. x2 , . ... xr , xr+i vai;• freely in R 
/:..-0 

(1) 

Here the instantan~ous reward F(t , .t:1 , Xs+ l ) al lime t depend~ out and on the values of the 
state variabk at adjacent ti=s r aod r + I. 

If we. define u, = x, ... 1. then ( I) becomes a standard dynamic programming problem 
with U == IR. On the other baod, the dynamic optimiz.ation problem ( 12.1 .2) can usually be 
formu!ntcd a.~ a problem of the type ( I). Suppose, in particular, that for every c hoice of :c, 
andx,+1 the equation x,.t-1 = ,~ (J . x, . u1} has a unique Rolution u, in U. which we denote by 
u, = l/l(T,x1,x,+1)- Now define the function 1-' by F{t , x,,x,+zl::: j'(l , x ,,lf)(t, x,, x ,1.1)) 

for, < 1' , and F(T,xr,xr+,) = ma~ucu f(T, xr ,u) . Then problem (12.1.2) becomes 
precisely the same a~ problem ( 1). 

1f them is more than one value of u in U such that 11(r, x, , u) = Xs+!· k.t u, be a value 
of" that maximizes f(t, x,, 11), i.e. choo~e the best u that leads from x, to x1+: - Then, for 
each t = 0, I., .. . , 1', we have 

F(t , x,. x,;-1 ) = m~I f(r.x,, u): x,+1 = g(1,x,, u), u E U I (2) 

Let (x0, . .. , xi-+l) be an optimal solution of problem ( I). Then (xi , .. . , x 1., 1) is a max­

imum point for the objective fuoction S(x:, ... , xr- 1) = r;;;,6 F(t, x,, .r,+1), a.od by the 
usual first -order condition we must have s:(x j •. . . , Xr+i) :::: 0 for r :o l , . ... T -I· t. 
(Remember thatx0 = x~ i~ given.) Hence. (xj, . .. , x.;._,. 1) must ~atisfy lhc Euier e,1uation 

F;(t , .,,, x,+1) + F{(t -- I , x, - 1, x,) = 0, t = 1, .. . , T 
(J ) 

F_{(t- J, Xs - : , x,) =0, I ~ T -;,-1 

!,If xr.H docs not appear n plicitl.y in F (T, xr, .<r +1.), the last eqnati<>n becomes trivfal.) 
11lis is a stto11d-or<ler di fferen.:c cquatiou analogous to th" Eukr equation in the classical 

cakulu.~ of va1i;t.til)1JS. (See Scl~ti,in 8 . .2.) Note c;i1,:JuJly that tht' partial derivatives in (3) 
~re evalu,mxl at difi'crcot triple.~. 



l34 CHAPTER l }. I D!S C ~Er~ l IM E O?TiM 12 A ;JON 

· exAMPLf 1 Consider the prnblcm 

r-1 
max { L In r, + In x7·} subject 10 x,.H =: a(x, - c,) for r :-:, 0, ... , T - I 

1:.f: 

Here x, is wealth at time t, with Xfi fixed. An amoum c, i-s subtracted for consumption, and 

the remaining amount x, - c, i.~ depo.~i,cd in an account and increases to Xi;-1 '"" Cl (x, - c,) 

al time r -;- l., where a > l. Formulate the problem without explkil cono·ol variable,, and 

use the Euler equ3tion to solve it. 

Solvtion: Define Jj 
variables is 

l/<r. Because c, = x, - fl.t,i-h the formulation without control 

T-1 

max \L ln(x1 - ,Bx,-a-1) + lnxr l 
t=O 

For r : T, the Euler equation is F~(1·,-tT,.xr-,.1) + F;(T - l,Xr-1,.xr) ""' 0, with 

F(T,x1·,xr+1) =lnxTand F(T- l,xr-1,xr)=ln(xr-1-/Jxr).1l1erefon~.!hcEulcr 
equation reduces 10 1/xr - /3/(xr-1 - /hr)= 0, so xr .. 1 = 2i3x1·-

For r = 1. 2 .... , T --- l, the Euler equation gives 

__ 1 _ - _fJ_· ·--- = 0 
x, - {3x,+1 x,-1 - f',x, 

Solving this for .t,-t gives the (reverse) second-order differen.:e equation x,-1 = 2{Jx, -

,B2x, . .,i. In particular, fort = T - 2 this gives xr-2 = 2/Jxr .1. - {32x1· = 4/P. xr - {31xr =---= 

3,82 xr. More generally, given xr and Xr-1 = 2fh1·. we can show by backward induction 

t.harx, = (T + l-1}{JT-: XT. This implies thatxo = ('f + 1)/.lr xr, so !T = Xo/3-1'/(T + I). 

We conclude 1ha1 lhe optimal solution of the problem is 

We sec that optimal consumption is steadily decreasing as r i..11..:reases. 

NOTE 1 In Exampk 1 ~ome might pnofor co equate lhe panial derivatives of the max.imand 

in ("') to O direc.1\y, rather th.m introducing the. !'unction F. 1n particufor, equating the partial 

derivative w.rt. xr to O yields -P/(xr-1 - {Jx1·) + 1 /xr = 0 again: equating each partial 

derivativcw.r.u,to0yidds-f,l/(x,_1-/jx1}+l/(x,-f!x,+1) ,..,Qfort = 1,2, .... T-1; 

etc. 

NOTE 2 Herc is a general solution procedure for pmblcto ( l ). similar to that u.,cd in Sec­

tion 12. 1. First, f9r1 = T and for each li.m:lxr, findxr.1-J (x,) tomaxirni,c F(T, XT, Xt+1); 

the associated {irst-ordcr condition is 1-j(T. xr, Xri-1) "" 0, the appropriatt· version of 

(3). Nex,, .tr.;., .:'-C x1-+:(xr) is inserted inre> F(t,x.,. x,,.c) + F(t + I, x,-1-1- x,-a-2} for 

r =· T •· 1, and thi& ex~lression is mwtinlizc-<i w.r.t. :xr, yiddini,t -~i-(xr-d, using the 

fir.;1.-nrder condition (3) for 1 = T - l. Then xr ""x.;.(x-r---1 '> is inserted into the expression 
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F(t. x,, X:+t) + Ftr + l, .t, + L, x,+·:) for r "' T - 2, an<l this expre.~sion is maximized w.r.t. 
.cr--r, yielding xi-.-t (xr-1), using (3) at timer = T - 2. We .:ontinue to work backwards 
in this manner fort = T. T - l, .... 2, l. until al the last step we co11snuc1 the fum:tion 

xt(xo). Sinc.c x0 is given, we can work forward again lo dctern1int· first Xt "" xf (.tr.), then 

x
2 

;:;-- x2(x.), and so on. Bo the example above. we IU'ed :lnothcr approach.) 

PROBlEMS FOR 

1. (a) Transform Problem L2.l.l tothefonn (1). 

{t,) Derive the correspondiug Euler equation, and find it!. solnth)n. Compare with tne answer 

to Problem 12.1.1. 

2. (a) Transform the problem in Bx ample 12. l.3 to tht, fo,:m (!}. 

(b} Derive the corresponding Euler equation. and find its solution. Compare with the answer 

inE.~mple 12.1.3. 

12.3 Infinite Horizon 
Economists often study dynamic optimization problems over an infinite horizon. Tb.is avoids 

specifying what happens after a finite horizon is reached. It also avoids havi11g the horiz.nn 

as an extra e~ogenou~ variable 1hat features in the solution. This section considers how 

dynamic prograrruning metl!ods can be used to study the following infinite horizon ver~ion 

of the prubkm set out i..11 (l 2.1..2): 

~ 

max L {J' f(x,, u,). 
r=O 

Herc J a.nd g are given functions of two variables, there i, a constam discount factor 

13 E (0, 1), and .to is a given number in IR. Having f3 E (0, !) is essential for the subsequent 

analysis of. the problem in this s..:ction. Note that, apart from replacing me horizon 1' by oo 

as the upperlimit of \h,:; sum, the 1wo functions f (t, x,, 1,1) and g(I, Xr, u,) in (12.1.2) have 

been replaced by Jj' f(x,, 111) and 11(.t,, u,) rc::spcctively. Becau~e neither the new function 

f nor 8 depend, c.,:plicitly on I, problem (I) is called autonomous or stationary. 
The sequence pair ( {x,}, {u,}) is called admi.ssihle provided that each control satisfites 

v., E U, the initial slate xo hast.he given value, and 1he difference equation in (I) i~ satisfied 

for all t "" 0, L 2, .... 
For siJTiplicity, we begin by assuming that f satisfies the boundedness condition 

Mi ::: f(x, u)::: M2 for all (x. u) with u GU (:!) 

where M, and l't12 ,m· given nuruner~. Bccau~eO < /J < l, the sum in (1) will then always 

converge. 
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HtEOREM 

For any given ~tal'ting ti.we s with s ~ 0, 1. 2, ... ~nd any givc,n state x at that lime, 
take any ,·ontrol sr~1uence rr, "'" (u,, u.,~-i . ... ), where u, E: U for r "'s, s + I, .... The 
succe~sive states generarcd hy this control sequence arc found by solving x,~.1 = g(x,, u,), 

wirh x, = x. With I.bis notation. the discounted sum of rhc infinite utility (or benefit.) 

s,:quo,nce that is obtained from applying the conltol sequence 1r, ~tarting from state x at 
times is 

"" . "~ f3'f ; s \l,(x,n,)= L (x,,11,)=fi·V (x,rr.,) 

where 

V'(x, rr,) = Lt!'-• f(x,, u,) (3) 
/::...J 

The difference bcrwcen V, and V' is that in V, all bcndics from ti.mes on are discoumed 

back to the fixed initial time O. whereas in V·' !hey are discounte.d back to the variable 
starting times. Now le.t 

J.,(x) =max V,(x, :t,) = fi'J'(x), whert) J'(x) ""max l''(.r,ir.,) (4) 
~ ~ 

and where the ma.itima are taken over all sequences rr., = (u,. it,-;-1, ••• ) with u,-.k EU_! 

Thus, J.,(x) is the maximum rotal discounted utility (OT benefit) that can be obtained over 

all the perioli5 from r = s to oc, given that the .~ysiem starts in .state x at time l = s. We 
call J,(x) the (optimal) "alue function for problem (l). 

We next claim that the function J' (x) satisfies the import.'lllf property 

· 1'\x) '"'J'(x) (5) 

Intuitively, this equality is obvious. Because the problem is autonomous· and wc start in 

the same state x, the future looks exactly the same at either time O or ti.we s. So, finding 

either J'(x) == m,'lX.,, V'(x, ;r,) or J 0 (x) :.::c max"" V0 (x. Jru) requires solving essentially 
the same optimization problem, which therefore gives the sanll"- maximum value, in each 

case. !\ more precise argument for (5) is given iu Note 3 bdow. 
Equations ( 4) and (5) together imply that 

J,(x) = /J"' J°(x), s "-' 0. l,... (6) 

Define 

J(x) = Jo(x) = J 0 (.t) (7) 

From (6) it follows that if we know Joi))"" J(x), then we know J,(x) for alls. The main 
r~ult in thi:; section is the following: 

The value fonctiun J (x) = lo(x) in (7) for problem (I) satisfies the equation 

(8) 

3 The e.ti~1,,nce of 1his maximum is discuss..:<l laru in Note 4. 
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A rough argun,ent for (8) rC'scmbles the:: argument for 'l11eorem 12. l. l: Suppose we scart in 
state x at. time t =· 0. If we choose the conrrol u, the immediate reward is f,0 f(x. u) = 

f(x, rt), and at ti.me 1 ,,. J we mQve to state X! "'"_11(x. u). Choo.sing an optimal co1i­
trol S('qurn<:e from r "" 1 on gives a total reward over all subsequent periods that equals 

J 1 (g(x. u)) ='-' f.lJ (g(x,.-u)). Hence, the best choice of u :it t ""· 0 is one that 111a.ic:imizes the 
sun, f (x., u) + /3.l(}t.(x, u)). The maximum of !his sum is therefore .I (x). 

Wt: call (R) a "functional equation" because the unknown is the fu11ction J (x) that appears 
un both sides. Under the bo111uledness r.011ditio11 (2), together wi1h the assumptions rhn.1 rhe 

maxim111n in (8) is auaincd and thac O < fJ < I, equarinn (8) always has O•tl' a11d 011(y one 
bounded solution .i (t" ), which must therefore be the optimal valut1 ftmction for the problem. 

'{'he value u(x) of the r:ontrol u E (} thar maximizes the right-hand side o/(8) is the opcimal 
conrrvt, which is therefore indepe11den1 of l. 

Jn general it is difficult to use equation (8) to find J (x). The reason is that maximizing 

the right-band side of (8) requires the tim,;tion J (x) lO be known beforehand. 

F XA M Plt 1 Considenhe infinite horizon at1al.og.ue of problem (i) in Example 12.1.4 in the case when 
a, = a for all t. independent of 1. We also introduce a new conttol v ddined by u = 1,x. 
1bus, 1> is the proportion of we<1lth x thar is spent in the current period. 

The former con~ti:-.,int II E ( 0, x) is then replaced by v E (0, I). So the problem becoIDes 

"" 
m:u: Lf3'(v,xr)1-Y. x,+1 = 11(1- v,h,, r = 0, I,.... v, E (0, l) (i) 

r·=<i 

whe.re a and xo are positive constant~, ,8 E (0, I), y E (0. J). and f!,a 1-, < I. Because the 
horizou is iulinite, we may think of x, as !he assets of some institution like a university or a 
government that suffc1, from "irrunon.ality illusion" and so regards it~df a.~ timeless. 

In the notation of problem(!), we have f(x. 11).:..: (vx,1-y and g(x, v) = a(l - 11)x. 
Equation (8) therefore yields 

J(x)-= wax [<v-~)l-r + fiJ(,i(l - v)x)] 
l:(:.(0,r) 

(ii) 

In the clo,ely related problem in Example 12.1 -4, the value function was proportional to 

x 1
-,_ A reasonable guess in the prese11t case is that J(x) = kx 1-, for some positive 

constant k. We try lhi, a., a solution. Then, afte.r cancelling the factoT x l-y, (ii) reduces to 

(iii) 

Put ,p(v) = u:--y + ,6ka 1···Y(J - v) 1-Y, dcfinc.d on the interval [0, IJ. Note lha11p(1>) i, tbt' 

sum of two functions that arc concave.:: in i;. A hel~lful rrick is to define the new const.arll 
/J > O so r.h.it {Ja 1-v = pY, and therefore \O(V) == v1-, + kpY(J - v)1·-y. The first-order 
condition for ma.-..imi:t.ing ,pis theu 

\O'(v) = (1 •• y)r!-y -(! -- y)kp'(l - i;) Y = 0 

implying that. v-Y = k,;" (I - v} ··Y. Raising each side to the power -1/y <1JJd then s,)!ving 
for v. we see thal lhe. ma:t1mum of If) is atti\UIL'.d at 
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t· 
1 

where P"''{/'Ja'···Y)1!Y 
·""i+pkl/y' 

(iv) 

Then equation (iii) implies that k sati sties the ~quation 

] pl-yk(l-;c)j)' I,,. V 

k- ------ +kpY _______ - (1 +pk")· 
-- (I+ pklh)l-y (I+ pkf/,)1-y -

Raise each ~ide to the power 1/y, and solve for k11r m obtain k1IY "" 1/(1 - p), or 
k = (1 - p)-r. fo~erting this into (iv) gives v "" l - p, sop is the constant fraction of 
current assets that arc saved in each period. Because J(x) = kx 1-Y, we h:ive 

Note that p increases with lhe discount facto( t and with the return a to saving, as an 

economist would expect. 
In this example the boundedness assumption (2) is no1 valid without a simple trans­

fonnation. Note that a1 xo is the maximum wealth the consumc:r could have accumulated 
by time t by spending nothing, i.e. if v, = 0 for s = 0. I. _ .. , r - l. Now define the mod­

ified stare variable y, = x,! (xua'), which is the proportion of this maximum wealth that 
remains. Obvi,,usly Yo = l, and y1 satisfies the di ff ere.nee equation y, 1-1 = (1 - v,)y,. so 

I ~ YJ ::: Y2 :::. · .. Yr ::: Yt+l ,::: · · · ::=. 0. The new objective funclion is I:;':::,,J'(xou, y,)1-Y 

where S = {Ja l-y and so O < S < 1. The transformed Bellman equalion is 

}(y) :o:: max [(xov:v)1-Y + ~}((l- i;)y)] 
··~(0.1) · 

This is easily seeo to have J (y) = J (axoy) = (l - p)-l' (nx0 y) 1-r as a soiution, with the 

same optimal cona:ol v = I - p. 

The 1ransfonncd problem satisfies the restricted boundedness condition in Note 2 be­
low because the modified state y, remains within the interval {O, l.J for all r, and so 
0 .::: (xoy, v, )1-" ~ x~ -., for all t and for all v, in 10, 11. Therefore the control ti defined in 
(iv) really is optimal and the u:msformed problem is solved. So is the original problem, of 
course. I 

NOTE 1 A~ pointed out in NotC'. 12.1.5, the &ame theory applies without change when x,, 
,.,, and g arc vector functions. Moreovt:r, U may depend on the state, U :,-,c U(x) (but not 

explicitly on time). 

NOTE 2 Tc suffices t,) a.~sume that cotidilion (21 h(llds for all., in X(.rij) , .. , U~.:.i X,(xo'i. where 
X, (xo.) i$ ddir.ed in Note 12 .1.3. The functi\lr. J (x l need only he defined on X.(x0 ). 

NOTE 3 To show (5) more fom1ally, let x b~. any fixed state. 
First. eon,id~.r any policy scqLJence rr0 .-., (u,.u, ... 1 •.•• j that stru-t.~ at limes. Now 

define I.he con-esponding sequenc;, n-; =· (u3, 1,?, ... ) shifted ea:rliel' .,o I.hat it start.~ a1 time 

0 instead of 2.nin,·.~ s. Tirus, "(,"" u,, u'/ .,,- u,+1, and gene.rally"~ = u,.,., for r "·'· 0. L .... 
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Then, given the same starting state x, if x, and x~ denote the st.at.t,s rea.:hed at time I by 

following ;r, and rr~ slllrt:iug at times s and O tespe.:·tiveJy, a momeJJt's reflection kads 

to the conclusion that x~ = x,+r am! so f(x?, u?) :;;: f(xs+,, 11.,+r) fort ""0, l, .... ft 
follows from (3) that v0 (.t, ,r~) = V'(x, rr,). But every shifted admissibk policy rrf i~ 
also admissible at time 4', so we can use ( 4) to obtain 

fl(x) = max V'(x, rro) :,:: ma., V0(.t, .n.,O),..., max V' (x, rr.,)"' J'(x) (9) 
:oro ':T! ;t" 

On the other hand, consider any policy sequence no= (uo,Ut .... ) that starts at time 0, 
and let nt = (u~. u: 

1
•1, ••• ) be the corresponding sequence shifted to a later time ., so 

that u; = uo, u;+I == u, and generally uf = u,.-., fort= s, .v +I, .... Again, given the 
same starting point .t, the states x, and xt reach.xi at time r by following lt'o and rrJ starting 
at times O ands respectively will satisfy x, = x;_, and so f(x,, u,) = f(xt_,, u;_,) for 
t "'s, s + I, .... 1beu (3) and (4) imply that v0(x, ir0) = V' (x. ,rJ), so 

.1°(x) = max v0 (x, ;r0 ) = ml!J< V'(x, rrt):::: max V'(x ir,) = ret) (10) 
:r,J ;fu Jt'.r 

From (9) and (10) we conclude that J 0 (_t) = J'(x), which is (5). 

NOTE 4 Whenever we wrote "max'' above, it was implicitly a~sumcd that the maximum 

exists. Of eoursc, without further cm:iditions on the system, this may not be r.ruc. Under the 
boundedne.ss condition (2), the same assumptions as in the finite boti7.l>n ca~e (f and g are 
continuous and U is compact) ensure that the maxima in ( 4) and (8) do exist. 

Many economic applicatio11s, however, do not satisty the bounded11eS$ condition (2). So 
let us investigate what happens when we replace max with .~up io (4), as well as when the set 
ll(x) depends on x, as in Note 1. fn fact, suppose tbe sum I:~0 tl1 f(x,, u,) always e,usts 
(possibly with an infinite value). Then Jo(xo) = sup,,

0 
Vo(xo, iro) must exisl._~Y the result 

(A.4.7) on iterated suprema, we have 

~ w 

fo(xo) = sup LP' f(x,, u,) = sup [/(xo, 110) + sup L .B' [(.<., 11:)) 
14,c,,u,, ... ,~u 1.1u,:-IJ(:c} "J·-'l•··· ,~1 {*) 

= sup [/(xo. u,J) + 11 (g(xc, "o))] = sup lJ (xn, 110) + fj Jo(g(xo, uo))] 
uoEO(.i:) 1101Z.Uc~·} 

So the modilieation 
J (x) "" sup [f (x, 1.1) + /JJ (g(x, u))] 

11«U(.r) 

(lf the Bellman equation (8) still hold~ even ir no maii:immn exis~. 

(l l) 

Nexl let u.~ use the conrract:ion mapping theorem 14.3.1 to prove that version (1 J) of the 

Bdlmau equation has a t1nig11e sohition. 
lndeed_ define the (lperator Ton the do111ai11 93 of all hounded fu11c1io11s 1 (.l') ~o that 

TU)(x)a·. sup [f(x,u)+f,l(g(x,u))I 
111ZU(.,} 
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for afl I and all x. A.sin Section 14.3, the di.stance between any two bounded functions J 
and f is defined as d(]. ]) = sup, tf(z) - f(z)I. Then 

r(])(x) = sup [f(x, u) + fJ](g(x, u)) + r;(](g(:x, 11)) - ](;;(x. u)))] 
i.c:U(.,) 

i sup [f(x, u) + /Jl(g(x, u)) + /Jd(i, ])] '""T(.T)lx) + fJd(], i) 
u'::ti(:r.:) 

Symmetrically, T(i)(x) ::,: T(])(x.) + fjd(],]). So 11'0)(.t) - T(])(x)f ~ /JdO. ]), 
implying tllat 

d(T(}), T(h) = suplT(h(x) -T(i}(x)I ~ fJd(] . .I) (-***) 
X 

Because O < {3 < I, this confinns that T is a conu-.iction mapping, so the proof is complete. 

Finally, we check. that. any control u = u that yields a ma.1ti.tnum jn the Bel Iman equation 
(ll)is optimal. To sec this, let T'; heth.e operator on$ whichi~de6ned by(,.,.,) when U(x) 

takes thefo1m {il(x)J (leaving no choice except u = u(x)!). By ddin.ition of u, the unique 

solution J of the Bellman equation also satisfies T" (J) = J. Also, because J" satisfies ( *) 
for U(x)"" [u(x)}, we Juve T';(J") = J". But T", like 7' itself, isaconnaction mapping, 

so T"(i) :e. lhasauniquesolution. It follows that J =}",and in par1icnlar, the:;upremum 
J (x) for any xis equal to J"(x), the value attained by following the control policy u. 

PROBLEMS PQ~ Sl:CTIQ.N 12 3 

@ll 1. Consider 1hc pmblem 

"" 
~n•• . '-" "'(-e-•, - ,.1 •• -x'), x 2x u 1 0 1 ~, L.,,_. ,,. t+I = : - ,, = •. " ... 

1,,F.1,,-~.o.>1r..,() 
xo given 

where /3 E (0. 1). Find a const:inta > 0 such. tba1. J(.t) = ·-,xe-' solves the Bellman cguarion, 
aud show tl1a1 a is unique. 

@ 2. (aJ Consider the followini pmolcm with fJ f' (0. I): 

Xc+1=x,+u1 • t=O,l, ... , Xr,.giv~n 

Supp(>,;,; lhut J(.t) "· -a.rZ ;.ol•cs tho; Bellman equarinn. Find aq11a,.lrntic cqu;icion for a. 
Tinm find the associate,! value of r,•. 

t.b) By )(loking ac th\: objective function. show 1ba1. given ::tny starting value x~. it ,s reasonable 
to ignnn; any policy that fait• m sar.isfy b,)th lx,I ::, Ix,_, I and fu,j 5 ).<, • 1 I fort = 1, 2, 
. . . . l>t•es Note 2 the.u apf)ly? 
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12.4 The Maximum Principle 
Dynamic programming is Lhe most frequently used method for ,ul ving discrere riwe dynamic: 

optimization problems. An alternative solution technique is based on the so called maximum 

principle. Tl:ie acn1al catculations ne~ed are often rather similar. However, when there arc 

terminal restrictions on· the state variables, the m:u:imum principle is often preferable. The 

corresponding principle for optimization problems in continuotL~ time is studied in more 

detail ill Chapters 9 and 10, because for such problems it is the mosr important method. 

AM Pl.,E 1 Consid.:r tin.t the <li:<erete time dynamic optirni1.ation problem with one state, one control 

RE-M 

variable and a free end state: 

T 

max Lf(1,x,,u1), x, .... 1 = g(r,x,, u,), t = 0, .... T- l, xo is given, xr free (1) 
u,1:US:N 

'""'° 
Here we assume that the control region U is convex, i.e. an interval. The st.ate variable Xt 

evolves from the initial state xo according to the law of motion in (1 ), with u, a~ a control 
that is chosen at each I = O •... , T. Define the Hamiltonian hy 

. { f(t, x. u) + pg(t. x, u) for 1 < T 
Htt,x.,u.p)= 

' f(l, x, u) for 1 = T 

when: pi.< called an adjoint variable (or co-.~tate variable). 

12 4 t HE MA lMUM PRINCJPlF NECESSARY CONDITIONS -=-i 
Suppose ({.x;J. {u; l) is an optimal sequence prur for p[Qblem (I), am.I let H be / 
defined by (2). Then there exist numbers p,, with p1· = 0, such that for all 1 = 0, 
.... T, 

H~ (1 .. t,", u;, p1 )(11 - u7) ~ 0 for all u E U 

(Note that if u; is an interior point of U, (3) implies that H; (t, x;. u;, p,) = 0.) 
Furthem1ore, Pt is a solution of the difference equation 

I . __ J 
Pr-1 ""H;(t, x,·, u;, Pt), r = I. .... T 

(2) 

(3) 

(4) 

NOTE t In Theorem 12.4.l there are no tcmlinal conditions. When there are tenuinai 
conditions, Theorem 12.5. l gives nc<·essary conditions for the case of sev1:,7al variahles. 

For a proof of these two d1corem.s see Arkin and Evstigneev (1987). I\ clo~r analogy with 
the continuou.< time maximum principle; comes from writing the equation of motion as 

x, ;.i - x, ""'g(t, .x,, u,). If we reddine. the Hamiltonian 1:1.Ccording[y, then (4) is replaced 

by Pr ·- P<-1 = -H;(t. x;, u;. p, ), wbich corresponds to equation (9.2.5). 

Sufficient con<litions are given in I.he following theorem. The pmof is ~imilar 10 the, pr.o"f 
of tl1e corresp<>nding theorem jn contiouuu., time. 
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E AMPL 2 

NOTE 2 Suppose that admissible pair.: arc aho required to satisfy the constraints (x,, u,) E: · 

A,. l ::.: 0, l, ... , T. where A, is a conveK ~et for all r_ Then Theorem 12.4.1 is still valid, 

and Ji need only be con~vc in A,. 

NOTE 3 If U is compact and the functions f and g are continuous. there will always exist 
an optimal solution. (This re8ult can be pro'lled by u.sing the extreme value theorem.) 

NOTE 4 A weaker sufficient condition for optimality than in Theorem 12.4. 2 is that for 
each I the pair (x;, u;) maximizes H(t, x, u, p 1)- P,-1.t a~afunctionofu € U andx e IR. 

Apply TI1corem 12.4.210 the problem in Example 12.l.2, 

3 

ma.~I:::o+x,-u:), Xt+i=x,+u,, Xo=O, r=0,1,2, Ur ER 
rc,O 

Solvtion. Fort < 3, the Hamiltonian is H = 1 + x - u2 + plx + u), ~o H; = -2u + p 
and H~ = I + p. Fort = 3, H = 1 + x - u1, so H~ = -2u and u; = l. Note that the 
Hamiltonian is concave in (x, 11). The control region is open, so (3) implies that H~ = 0, 

i.~. -2117 - p, = 0 for I = 0, l, 2, and -2u3 = 0 fort ::::: 3. Thus u0 = fro, ui = tP1, 

and ui = iP2• 
The difference equation (4) for Pt b Pr-1 = l + Pr fort = I, 2, and so Pt> = 1 + Pl, 

p1 = I+ p2. For I = 3, (4) yields P2 = l, and we know from Theorem 12.4.1 that p3 = 0. 
It follows lhat P2 = I, P1 = 1 + P2 = 2, and po = 1 + Pi == 3. lbis implies the optimal 
choices Uo = 3/2. uj = l, "2 = 1 /2. and uj = 0 for the controls, which is [he same result 
as in Example 12.1.2. f 

E.Y.AM LE 3 Con~ider an oil field in which xo > 0 ml.its of extractable oil remain at time r = 0. 
Let llr ::;. 0 be the rate of extraction and Id x, be the remaining stock at tim~ t. Then 

11, = x, - .t, 1-I • Let C(t, x,, u,) denote the co.st of extracting Ur units in period r when 
!he stock i.~ .t,. u:t w be 1he price pe.r unit of oil and let r be the discount rate, with 

P = 1 /(1 + r) E (0, l) the corresponding discount factor. If T is the fixed end of the 
planning period, the problem of maximizing total ,ifacounted profit can 1,e written m; 

r 
max Lf:l'[wur - C(t, x,, u,)1, Xr+, == x, - u,, I= 0, l, ... , T - l, 
r.,~.o r,.:O . 

assuming also thar 
1~0, l, ... ,T 

becau~e the amount extracted cannot exceed th~ stock. 

X(l>O(i) 

(ii) 
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Bc.:ause of r.~stricriou (ii), this is not a dymunic optimizatie>n problem of tbe type de­
scribed by (1). Howev.,.r, if we define a new comrol 11r by u, = 1r1x,, !hen restriction (ii) 
combine.<l with u, 2: 0 reduces to Ute control rL:stricrion i;, € [0, 11, and we have a standard 

dynamic optimization problem. As~un1ing that C(1. x, u) ""u2/x and O < w < l, apply 
the maximmn principlc-10 find the only po~siblc solution of the problem 

r 
max I:>.'l'(wi;,x, ·· •f~r), .t:+1 ""xrO •·· 1:,), xn > 0, 1;, E [O. l] 

,,,c[Q,l) ,,,,{; 

with xr free. 

(iii) 

Solution: We denote the adjoint function by Pr· We know that Pr = 0. The Hamiltonian 

is H = f!'(wvx - v2x) + px(l - v). (Ibis is valid also for f = T, because then Pr= 0.) 
Then H~ = f!'(wx -2vx) - p:x and H; = f,1(wv -1/·) + p(l - v). So (3) implies that, 
for (lx;}, {v;}) to solve the problem, there must exist numbers p,, with Pr"" 0, such that, 

for all I= 0, ... , T, 

[,81 xt(w - 2v;) - Prx;](v - v;) s O for all v in [0, l] (iv) 

For r "' T, with PT = 0. this condition reduces to 

/Jr Xr(W - 2ui )(v - Vr) ~ 0 for all I! in lO, l I (v) 

Having v1. = O would imply that wv ~ 0 for all v in [0, l ], which is impossible. because 

w > O. Suppo~e instead that v;. =I.Then (v) reduces 10 prxj.(tv --· 2)(t' - l)::, 0 for all 
v in [0, 1]. which is impossible because w - 2 < 0 (put v = 0). Hence, Vr E (0, 1). For 

1 = T, condition (v) then reduces to r,r x7(w - 2v:i-) == 0. and so 

(vi) 

According to (4), for r =I, ... , T, 

(vii) 

For 1 == r, because PT= 0 and 11; = !w, this equation reduces to 

(viii) 

Fort = T - I. the expression within square brackets in (iv) is 

Because O .,: w < J and {3 E (0. I), one has l .> tffo,. It follows that. hoth u:;._.1 == 0 and 
1J;. •. 

1 
== I are impossible as opt.illlal choices in (iv). So the maximizer vj._1 E (0, I) in (iv} 

must be int.:rior, implying tha[ 01e &quarc brack~t. in the last line of (ix) is 0. Hence, 
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Let us now go k periods badwards in time. Dcfin~ qr-; """ PT··-k!/3T-~. We prove 
by ba.:-kward induction thai al each rime T - k we have an interior maximum point "i· _ J: 

in (iv). Then vj. _k """ !Cw - qr-J: ), which helongs to (0,1) if qr-t E (u> - 2, w). We 
prove by ba.ckward induction that r/T-1. E [0.111]. Suppose Lhis is valict fork. Let ns show 
it fork+ l. Usi.ug (,ii) and the definition of QT-J:, we find that Qr--(k+I, ~ F<qr-1:.l 

whc,re F(q) = .8[{(11! -f/)2 +q]::: 0. Note lhatq - F(q) is a strictly convex ft1111:tion 
and, by the assumptions on the paramerus. we have O < F(q} :::, max[F(O), F(w)l o.:c 

inax(tlw7 /4, ,Bw} < I/; for all f/ in (0, w]. He11ce, qT-(k+I) Ero. wJ. Because qr= 0, the 
backward induction can be s1ar1cd. Thus the solution of lhe problem i~ given by 11;._.J: "" 
( 1/2)(w - qr-1:), whcrcqr-k is detcrwin~d by qr·-(!+'.J = f)-(T-J:)PT--(J:.:,.I) = F(qr-1:), 
with qr :: 0. I 

PROBLEMS FOR S CHON l Z 4 

1- Consider Pro bl en\ 1 !.1.1. Write dowo the Hamiltonian, comJitioo (3 ), and the diJforence equa• 
tion for p,. Use the DlllXimum principle to li.nd a u,1iquc solution candida!£. Verify that the 
conditions in Theorem 12.4.2 arc .satisfied, and that you have found the optimal solution. 

~ 2. (Bolty,mw) Con.sider the problem 

r 
max L(u; - 2x";) ~u. 

":~:f-·t.11 ,=0 
.tt,t: =U:, l =0.1. .... T- I, XQ =0 

(a) Prove that u; = 0 for 1 = 0, I, ... , T - I, and Ur = I (or -1) are optimal conttols. 
(ExJ>rC$s the objective function as a function of u0 • ui, ...• «r only.} 

(b) Verify that, altht>ugh the conditions in Theorem 12.4. l ;ire sari stied, u; does nor ma.ximi7e 
H(t, x;. u. p1) subject to u Ee [-1, I]. 

12.5 More Variables 
Consider the following end constrained problem with 11 st.ate and r control vanables: 

T 

max L f(r, :or,, u,), x,,.; == g(t, x,. Us), xo is giv<!n. u, EU ,: ~' (I) 
,~--0 

He1e x., is a state vector in Ji:" that evolves from the initial state X4J according to the law uf 
morion in (I). with u, a.s a control vector in U that is chosen at ea.ch 1 == 0, ... , T. We put 

x1 = (x,1, ••.• x;). u, = (u:, .... 1<~). and g == (.1( 1 ....• g'). We asswne that the co1iu-ol 
l'egion U is convex. 

The tenninal conditions are a5Sl1me<l to be 

(a) x1 "' xi for i .,..., I, ... , l 

(b) x~ :~ .t fori "" I + I. ... , m (2) 

(c) x7 free fori = m +I, .. . ,n 

wh•·re O ::; (.:om :: n. Deline-. the Hamiltonian by 
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n 

-·{qo/(r.x,u)+I:/x,(r,x.u) far 1<T 
Jl(t, X, U, p} - r=sl 

f(t.x,u) for r :::= r 

where p"" (p1, .•• , p•) is called aJl adjoint variable (or co-stale variable). (For a pl'Oof 
of tlte following tbcore!fl, :;ee Arkin and Evstigneev (19~7).) 

f tHE REM 12 5 1 <rHE M,, , lMUM PRINCJPL 
I-

i i 

I 
I 
I 
! 
L..._, 

E :AMPlf I 

Suppose that ({x;}, {u;l) is an optimal sequence paidor problem (l}-(2). Then 

there exist voctor.s p, in R" and a number qo. with (qu, Pr) :/, (0, 0) and with 
qo = 0 or I, such that for 1 = 0, ... , T. 

Also, the vector p, = (p} . ... , p~) is a solution of 

Moreover, 

; &H • • 
Pt-I= iJxi(,,x,,u,,p,). t:::.l, ... ,T-1 

; ;Jf (T , • · ; 
Pr-1 = qo-, , irr, urJ + l'r 

axr 
where the vector Pr"" (p}, ... , p}) satisfies 

! 
f 

l 
I 
i 

I 
I 
I 

I 
i 
I 

(a') p~. no conditions i = 1, ... , I I 

b') i · 0 . h ; 0 't' •i -j · J ..L I I l Pr ~ . wu Pt = 1 xT > x , = . . ... , m I 
. . I (c') P\· = 0 1 =m +I, ... ,nj 

Tf the conditions above arc satisfied with qo = I and if H (l, x, u, p) is concave 
in (x, u), then ({x;}, {n;J) is optimal. . 

- -

(3) 

(4) 

(5) 

(6) 

NOTE 1 If m = 0 (so that th.ere are no rcscrictions on the terminal state Xt), then Pr = 0, 
and it follows from Theorem 12.5.1. that l}o ,,., I. 

NOTE 2 If u~ is an interior point of U, then (3) implies th.at H~, (I, x;, u;. p,) .,.,. 0 for all 
i :::= l, ... , r. 

lA life cycle model) Sol\oc the prob !em 

T-·1 

m.1x Ltl'U(u,) s11bjectto x,.:,.1 '"' o:(.<1 + y, --· u,). t "'O, I, ... , T-· 1 
r:-() 

wber.e x,1 is given and we require ,YT c'.: U. The conrrol r,\gion is (0, 00). 
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The ~·couoruic i.11tcrprctatio11 i~ that a consumer wants to ma~i.mi,:e a sum of discoumcd 
utilities fJ'U(u,) up co a fixed horizon 1'. We assume that U'(u) > 0 and U''(u) < 0 for 

u ;,,• 0. The coefficient {J is the subjective discount r.,te. We.alth x, dt·velups according to 
the given difference cquatiou, where y, is income at time t, and a ..., ( I + r) with r as the 
interest rntc. (A consumer who dcposits _t, + y, - u, in an interest-bearing account al time 1 

receive.~ x,+1 at timer ·'- 1.) 

Solution: Tho: Hamiltonian is H = H(r, x, u, p) = {J' U(u) + ptY(.t + y - u) for r 
0.1, ... , T-1, and H ""'H('l',x,u,p) ;:;-Qf'ort = T. Clearly His concave in (x,u), 
so we n&c sufficient conditions with (Jo == L According to (4) and (5) we get Pt-I -;: ap, 
for t < T and Pr-I = Pt· It follows that fort < T we obtain p, = at-,-I PT· Because 
the control region is open, condition (3) re.cluces to H~ (t, :x,". u~, p,) = 0 for I < T (see 
Note 2). This means that /J'U'(u;) - apretr-,-1 = 0. ~o U'(u;) = praT(a/3)-1. In 
particular, optimality requires 

U'(u~) __ t_==CI./J 
V'(u;+,) 

Tb.us, th~ ratio of the marginal utilitic.s from one period to the next is the constant c,.fJ, 

equal to the dhcounred one-period rate of return. Note that consumption is constant in ca~c 
afJ = l, rising in case a{J > I, and falling in case afJ < l. 

· Because U' is su:ictly decreasing and so bas an inverse, u; = (U')- 1(prar (<t/l)-'). In 
particular we see that p1· 'f; 0, so Pr > 0. Then (6)(b') implies that x7 = 0. But x;: == 
a.T xo+ LL1 a1'-Hl(Y~-i -u;_1) == 0/r xu+ Li~t etr-t+t()'t-1-(U')-1 (pra.T (a,8)1·-1), 

using formula ( 11.1.8). The equality xf = 0 can then be used to determine Pr uniquely. I 

Infinite Horizon 

We consider briefly the following infinite horizon version of problem (l )-{2): 

.:x, 

max L f(t, x,, u,), 
,~o 

x, E !R", u, E U ~ IR', U convex 

where we ma:tlm.ize over all sequence pairs (fx, ), /u, }.l. satisfying 

Xr+I .,, g(r. 11,, u,), t= 1.2, ... , X(l given 

and the lenn.inal conditions' 

(a) l.iJn x;(T) = Xi, 
T··~oc, 

i = 1, ... ,1 

(b) Jim x;(T):: x;, i""l+l ..... m 
T-"eo 

(cj no condition, i =m + l, ... , n 

(7) 

(8) 

(9) 

Note that f and g = (g, .... , g.) can now de~1end explicitly on 1. Assume th:it toe sum in 
(7) e-.xist~ for all atimis~ible sequences. Th<~ functions f and g an: assumed to be C 1 with 
re~pect to all x; and u j. 
·····-····-······· 
4 s,~, S.:ctioo l0.3 or A.3 for rhe definitionof/i!D or li111inl. 

I 
I :t 
j . 

i 
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We lll<'rely state a suffi.:ie.nt condition for this problem: 

Tt-1§.!?Rl:M 12 5 ~ (SUFFICJl:Nl CONDrr10.N~L---·~···---·-··-----·---·--: 
! 

Suppose thllt the sequcbcc triple ({,.::J, fo;J. (p, }) satisfies the conditions (3)--(4) 
with q0 "" l. Suppo~e further that U i& convex. and the Hamiho.nian If (1, x, u, Pt) 
is concave in (x. u) for every t. Thell ((x:J, {u;l) is optimal provided that the 
following trnnsversality condition i.~ satisfied: for all admissible sequence pain; 
((x,}, fu, }), 

, 
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I , Jim p, · (111 - x;J ::: 0 (10) 

! -~ 
~ ' . ' 1.------------------·-···-.. ·-----.. ------·--·--··~---·------·-· . 

NOTE 3 Suppose that any admissible sequence /x,, u, l is requirlld 10 satisfy additional 
constraints. Then ( 10) needs only to be teste.d for s11ch sequences. 

PR>OBL~MS FOR SECTION' 12_5 

~ 1. Con.sidct the problem 

l { X1,t l = Xt - lt,, XO:-.;. 5 
ma\ IJ1 +.,, - y, -2"~ - vn s.t. . 
U,td~ , .... () .Vr·i:I = J', + l'1, Yo=. 2 

1=0, I 

(a) Solve the problem by using the difference equations to expre&s the objective function l as 
a function of only u0 , u1, u2 , uo, v1• and L'2, and then optimiz,·. 

(t,) Solve the proble.m by 11.sing dyna1J1ic programming. (Hinr: Fi11d .12(.<, y), 11 (:x, y), and 
Jo(.x. y) and tlle corrcspond.i.ag optimal controls.) 

(c) Solve the problem by using Theorem 12.5.1. 

2. Soh·e. the probkm 

·r 
~ 2 Z mal L.,~-.r, - u,) subjectto x,H=Y,, Y1+1 =sy,+11,. t=O,l, ... ,T-1 
t=O 

where x0 '" x~ and :Vo = y11 art: given numbers and u, E: R. 

3. Solve rhe protikm 

,x 

max L /J' ln(x, - u,) suhject to .,,~, ,." u,. ,,:0 >· 0. u, > 0 
: ... () 

wht7C p ~ (0, I). Vctify thacx;' > u; for all 1. 
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12.6 

FXAMPLE 1 

Stochastic Optimization 
What is lhe best way of con1tolliog a dynamic sy5tem suhject to randon1 disrurbances? 
Stochastic dynamic progranuning is a central tool fot tackliug this prublem. 

In dctcnuini~tic dynamic programming cbe stare develops ~cOTding to a difference equa­
tion x,-'- t "" g(t. >=, , u1) that is conirolled by appropriate choices of the control variable~ u,. 
In this sectiou, the s tate x, is also iniluenced by stochastic shocks, so that it becomes a ran­
dom variable. Following oommon practice. we typically use capital instead of lower case 
letter.. to denote random variuble.s, e.g. X, instead of x,. We assume that x, helong~ to IR" , 
and that u, is required to belong to a given subset V of R' . 

Suppose now that fot r = 0, I, ... , T the. state equation takes the new fonn 

X ,+t = g(t, X,, u, , V,+1), Xu = Xo, Vo= v,i, wilb Xo and Vo givco, u, EU (1) 

including a stocha~tic shoe\< V,+1 that lll.ali:l!s ea.ch X,+1 stocba;;tic a.~ well. 
We consider two cases. lo the firnt, V, +1 is a randolll variable that takes Vlllucs in a finite 

set 'V. It is assumed that the probability that V,+1 = , E V may depend on the outcome 
v, at time 1, as well as e;ocplicitJy on time t. Then we cousider the conditional probability 

that V,H = v giYen the outcome v, at time t , which is denc,ted by P,(v Iv,). The. same 
not.atiou could also be used when V is a count.ably infinite set. In the .~econd case, Vr+1 
may take values anywhefe in a Euclidean space. Th,m the distrihution of V1+1 is assumed 
to bt: described by a eooditional density p,(v I v,) tha1 is a continuous funct.ion of v and v, 

cogethec. 

Cou5ider fuse a two-stage decision problem with one stale variable x and one control 
variable u. A~~ume that one wants to maximize the objective. function 

£[/(0, Xo, uo) + J(l, X1, u,)] = /{O, Xo, uo) + E [J( I , X1 , "1)] {*) 

where E denott.:S e~pectation and f is some given reward function. Here the initial state 
XO = xu and an initial outcome v0 are given, after which X 1 is determined by the difference 
equation ( I), i.e. X1 = g(O, xo, uo, V1) . We can find the maximum by first maximizing 
with respect to u1, and thcu with respect to tto. When choostng 111, we si.!llply ma'(imize 
/(1. X1• 11 1), assuming that X1 is known before the maximization is carri~.d out. The max­
imum pointuj i~ a function u;'(X i) of X1. In:,er1:1bis function insteadofll1 into the objective 
function(*), and then replace the two occurrence~ of XI by g(O, .to, uo, Vi) , This yield:; 

/(0, Xo, uo) + h'(J(l , g(O, XO, uo. v, ). u; (g(O, .XO, UQ. Vi)))) (-**) 

Note that uo occurs in both temis of(**). A maximizing value of uo is then chosen, taking 
both these occurrences into account.. 

\.\'hen V1 i~ uocertain, the following ~pedal case shows why it matters whether we can 
observe X1 before choosing u 1. Suppose that /(0. Xo. uo) = 0, f(I , X, . u 1) = X111t, and 
X 1 = V1, where V1 takes the values l and -1 witll. probabilitic.-i 1 /2, and where the control 
11 must equal on~ of the two values l and - 1. ff wc bav<, to choose u1 before obterving X 1, 

implying that u I must be a constant. th1m E[X' " iJ = O. !)111 if we can nrst. observe: X 1, 

tlu:n u 1 can depend on X1 . By chOQsing ui a:. u1(X:) :::, Xi, we can make E[X1uiJ "" J, 
which yields a higher value of dJC objcxtiw (*) - I 
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In all that follt)WS we shall assume that both X, and V, can be obscn:cd before clJoosi..ug u,. 
Often this a,;,wmption wil l be satisfied beca1.1.,e we define the stall'. X, ancl random shock V, 
as what can be observed at time t. 

Let us tum to the general problem. The process d.etem1ined by (I) u.nd the values of th,; 
random variables V 1, V;:, . .. is to be controlled in the best possible mann.:r by appropriate 
choices of the succes. .. ive variables u,. The objective function is now the expectation 

T 

E [I>u,x,. u,(X, , V,))] 
,~o 

(2) 

Here several things have to ~ . explained. Each control u,, I = 0, I , 2, ... , T should be 
a function u, (Xt , v1 ) of the cuueot stat.e x, and the owoome v,. Such functions are called 
"policies'', or more specifically Markov policies or Markov controls. For many stochastic 
optimization problems, including those studied here, this is the natural class of policies to 
consider i n order to achieve an optimum. The policies that occur in (2) are of this type . 

The expectation in (2) is the sum I:;.,0 E(/(1, X,. u,( X,. V,))] of the expectations of 
each successh·e term. These expa.'talions, of cour;e, depend on the probability of each 
pair ( X., , V, ). To calculate these, first r&all that in the discrete random variable case the 
probability that the events V 1 := v1 and V2 "" v2 occur jointly, given Vo = vo, equals 
the conditional probability that V2 "" v 2 occurs given V 1 = Vi ; times the probability that 
V 1 = v1 occurs given Vo = vo, That is. the joint probability equals P1 (vi I v1) times 
Po(v1 i vo). Similarly, the probability of the joint event V1 = v1, V, = v2 •.. .• \'1 = v,, is 
given by 

(3) 

Note that thi s ptobability is unaffected by the choice of the policies u1(l'.r , v,). In the con­
tinuous random variable case, the joint density p' (v ,, . .. , v,) is determined by the corres­
ponding fonoula with each P., in (3) re.placed by p,; again, this is independent of the policy 
choices. 

On the other hand, t~e probability distribution over the state X, at each time t does 
depeoo on the choice of the policies u1(x,, v,}, in general, as does the joint distribution of 
each p-dir ( X,, V, ). Specificall~·. the sequenct: X,. t = I, .. . , T in (2) is the solution of 
(1) when V1, ... , V, and u, = u,(X1 , V,), r = 0, .. . , T - 1 are inserted successively. 
Hence, X1 depend5 on V 1, ... , V, and, for each t, the expectation E [ f (t , X,, u, ( X, , V,))] 
is calculated by means of the probabiliti<J.~ (or dea~itics) specified in (3). 

Though not always necessary, we ~hall assume that f and g are cootinuou.~ in x, u (or in 
x, u, and v in the case when v is a TSildOlll variable v.,'ith a continuous density function). 

The optimization problem is lo find a sequence of policie.~ Uo{.XO, vo), ... , uj(xr , \'r ), 
that malm~ the objective (2) as large a.11lossible. We now defrne 

r 
J1 (X1• v,) == ma.it E[L f(s, X, , u,CX,, V, )) l x,. v,] (4) 

,~, 
Herc the expected disconnrcd total rewAfd is maxi..rni.wd over all policy sequences u, = 
n,(x, . v,) ( t = 1, ... , T). Th,: expect.:itioo i~ talccn ovci: all possible ~equences of realiza­
tions V, of the random variables, given thllt: 
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(i) we start equation ( l) in state x, at time r, as indicated by "I x,, v," in ( 4 ); 

{ii) we apply each control u,(X,, V,) in the sequence when computing the .sequence.of 
successive .states X, {s ::::: r ..... T). 

l\ote, th.at X, will depend on v,, V,+1, ... , V,, fox each s ""t + l, .... T. 
The central tool in solving optimization problems of the type ( I }--(2) is the following 

dynamic programming equation or optimality equation: 

(5) 

where X1+1 ""g(t, x,, u1, V,+1). (The notation J:x,, v, i.~just a reminder that in.~erting ~ 
.,,alue of X,+1 makes the conditional expe1.,1ation depend on x, as well as on v1 ). After this 

insertion, since i, affects the expectation of J,.+1 only through itS effoct on X,+1 , we can 
v.nte equation (5) as 

J,(x,, v1) ""max f J(r, x,, u,) + E [J,+1(g(1, x,, u,, V1+,), V,+1) f v,]} {6) .. 
Moreover, when r = T we have 

(7) 

These equa£ions are similar to (6) and (7) in Theorem 12. l.1 for the deterministic ca.~e. The 
only significant differences arc that v, appears as an extra state variable., in effect, and that 
(6) allows for uncertainty by including the condirional expectation of 11+1• 

As in the corresponding deterministic problem considered in Section 12.1, first (7) i.~ 
u.sed to find 11;:.(x,, vr). Thereafter (6) is used repeatedly in a backward recursion to find 

first ui,_1 (Xr-1, vr-1), then 11;._2(xr-2, vr -1), and so on all the way back to IJo(Xo, vo). 
As in the deterministic case, equation, (6) and (7) are, essentially, both nece~sary and 

sufficient. The.y are suflicient in the sense that if u;(x1. v,) ma.,imi2es the right-hand side 
of (6) for r = l. ... , T. and also u}(x,, vr) maximizes the right-band ~ide. of (7), then 

u;'(x,, v,), t = 0, I, ... , 1', is indeed an optimal policy sequence. On the other hand, the 
8ame equations are necessary in the sense that. for every pair {x,, v,) that occurs with 
positive probability (or has a positive probability density when there i~ a eontinuous density 

function), an optimal control u;(x1, v,) mtJSt yield a maximum on th.~ right-hand $ide of (6) 

fort= 0.1 .... , T-1,and of(7)fou ""T. 
An important special case occurs when the successive random variables V, are independ­

ently distributed. Then P, (vi,.,) (or p, (v Iv,)) does not depend on v,. which can therefore 
be dnipped Crom the functions J,(x,, v1), u,(x1• v,) and from (6) (or (7) for r == T). Intui­
tively, this is becau.,e the conditionirig variable v, drops out of (5). so ooth J,(x,, v,) and 

lht, optimal control u~ (x,, v,) will ootdepend Cln v, eiEher. Formally, this independence. can 
be proved by back ward induction. Some, examples below are of this special forw. 

The argument above also bolds if the control region is a closed set that depends on 1 

itnd x-for cxrunpk:, if U = U(r. x) "°" {11: h;(I, x, 11) :=::: 0) where tlJ.c functions h; are 
continuo.u~ in{". u). Thus the c,111s1taint 11, E: U (t, x,) is imposed. If U(r, x) is empty, then 

the maximum over U(r. 1') is set equal to -·o'.>O. 
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Co!lsidcrastochasticv.:rsionofExample 12.1.4, when,ateacl.Jtimet,,.. O. I, ... , T - l, 

the state variable X, is an investor's wealth, the concrol variable u, is co11sumptiun, and 
the certain rcrum a, tu investment in that exampk is replaced by a rJndom return Zr+ I· 
Moreover. suppose that {Z,+1}[...:,,/ is a sequence of independently distribmed random vari­
ables with positive valire,. In particular, for each r :::: I, 2, ... , T diere is either a discrete 

distribution P,(Z, ), or a continuous density function p,(zi). 
More specifically, the state X, i, assumed to evolve according to the srochastic difference 

equation 
u, e (0, x, ], xo given (i) 

The objective functjon is the obvious counterpart of that in Example 12.1.4, aamely the 

expected sum of discounted utility, given by 

T-1 

E [ L.,8'u:-r + /J7 AX~.-y] 
t=O 

(ii) 

where fJ € (0, l) is adiscountfacror, while y E (0. l) is a taste parameter, and A is a positive 
constant. Th~s. the problem is to maximize (ii) subject to (i). Assume that E[z:-yj < oo 

for all r. 

Solution: Here h(xr) "" 13T A.t!:-r exacrly as in (ii) in Example 12.1.4. Beca1L~e the 
random variables 2 1 are .independently distributed, lhe value functions tal<e tho form J, (x). 

To find h-1(x), we use the optimality equation 

The expectation roust be calculalcd by using the probability disuibution for Zr. In fact, the 
right-hand side of(*) is of the ~amc fonn as (iv) in Example 12.1.4. To make it exactly the 

same, define the new constant ar.-t so that ai=.'; == E[ztrJ. With this new notation, the 
optimal control u r-l i~ gi,•en by (v} in Example 12. l .4. Furthennore. equations (vii), (viii), 
and (ix) of tl1at example still hold provided we define each a, to satisfy a}-Y == E[z::;n 
fort "" 0, I, ... , T - 1. One may call each a, the "certainry cquivale11t" return because the 

solution is exactly the same as if it replaced the uncertain return described by the random 
variable Z,.;. 1 . Of course, each a, dcp.:nds oo the. taste parameter y as well ~ on lh.:. 

distribution Z,. I 

EXAM PlE 3 Suppose a skillful gambler rupeatcdly chooses to bet a ce.rtain fraction u of her wealth at 
even odds, expecting 10 win back this fraction with probability p::: 1/2. Thus, if wealth at 

time t - 1 i~ x,_.1, tnen x, is equal lO x,-1 + ux,_1 with probability p. and to x,._, - ux,-1 
wilh probability I - p. (In the noratioa of this $ecti.on. X, ""X1 .J + u,-1 V,X,-i, where 

V, E (-1, I), Pr{V, "" I] ::: p, and Pr! V, "" - I] =< 1 - p.) Suppose the gambler plays 
T times, with the objective of max imi,.ing the: expcct('~i value llf tl1e utility of terminal 
weallh x·r, as~umed to he f(T, ,tT) "-' l11xr. N,,1.e that f(T. xr) is independc11r of 11r, so 

Jr(xr) = lnxr. Wt! alsc>l:iave f (I, .t,) :.s O for 1 •:: 1'. 
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If the gambler's weallh ar Lime 't - 1 is xr-1 and then the amount bet i~ uxr-1- the 
resulting e.xpccred utility of terminal wealth will he 

p ln(xr-I + 1..xr- i) + q lll(Xr-l -· uxr-1) =- lnxr-; + A(u) 

where A(u) :::: p ln(l + u) + q ln(l - u) (bee.a.use p ~- q = I). At time T - l, thcrcfon•, 
the oprimalicy equation is 

The function A(u) is concave, .so the ruax.iwum is attained where 

I. l I 
A !U) = p-- - q-- =- 0 

I +u 1-u 

Thisi..mplies p(l - u) = q(l + 11), or p-q = <l(p + q) =- u, so uj_1 = p -q. Inserting 
this expression for u int() the right-hand side give.s the, 1Tll1Ximum valut-. This is 

lr--1 (.t) = ln x + B 

where B = p !nil +(p-q)]+q !nil- (p-q)] = p ln(2p)+q ln(2q) = 1n2+ p In p + 
q lnq. 

Sta11ing from xr .. 2 at time T - 2, next peri<>d the gambler ends up with probability 

pat xr-i = xr-i + uxr-"' where l-r-1(xr-1) = ln(xr-2 + llr-2xr ... 2) + B; and with 
probability l-patx1·_1 = Xr-2-Ur-2xr-2. whe.re h-1Cxr-1) := ln(xr-2-uxr-2)+B. 
Therefore, 

::::)nxr-2+B+ max .4(u) 
(l:::,u!;l 

Once again, the maximum value in th.: latter maximj,.,.tion ptoblem is B, with u = p - q. 
Hence, 

Jr_2(x) =lnx +2B, with "r-2 = p -q == 2p - l 

Continuing in this manner fork "'"3, 4, ... gives 

lr-k(x)=-\nx+kB, with llr J. "" p - q ""2p - 1 

To conclude. in every round it is optimal for the gambler ll' oct the same ti:actfou 11 = 2p- l 
of his wealth. (Jf che ohjective function were f(T, xr) ""xr inMea<l and p > 1/2, it i~ e.:isy 
to ~cc that she woidd bet all her wealth at eve1y stage--sec Problem 7.) I 

The fol !,.,wing formul result confirm~ that. the solution.s we fou11d in the prcvjous example~. 
for jnsrance, i-e,,lly ,.re optimal: 

I. 

s~c,10:11 12.6 ! STOOIASTIC OPlfMIZATIO"l 

The sequence ofpolieies ,r .,.-. fu,(x,, v,)1;~1 solves the problem of maximizing 
(2) subject to (11 .if, togt:ther with a sequence of functions {J(t, x,, v,)J{~. i.r 

satisfic.s the optimality eqriatio1t~ (6) and (7). 

Proof: Let ,r "· {u,(111 • v,)l;=0 be an arbitrnry control SC<tuCnce. D.:finc 

1· 

J,"(x,,v,) = e(!;f(s,X,.11,(X,. V,)) jx,.v,] 
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Given cbe starting time t and stale (x,. v, ), this is the conditionally exp<.·<:ted value of following the 
process (l) using ihe control sequence 1t fH,m timer on. Triviu.lly. Jf (XT, v7) :S hlXT, v7 ). with 
equality if u 7(xT, vr) sa[isfics t7). By backward induction, let us prove that J,• (x,. v,) ~ J,(x,, v,), 
with equality if ,r: is such that u.,(x,. v,) s~tisties (6) for s = r, r + l. ... , T - 1, and uT(xr, V·r) 
sa[islit:s (7). As the induction hypothctis. ~8sume that this is true fort. Replacing t by t - 1 in the 
above de.tinition gives 

J,"..1(:.:,_1, v,_,) = /(,.:_ 1, x,_,, u,_1(x,_1, v,-1)) + ~-r tf(.,. X,. u,(X,, V,)) Ix, .1, •,-,] 
s=r 

But the law c>f iterated expcemtioos and the indu.:-ti,)n hypoth.:sis LO!,'<:lhcr imply that 

r:[t. f(s, X,, u,(X,. V,)} Ix,-;, v,_c J 

= E[E[t.f(s.X,,uJX,, V,)) [ __ X,, Vs,x,. 1 .v,_,] ! x,-"(, v, r] 

= E[E['£.tcs,X,, u,(X,. V,)) IX,, v,] Ix,_ .. •,-,] 
,:.::., ' 

= E[J,'(X,(V,) I x,-1, v,-1]:, £[J,(X,, V,) [ 11,-1, v,_,] 

whereX, "'g(f.x, .. 1.u,_1(:s-,_1,v, .. i),V,), wid1cqualityifu.1 (x,,-.,) sa1islies (6) foi: r = 1, 

t + l, ... , T - l. ~nd 117 (xr, VT) sa1:i.sJies (7). Hence. 

J,"..,(x,.1, v,.-1):::: f(z -1,Xr-1, u,-1(ll,-1, v,_i)) + E[J,(X,. V,) [ x,-1, v,. c] 

~ m:Xl.f(t - I, x,-1, u) + E[J,(g(r,x,-1. u, V,), V,) i v, .. 1]1 

"'J, .. 1(X,-J, ",-1°1 

with equalities if-u,(:,:,, v,) satisfie~ (6) for s "' 1- l.1.1-,.- 1, .... r -1, and llT(X·r. vr) sarisfies 
(7). This verificS the induction byp.)thc~is for 1 - J, and so completes the p.-oof. • 

Jn rJ1e discrete random variable ca~c. the above proof is e.~sily adapted to show Iha! a policy 

,r. • is op[imal only if the optimality equation, hold at every time r = 0, l, 2, ... , T in auy 

state (:x,. ,, 1) that i& reached "';th positive proh~bili.ty given th.: policy ,c • and the i.nitia.l state 
(x0 • v0). In the continuou~ variable ca.~e these necessary conditions become a little bit more 
compliea!ed: es.,ential\y, the optimality equations musr hold at every time t ::-- 0, l, 2, ... , 
T in almost ewry stare (x,. v,) that. bas a positive conditional probahility dcnsily giveti ,r• 

and the initial ~late (tu, Vo}. 
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The Stochastic Euler Equation 
We previously derived the Euler equation for the kind of dctcrminbtic problem considered in 

Section 12.2. There we were able to define the instantaneous reward function F(t, x,, x,.1•1) 

each period by using equation (12.2.2) in combination wilh the function g(t, x,, u,) that 

dere:rroincs x, :-I· In this ,ection, however, the deterministic equation x,+1 == g(t,x,, u,) i~ 
ixplaced by the stochastic equation X,.H = g(r. x,, u1 , V,}, where V. is random and.known 
at time t when the control u, ism be chosen.,; Then the earlier construction works, and leads 

to a problem of the fonn 

r 
max E[L F(t. X,, X,+1, V,)], xo given, x,, -<2, •..• w free (8) 

t=O 

This is like problem (12.2.1) that led to the discrete time Euler equatio!l, except that the 
function F in the eriterion contains an extra stochasric variable V,, where a.s before v = 
V,+i. i~ determined give.n v, by either a conditional probability distribution P1(v Ii:,) or a 
conditkmal de::nsity p, ( v I v, ). 

In problem (8) we decide the value of each x, .•. f at time t; aflcr x, has be.en determined 

by previous choices, and after v, has been ob~rved. Hence, Xr+ 1 is allowed to be a funetion 

of the pair (x,. v,). Then the Eul~ equations take the form 

(9) 

at lime T + 1. and 

(10) 

at rimes 1 = 1, ... , T. This is called the "stochastic Euler equation" becau.~e it <lifters from 
( 12.2. 2) by indudint;.? the random tenn V, as an extra argwnenl, and by having the conditional 

expectation of Fl (t. ·) given v,-.1 · 
In order to solve tl:ie problem (8), we first find -tr+i from (9). yielding the function 

.t71-1 = x2·+1(xr, ~r), Next, thi~ function is inserted into (10) for r = T. and the resulting 

equation is then solved for xr, yielding xr = xr(xr ,., , Vr-1). After this, at the next step 

we solve for Xr-t(Xr-2, v:r-2), Working backward\ in this manner, we continue until the 

function x1 (xo, vo) has been constru.:rcd. Since xo and ~0 arc given. the value of x I is 

dererrni11ed. Then the value of x2 = x2(x1, vi) is determined for each possible ohserve~i 

value of 1>1, and so on. 

Solve the problem 

'f·-1 

ma~ E[I:-(X,1-1 - fr,+ v,)2 -1Xn1 - Xr)2 - ~x}] 
1·~-0 

wher.e v;. t = I, ... , T - l. are i.i.d. random variables with El Vil.:! l. 
-·-··· .. -·-······-----5 Any problem involvioP. s. &1ochaslic difference equation like I.his c:in also l>e solved as a dynamic 

progrrunm.ingprol;,l,,111 by writing x,. 1 = g(t, _t,, u,, y,). wocn, y, is an extr.a state variable, who~t 
evolution is l\c\l.,'m1i111:cl by.>,-, ·,., V:+1, .Ye= 110. 

I 
I 

Sc( TION 12.6 I STCCliASTJC OPT!Ml?.AT10N 455 

Solution: ln Lhi, example. 

and for I =0, l .... , T ~ I w~have 

F(t, x,, x,+1, t:,) = -(.x,H - !x, + 11,)2 

Here equ:,tiun (9) bc,.;omc& -2(.tr+J - xr) ""0, so xr-,.1 (xr. vr) = xr. Next, fort= T, 
equation (10) becomes E{-xt J - 2(xr - ~Xr-1 + l!r-.1) ~• O. soxr = -}xr-i - jvr. 1. 

Furthermore, for r"" T - l, equa[ion (10) yields 

E [!xr-1 - f V.r-1 - ~xr-1 + Vr .. i] - 2(xr-r - !xr-z + vr-·i) = 0 

soxr-1 ;,A(xr-2-2vr-2+1). 
We will now prove by backward induction that the optimal policy takes the form 

_t,+i(x,, v,) == a, +b1x1 +c,1•1 fort =0, I, .... T 

where a,, b,, and c, are suitable co11sranL~. This is e\•idently tmcfor r = r with (ar, br. ct) 
= (0, 1. 0). for I= T ·- 1 with (ar-1, br-·1· cr-1) ;s, (0. t-1), and fort= r - 2 with 

_ · 2 6 12 ° 
(ar-2, br-2, cr-2) - (i3, TI· -TI). 

Fort = I. 2, ... , T - 3, a,;suming that ( *) is true for I + 1. we have 

So equation (10) be::comes 

E [<a, +b,x, +c,V,)- !x, + V,] -2(x, - !x,-1 + u,-1) =0 

or a,+ b,x, + c, - !x, + 1 - 2x1 + x,-1 - 2"i-l = 0, which gives 

x, = (a, +c, + I +x,-1 -2111-1)/(~ -h,) 

Ir follows that (,;c) holds with a,.-c = b, .. 1 (a1 +c, .;- 1), where l>,_1 = 2/(5 - 2b1 ). :md with 

c,-1 = -2b,--!· It can abo be showu by backward inductfon that, as t dccre.ases toward J, 
so h, increases but remains less than !· More,)Ver. the triple (aT···k, hr-k, Cf'-tJ conv.:rgcs 

rapidly to (0. ! , -1) :is T -. cc for each fixed k. I 

EXAM LE: 5 Hall (1978) present5 a ~tochastic version of chc life cycle model consitlered in Example 
12.5. l. In it, a consumer faces a random income .<trt!.a.111 V, over the life cycle, which extends 

from period r : 0 t,1 T. Specifically, rhc consumer's objedive is to choose consumption 

c,. a~~ funclion c1(x1 • 1J1) of wealth x, and current income v1 , in ord.,.r to maximize the 

expected di,rnunlcd sum of utility. given by 

1···1 

Ef Ltl'u((,',) + if1 u(Xr)] ,.1. X,,.1 ·_:, a(X, + V, ··· C,), t == 0, l, ... , T -- l 
l, 

t-.'J 
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wifh .f(I given, where a > Ois therctun, t,,saving. f'"wally, itisasswnetltha! theinstalll::meou.~ 
utility function u(C) is C 2 and satisfies u'(C) > 0, u"(C) < 0 for all C > 0. 

To apply the st.ocb.astic Euler equation, we define F(T , xT, x r+J, i;T) = 13r u(xr) and 
'F(t, x,, x,+t, v,} = tl' u(c,) "" /J' u(x1 + 11, - ,1- 1 x,+1) for r = 0, l , ... , T - L At time 

T, fquation (9) is rriviaJly satisfied because J.'(T, ·) is i.udependcnt of Xr+I· For 1 = 
l , 2, . .. , T - J, tile stochasti.: Eul¢r equation (10) takes the form 

E. ra• '( . V -I ( V) I J /!r-1 ··I ' ( - l ) 0 ,.,u Xs ~ :- a ,\'1+1 x, , , u, .. J - a u :x,.-t+ Ur- l-a x, ::. (u ) 

As in the general prob km (8), suppose< u ) is solved badcward.,; to find successive policy 
functions x,+:(x:, v,). These can be used lO detcrmioe the consumption expenditure c, = 
.x, + v, - a- 1 Xr+ 1 (.x.1 , 11,) at each ti.we I a11d in each state (x,, u,). But then ( **) implies that 
/::f/Ju'(C,) I v,_i] = u'(c:1- 1)/a or, equivalently E[flu'(C,}/u'(c,_i) I u, _iJ = 1/ a. Thus, 
at lime 1 - J lhe.consumptionlevel c,-1 =t beset so thatlbcconsuwers expected marginal 
r ate of sUb$tit11tion E[f)u' (C1) /u' (c,_1) ! 11,- d between random con~umption C, in period 1 
a nd known consumption r.,-1 in period t - I is equal to 1/a, the inverse rate of return. 

There rue several special case.~ of some note !bat can be solved cxplicidy foe c,_ 1 as the 
conditionally expecti,d value of some function of C,: 

C ase I. Q1.11.uiraric Utility: Here u(c) "" -! (c- c)2 wherecisa ·'bliss" level of consumption 
o.t which satiation occurs. The Euler equation is E[- /3(c - C,) Iv,] = - (c - c, _1)/a and 
so c,-1 =< at)E [C, I v,_tJ - (af) - l )c, an affine function of the conditional mean. 

C ase 2. u1gari1hmic Utiliry: Here u(c) .. Inc, Md the Euler equation is E[fi/C, i v,_i] = 
l /(ac,-1), implying that c, .. 1 :;, l j(a{3E[I / C, j v,_i)J, propvrtional to the condi1;onru 
harmunic mean. 

Case3, NegaiiveExponemialUtility: Hercu(r.) = -e ·«r. wllerea > 0. The Euler equation 
is E[fle .... ,c, I u, - 1 J = e-"<,- 1 /a. whose soh1tiou is c,_ 1 = - ln(ofJE(e- aC, 1 v,_i])/a. 

Case 4, Jsoclu.itic Urili1y: Herc u(c) = c'-1' /(I - p) where p > 0 and p # 1. (The 
ela.~ficity of marginal utility, which is cu" (r.)/u'(c), is equal to the consta11t - p.) Here tht: 
E uler c~uaLi.on is E[ftC,-" I u,_i] = c;_:1/ ,i , implying that c,._1 = (af) E(C,-r, I v, .. i]) - 111'. 

I 

1 . Consiru:r the stochusric dyna mic progr.unming problem 

[ 

T-1 ] 
m•x E - o,l~p(-·vXr) + I: -exp(-yu,) , 

,..i, 

X,.1 °,· 2X, - u, + V, .,1, .:,-fl given 

where u, are controls 1aking values anywhere in R , and ~. y arc positi\/1: const3111$. Here 1.h.: 
random varii;l:,Je.s V,.1•1 (1 , , 0. 1, 2, .. .• ·r ··· 1) arc identically and i11dcpendendy distiibut<Xl. 
l\foreover, Sltppo1<c that K = E(exp(-vV. .. il] < ex,. Slww tbat tltc optimal value func1Jon 
J; (x) ca11 be wriu cn as .l.(.x) ~- - ,z, exp(-;'.<), and theu find a bad1.wrud diffcrenceec1uation 
for a, . Wbm i.< a71 i 

L 
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2. (B\110chard and Fischer (1989)) .Solve. the pmhlcm 

ma."< E [Eo + 11)- 1 ln C, ... k(I +8)-T\n Ar] 

where 111, a11d C, are -~oottols, k and 9 ;1rc po~itive constants, ~uhject t.Q 

A,.,.1 "" (A, - C, j[(l .;- r ,)to, + (I + V.-1 1)(1 - w,)J, Ao fixed 
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where r, i, a given sequ~nce of iu1erc.<t rtllo!.~ on ~ safe a.~set, a11d the r.indom retum• V, ~~ a risky 
asset are i,1dcp.;ncJently and identico(ly discrib111ed. 

3 , Solve the problem: mol( E [ r;;~,12u)12 + aX r J subject to u, ~ 0, wirl-i xo fixed and positive, 
where a > O a11d X,-.1 = X, . ., u, with probabilily 112, X,+1 "'' 0 wilh probability t/2 . 

4 . Solve the problem 

[

T - 1 ] 
nu,K E L -u; - x~ 

""" 
subject to X, +1 = X, V.-,-1 + "'• xo fixed 

where V,11 E {0, l } wilh PI[V,+1 = t IV = lJ = 3/4, Pr[V,+1 = 11 V, = OJ = 1/ 4. (Tlint: 
Try J,(x .. I) = -a,x? and J,(x .. 0) = - t,,.,?.) 

5. Consider the problem 

max £ [~((l -u,) X; - u,) + 2Xf] s. t. X,+1 = u,X, V,+1, 11, € U = (0. l] 

v.·hcre V,+1 ,,,. 2 with prl,b:,bilily 1/4 and l~+l = 0 wit11 probnbility 3/4. Fin,i h(x). lr-1 (x), 
(\JIU Jr_2(.x) . (Note lhal 1he m;L\:.imand will be convex. in the control u , !i') any maximum will 
be anained ac an endpoint of U.) Then find J,(x) for general 1. 

~ 6. St,lve the problem 

[

T - 1 ] l '2 1'2 
m:u£ I:u,' +uX.f 

,~o 
.-ubject to X,+1 = (X, · · 11,)Vr+I 

with a a given po~itive oumber. where Y,.1 = 0 witl1 probahility L/2, and V,+1 '-" 1 with 
pmhahi li ry 1n. (Him: Try J,{x)..., 2.u, .r•:: , wbtre a, > 0.) 

7. Solve the problem in f:xa,:nplc 3 when f (1' . .rr) = (XT )' ..... /( I - <.r ), wl;Mc (1' > 0 with a ,;,. l. 
What happ<:IIS :LS " -+ 4)'! 

@ 8. Vse. the slOCh~stic Euler eqt1atioo tv solve the pmMcm 

m•l(t[IJ1-(lltt-1+ X, ... 1 ·· X,)1J -1-(l+t':) -e- X3)l Xc ~ o. X1, X1,X1E IR 
,..n 

when, 1));: 1&11dom variables V, (: = 0, 1, 2) ~1c identically and indepenMntly d:s1rihu11:d, with 

ElV,l = 1/'.? . 
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12.7 Infinite Horizon Stationary Problems 
We co1,sider an infinite horizon version of the. problem given by ( l 2.6.1) in the previous 

section. A$ in die corresponding tletcrul.inistic infinite horizon problem (12.3.1), however 
we assume that the problem is stationary or autonomvll.~. Spedfically, bolb thecoudiriona; 
probabilities P(vr+t I v,)(ordensities p(v,-"l Iv,)) and the transition functioog(x, , Ur. v,""1) 
are independent oft, 'Wben~s die instantaneou~ reward is /3' f (]t.1 , u,) with {J £i (0, 1) . Tn 
the discrete random variable c:!1!1e, the problem t:i.kes the form 

"' 
m;-x.c'[I: fJ'J (X,,u,(X,,V,))], u,(X,,V,) e U, Pr[V,+1 = vl v,J = P(vl v,} (l) 

t=-0 

whe rt; X, is governed by the stoc ha~tic difference equation 

X,,. , = g( X., u, ( X, , V, ), V,+d (2) 

with Xo and Vo given. It is assumed that the functions f and g are continuous, and that. 
the con trol functions u, take values ill a fixed control l'l!gion U. Amou,g all sequences 
,r = (uo(xo, Vo), u,(1:1, vi ). ... ) of Markov controls, we seek. one chat maximizes the 
objective function in ( l ). 

We introduce the following boundedness conditiott, a-1 in (12 .3.2): 

M, ~ f (x , u) :S M, for all (x, u) E R" :,.: U (3) 

when:; M1 and M2 are given real numbers. For each admissible control sequence ,r 

(uo(xo. vo). 11; (Xt, v, ) .... ), starting time .r, and state pair (x,. v,), let us write 

00 

W' (x, , v,, ,r) = E [ L.8' f ( X,. u,(X,, V,)) Ix,, v, J 
t ll'IIJ 

(4) 

where X, is !hi, process corresponding to ,r, starting at x, as specified hy (2). Define 

l' (x, . v, ) = ,-up W'(x, , v,, 1£) 
JC 

We now claim that 

J 0(x. v) = J ' (x, v) (5) 

The intuitive argumentforthis is ju.st the same as it was for (1 2.3.5) in tlteearlierdctcnninistic 
case: because time do.:s not e11ter explici!ly in P (v I v:), g, or/, the future louJ..~ exaccly the 

same $tarting ilt state (x. v) a[ timer = s as it doe:; .starting in cbe r.:une state at time r "' O. 
The obvious implication of (5) i~ that w~ can dcfiue the optimal value runctiou J (x, v) as 
the c ommon v'alue of P(x. Ti for alls "" 0. T, 2, .... Rcp!Jcing bot.b J, and J1+ 1 in ( 12.6.5) 
by J , we derive the following OJ>timality equation or Bellman equation 

(6) 
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Llke ( l 2.3.8), this is a "fnnctioual equation" cbat(wchope) Jctennin~.s tb.e unknown function 
J that occurs on both sid,:s of the equality sign. Once J is k.uown, for e;ich poos1ble ~late 
pair (x. v) an opt'irual Markov coutrol u(x, v) is obtained from llm mll.llimization in (6). 

Noce especially thac n (.: , v) does not ckpc.ud on 1. Tnis is to be expected. Whether we 
obse.rvc (x. v} at time e or at time t does not matter; the optim~l choice of u should be 

the same in each case because the future looks c.,;,actly the same. A pol.icy like lhi.s that i~ 
independent oft is ~1id t<, t,c a statfooary optimum. 

Whcu the boundedness condition (3) i~ satisfied, die same argument as in Note 1'2.3.4 

shows lhac the opti.inal value fonction i~ deftncd and satisfies the optimality e.quation. 
Moreover, the optimality equation ha~ a uo.ique bounded solution J ('!I., \'") . (At least this 
is so when "max" is replaced by "~up" i.n the Bellman equation, as it was in ( l 2.3.11) for the 

conesponding dc1em1iaistic problem.) Funhennore, J (x, v) is automatically the optimal 
value function in the problem, and givtll chis function, any concrol fum.:tion u (l', T) th.at 
maximiz.es the right-hand side of (6) is a stationary optimum. 

NOTE 1 The boundedness condition (3), or the alcemativcs in Kote 3 below, need only holtl 
for all x in X (xo) = U, X, (xo), where X, (xoJ for all r de11otcs I.he set of ssares that can be 
reach.xi at time r when .starting at Xo at time 0, consitlering all controls and all outcomes that 
can oct:ur with positivt: probability (in thediscreter.indom variable ca.~e we are considering). 
Fttrthennore, the fcasibl,\ set of controls can be a set U(x) that depends on the sta1i: i: . 

NOTE 2 The conclusions drawn above for Uie case when the boundedness condition (3) is 
satisfied are also vnlid if cbe following weaker condition holds: the.re c::,ci~t positive constants 
M , M\a, and & with pJa < l sucbthat for all x € X (Xo) and u E U, onehas 1/(x. u)I::, 
M•(I + l[xfia) and ~g(x, u. vf l i M + 8flxU. 

NOTE 3 (Alternative boundednes.~ conditionsj Complications arise when the bounded­
ness condition (3) fails. First, the Bellman t:quation Lllight lhenhave more than one solution, 

or pemaps rionc. Even if it has one or more oolutions, it i.:, possible that none of tbem is 
the optimal value function. There 3re nevertheless lwo cases where some results can be 
obtained. In both cases wi, must iillow inf!uite values for che optimal value function. (Of 

course, both j (x, v) ""' oo and i (.:. v) = -oo satisfy the Bcllinan equation in a sense, 
thougn they may well be "false" solutions that fail to correspond to ~n optimal p<,licy.) Both 
case.~ iJJcludc a subcase where fi = l.'' 

Throughout tbc rest of this note, lee(] (x, vj , u(x, v}) be a pair s:1tisfying the BeJhnan 
equal.ion (6} (so U(ll, v) yields I.he roaximum in the equation. given]). Also let J (JC. . v) 
dcuote che optimal ~·alue (unction. Finally, let J"(x, v) denote the vlllue of the obje.."tive 
derived from using the sc;1tio11ary policy u(x, v) all the time. ln fi nding J "(x, v) . ir i~ 
sornecin1es useful to )mow that it is the limit. a~ T -+ oo of the value J" (O, x, v, 1') = 
E ( I}.,0 p1 f ( X,, u ( X:1 • V,)) J derived from using the stationary policy u(;(, v) all the rime 

from t s· 0 until I ~·, T. 

d for 1.h" r~.sul1~ in thi; ~;1,e se.c llert~elrns (1976) and fle,·11audcr.·l.e11na ,nd LasS<>rr<: (1996). 
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Ca.~e A: 7'here i,.tists a lnwt<r bound y such that J(x, u) ~ y for all (x, u) E J:!" x U; 

ifiJ = l, then t ""0~ ln tltis ca.5e it is possible that J(x. Y) = +oc for sonu::, or all, (:r., v). 
Provided that J a;; J", !he policy function u(x, v) js optimal. 

Case B: There e.tists an upper hound y such that j(.'li., u) ::; y for all (x. u) E IR" x U; 

iffi'"' 1, then y = 0. In this case it is possible that J(x. v)"" -··OO for some, or all, (x, v). 
UulikeCa.se A, even if Jc, 1•, the policy function ii(x, v) may nor be optimal. So a ruore. 
complicated test is needed. 

~upposc: we. arc able to provt' that the Bellman equation has a w1ique solution J satisfying 

J (:r., VJ ~ y(I - /J) for all state pairs (X, v). Then di.is is the optimal vah1e. functio.o J (x. vJ. 

(Recall that J (Ji., v) is known 10 satisfy the_ Bellman equation, in both cases t\ and B .) 

Another snrficient coodition for optimality is the following: Suppose we have solved the 

modified pmblem where the upper limit of the sum in (1) i~ the finite horizon r instead 

of oo. Assume that U is compact, that the functions /(-.., u), g(x, u, v) are continuous in 
(x: u) for each v. and that Vis finite. Denote the optimal value function in this problem by 

J (0, x, v. T). Theo the limit Jim J (0, x. v, T) exists and equals the.optimal value function. 
T-+c,:, 

This is true not only in ca.~e. B, but also in the cases A and (3). 

To sum up, what should wc do after finding a pair (hx. v), ii(ll, v)) that satisfies the 

Bellman equation (6)? In ca.~e A, Wt! try lo eh.::ck that J" = J. If it is, then the optimum 

has indeed ~on found. In case B, after first checking that J ::::· y(l - p), we try to show 

that either J is the unique solution of the Beilman equation, or J (0, x. v, T) -? .i (x, v) a.~ 

T -+ •'.lO. If either of these tests is passed, then the optimum has indeed been found. 

NOTE 4 (frimsver.~ality conditions) An alteroative te.st, based on a transvcrsality condi­

tion, is sometimes useful. Consider a pair ( J ( x, v), fi(x, v)) satisfying the Bellman equation. 

N<>te that, in case A in Note 3, j = J 6 automatically holds (so i'i(ll, v) is an optimal policy) 

providtld that, for any solution sequence .Y,, r = 0, 1 .... , of the stochastic difference 

equation (2) lhat starts rrom any given pair (io, vo) E X(XQ) x -V and follows the particular 

policy u, = up,,, v,) for 1 -= 0. 1, ... , one ha.~ f,' £[}( X,, V,) I x0 , v0J ..... Oas r ..... oc. 
In ca~e Bin Note 3, J is the optimal value function (so u(x, v) is optimal) provided that 

the same lransversality condition holds even for arbitrary choices of the controls u,(1', v) at 
each timer. 

EXAM Pt f l Consid,,r the following stochastic version of Exall!ple l.2.3.1: 

·:,;, 

t~ax E [L.8'(w,X,)'-y] 
u•, .• (0,1\ /=() 

(i) 

X,+1"' V'"1(1 ·- w,)X,, .tr.isapositiveconsranl, O < y < J (ii) 

Here w <c (0, l) is the control, whereas Vi, V2 . ... are identi.:ally and independentlv 

distributed nonnegative stochastic varfabks. Defiuc D"" /.i'{ V 1 • Y]. where V denotes an~ 
of the V,. It is as,um~ that · 

f3 C fO, 1), y E (0, I). I) < oo, p"" (/3D) 1!r < J (iii) 

;,, 
.... 
· .. 

I 
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In the notation of problem (l)--(3), fix. 11;) ,.:.:: (wx)•-r and g(x. w, V)"" V(l.-w)x. The 

opri.111a.licy equatioo (6) yields 

J(x) = ma.x.[(wx)'-r + ftE[J(V(I - w).t)J] 
... 11.'1;(0,fJ 

{iv) 

We gue.ss that J (.t) has the form Ji.r) = kx1·-, for ~ome constaut k. (After all, the optimal 

value funcli.011 had a similar fom1 in the finite horizon version of this prnblern di.,cussed 

in the previous sec1iou, as well as in the detemrinistic infinite horizon version of Example 

12.3.1.) Then, cancelling the factor x1-r, (iv)rcduces to 

k = max [wl-r + {JkD(l - w)1-Y] 
WE(O,J) 

(v) 

where D = E{V l-YJ. Note that equation (v) is the same as equation (iii) in Example 12.3.1, 

eKceptlhat a1-Y is repla.cedby D. Jt follows that.I:::: n -p)-Y and J(x) = (l-p)-Y x1-r, 
with w == l - p as t.be optimal policy choice. 

This example does not satisfy the boundedn~ss condition (3) fot x E U, X,(xo). But 

f(x, w) == (.nn)1-Y :::_ 0 for all x ~ 0 and w =::_ 0. so we invoke boundedness condition A 

in Note 3 above. We need to check that JW(x.) = J(x) when w = l - p. It would be fairly 

ea.~y to calculate J'"(x) directly by taking theexpectalionillside the sum io the objective and 

summing the resulting geometric series. nut there is no need to do this. in.stead, it is evident 

that X, = .T()p' ZJ , , , Z,, so we musl have J'"(x(1) = kxt:, for some constant k > 0. Now 

.f'" (x0) must al~<) satisfy the Bellman equation in the problem where the set U is reduced 

to the single point { w}. Butthe only value of k that satisfies this equation is k = (I - p )-7 , 

a.~ found abovt:. Thus J"'(x) = J(x) when v: = l - p, so rhe specifi~ policy m really is 

optimal. I 

Counterexamples 
Two examples will be given. In the fim. even tbough boundt'.cluess condi1ion (3) is sa1.isfieii, the 
Bdlman equation may still have~ '·false" solution (J, U) that fails to satisfy J = J•. 

Supposc; that f3 '2 (0. l), and consider the problcin 

·X 

max L ti' (l - u,) subj~~, to x1+1 = (l/ tf)(..r, 4 u:), u, lo [0, IJ Xo > 0 given 
:,,.-0 

We show 1hat ihc Belln1an equacioo i~ satisfied by J(x) = y ..;. x, where y = 1 /(l -fl). and thar any 
u = ii E 10, I) yield~ the nw:imum. fndccJ, >Vith J(x) ~, y + x the right-band *idc of the:. Rcllmau 
e-iuation becomes 

m:~{l - "+PLY+ 0/tl)(x + u)]} ,.,. I~ fly+ x 

independenr of u. Ii<>ncc. /(.r} = y -I· .t solve.s the Bellman equa1ion provided th:11 y =I+ {J;,, ~o 
J(,) =. (1 -/W1 +x. 

B11tt.h~n is"•.,., ii= li2, fot in,1anc::, really theop1imal coorwl .• nd is .!ix},., (I - pr·J ·i· x 
the optim11l v:1luc function'! 1n foct they are not. Tiie first tliing ltJ note i~ that .1"(.x) i.s independent 
ot'x, so J" (x) :t, (1 - fl)°., ·l x. ltis evident tl1at u, "'0 is optirru1J, with a cri1£.-rio11 valut 1 /C - fl) 
that is independent of xo. and twiclJ as large as the t'ti.lcrior. value of u, '= I /2. I 
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In rhe ne,\t eXltlllple boundedness condition B in Nole 3 is sa1isf1cd. huL the Bell man equation may 
slill have a "fa.IS(':· solulion (}, u) even though J "'J". 

Cons.ider the proh:em 

1n~xLffx,(u1 -a) subjectto .<1-;.t'··'x,e,,, u,EU=t.U,o,J, Xo>Ogivcn 
1='1 

where a, fl are positive constants satisfying uf, '"· l and P '= (0, rf. Note fu~t that, regardless 
of whkh u, E [0,a] is chosen in each period, one has x, .c: U for all 1, so X(x0) ~ R .•. Also 
f(x, u) = .<(u - a,) :, 0 for all (x, u) Ei R;. x U, so boundedness condition Bin Note 3 is &a1jsfied. 

Bvid<-'11Ely J"(x) ~ Oforall policies1<(..<) andallx:::. 0. But J"(x) = Ofora.lh:::. Oifw~choosC' 
u(x) =a.This must lherefore be the optimal policy. with J = U as the corresponding solu1fon or 
the BelJn1an equation 

J(x) "· .'Jtt'.?(" - a)+ {JJ(x11)) 

Nevertheless, dlis equatioo has an alternative "false"' 6olution of the fonn J (x) = y x, where y is a 
constant. The condition for this to be a solution when x > U is that 

y= max(u-a+,8y11] .,rc·,rr] 

and we seethaty = -1/JJ = -·a works. In this case any u ~ [0, a/ maxmtizes the right•hand side,)f 
the Bellman equation. Ifwechoosethesameu E [0,a) in each period, then J' = L~uP'x,(u-a) 
where-<, = u' x~. Because et/3 = 1, we have 

J
"( ~. . xo(u - a) .to 

xo) 0 ~. :co(II ·-·a) L,(/3u)' = ----·-- = -- = yxo = J(xo} 
,,.

0 
)-/Ju fl 

which is independent of i.. So the function J (x) = .. -x / fJ = y x solves the BeUman et1uation, and is 
the criterion value J"(x) of any corresponding srationary policy 111 a,; oons!3nt E [0, a}. Howeve1, 
J(;<) "'y; ii J"(.t) for the optimal policy u, ·"' et. I 

Iterative Methods 
One way of findin_g an approxunate solution of an infinite horizon dynaw.ic programming 

problem has already been me.ntioned: under certain conditions, 1(0, x, v, T) -+ l(x, v) 

as the tiu.ite horizon T-+ oc. Jn this subsection, we descrihe two different approximation 
melho<ls. Both work within the set 53 of all real.valued bounded functions I (x, v} defined 

no R" x U. Given any policy function u = u(x, v), delioe th.; operator Tu : 2 -+ :B (a~ 

in Note 12.3.4) so that, for ally real-valued bounded function I (x, \') in :8, the transfonncd 

function ru(l) of (x, v) satistks 

T''(I)(x, v) = J(x, u(x, v))-!- pE[l (g(x, u(x, v), \'), \I) j v] 

A l~o. let '/' : :B ---> fB he the operator defined so chat, for any real-valued boundr.d function 

I (x. v) in :B, the transfonued iuocti<•n 1'" (/) of (x, v) :.atislies 

T(l)(x, v) ""miix T"(l)(x, v):.::. max{.f(x. u) ·i· t.lE[T(g(x. u, V), V) \ v]} 
v ut:O 
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The fin;t succ-ivc appro"imation method can he. fomml:,tc,1 as follows. Starting with 

an arbitrary function /.l E :8 su.ch as in"' 0, cakulatc~ucc~s,ively /1 .,·., T(lo), li ,, .. " T(l1), 
3nd so on. Fork = l, 2, ... let the control 111(x. v) b,: one that yield< a maximum al sti:p 

k becau_~c it sati~fie.~ h = T(I,_1) :.:: T""(l1.-1)- (We assume that all the maxima arc 

attained.} 
Provided that the boundedness condition (3) is satisfied, then as sh{1Wn in Note 12.3.4 for 

the det.e!lllinistic ca~e. the operator Twill be acontr.ictio11 rnapp.ing (see Section 14.3). ThC' 
constructeJ sequence of functions h will therefore converge to the unique solution of the 

Bellman equation J :.c T(J), which is the m:1.Xim11m value function. Moreover, it follows 

that the controls Ut (x, v) will be approximately optimal fork large. 
Tbe second approximation method is called policy illlprovement. As in Note 3. given 

any st:U:ionary policy u(x. v), let l''lX, v) denote the expected value of the objective when 

starting from (x, v) at time 0, then using u(x, v) all the time. Clearly, the boundedness 

condition (3) implies that JU E :B. Now. instead of starting with an arhitrary function lo, 

the second method begins with an arbitra,y initial stationary polky llfl whose value is l"". 
Also, let u1 (x, v) be a control that yields the. m.uin1um when calculating T(J"'')(x, v) = 
1"" (.l"°)(x, v) for each (x. v). Next calculate 1 81 (x, v). and ti.od a control u2(X, v) that 
vields the maximum when calculating T(J"')(x, v) = f"'liu)(:x, v) for each (x. v). 

Continuiug in this way, we co11~truct each c,lntrol Uk(ll, v) recUisivcly so that T(J"') = 

r••+'(J"') fork= 0, l, 2, .... 
Let us now define lhe inequality relation :i'; on :B so that. given any J, l I in iJ, one 

has J ~ J' if and only if J (X, v) ,::: l'(x, v) for all lX, v) E iRn x U. We note that both 

operators T and T" are monotone in the sense that if I ~ I', then TU) ~ T(l') and 

T"(f) ~ T"(]'). 
Arguing as in Note 12.3.4, we observe that each 1°1 (x, v) satisfies the Bell.maD equa-

tion when the only possible choice of policy is u,(x, v). Therefore J"' = Tu,()"'). 
But then the definition of T implies chat T (Ju,) ?: T"• (I"•) = J •,. Because the op· 
crator T"' is monotone., one has T11

•·1•1 (TU"')) ~ T-..;·1 (1"•) = T(J"•) ~ f"•, then 

r••+'(T""" (T(J"'))) ~ 7•1+1 (JU•)= T(l"•) ~ J"•. and generally (T'"'')"(T(l
0
')) ~ 

J"•. where([",.,)" denotes the iterated operator that results frorn applying T"'•1 itera­

tively n times. 
Again, provided the boundedness condition (3) is satisfied, then as shown in Note 12-3.4 

for the dl,termini stic case, the opera,or T"'• : , like. T, will he. a contn1ctiou mapping. H,'nce. 
the sequencr (T"''')"(T(J"•)) must conwrge a~ n -+ oc to a limit function/' E :B 
which is the unique Slllution of 'fU.+i (l) ""' l. But thi~ unique limit must be .r•••1

• So the 

previous inequality implies that J"•·•' ~ ;n,. Therefote, 111>. (x, v) iti(.'fcascs monotonically 

for each (x, v) when (3) holds. That is why it i~ called the. policy impro..emcnt method, 

of cour~c. l',ott: that at each step J"••• can be calculated appniximately using the fact.1hat 

(TU•H)"CT(lU')) ·-+ J"''' a.~, ........ DC. 

Finally, we show that l"' (x, v) ~ llX, v) a,; k. -+ oo. for all (x, v). lnd('.ed. delinc 

J"(x, v) == ~upk J"'(x. v). Because J''•·" ;;; .!"' and T"1
•' i.s monotone, one has 1°•• 1 = 

T"'.; uu,.,) ?; '['••+1 ( J ••) = T (f"'). Monoronicity of T implies that .! ' = s11pk J"<+: :> 
~up1 T(JU•). By a similar aTgtnncnt, J" = supt J"" = sup>. Tll,ll}0

') ~ supk T(J"'). 
The two inequalitics 1.011echcr imply that J' = supk T(.l•• ). But monotonicity of T abo 

gives surk T(J"'} = T(supk J"') = T(J ·i- Thcrcfo1e, J* solves the Bellman equation 
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.l" = T ( J • ). But houndcdncss condition (3) implies thar rhe unique solution of the Bellman 
e.q nation is J = J •, tile value of an optimal poli<;y ft. Hcnc,:-, J' = J = Jil., ~o J"• -+ J 
ask-+ oc. 

~ 1. Consider the pn1blc:m 

ma.,: E [tP1(-11; - X;)], i3 '= (0, 1), u, Ee R 
r=-0 

X,+i=X,+u,+V,. E[V1]=0. £[•/J=d 

(a) Guess that hx) is of lh<' form ax2 + b. a11d inse1t it into the Belt man equation ( 6) to 
detcrniir1e u and b. 

(b) Solve the cor,esp<indiog fini(,; horizon p.robtem asswning J (1, x) = {J' (a, , 2 +b,). (We now 
swuon.lyupt<Hiinc T.) FindJ(O, x0 , T), Jet T-> oo. and prove rhat J(O. •o, oc) = J(r, .t) 
(we are in ca.~e B of Note 3). 

@ 2. Solve !he problem 

max E [I:«'(lnu, +lnx,)J. X,+1 = (X, -1,,)Vr+I• .ro > 0, u, E (O.x,) 
l....0 

where a E (0, 1 ), V, 
j £fin V, JI <. DC. 

0, and all the V, are inde)lt'J1denr and identically distribu[ed wich 

13.1 

We could, of ccr:r:.,, rii~miss the rigorous proof ,is being 

superliuous: if a theo~m is geometrically ot;,vio,,s why ,>rove it? 
fhis was ex,~aly rhe attitude taken in the eighteenrh cenn,,y. nie 
resulr, ,n rtr;, ninereenth centu(Y, was chaos and confusion: for 

intuition, unsupported by logic;, ttabftuatly .~ssumes that 

everything is much nicer behaved than ir really is. 
-1. StCwJrt (197 Si 

Tnis chapter concentrates on a few theoretical topics that turn out to be useful in some 
part!. of economics, notably general equilibrium theory ar,d its application~ to modern 

m;icroeconcmics. 

Section 13. 1 takes a closer look at open ond closed sets in R0 , together with a number 
of closely associuted concepts. Next, Sections 13.2 and 13.3 cover converg,mce, compactness, 

and continuity in R·". These concepts pl;iy i'ln important pnrt in mathematical analysis. Thei.­
systemanc study belong~ to general er analytic topology, an import.1nt br;inch o! rn>1thematics 

that ~aw a period of rapid development early in the 20th century. The precise definitions and 
carefolly formulated argument!. we provide may strike many readers as rather formal. Their 
primary purpc~e i~ les~ to provide methods of solv;ng concrete problems than to equip the 

reader with the theoretical basis needed to understand why sotutions may not even exist, as 
well as their regularity properties when they do exist. In the case of optimization problems, 

these ideas lead to the versions of the maximum theor~m tha! are the subject of Section 13.4. 

Section 13.5 introduces some concept; ,md re$ults on convex sets, suppl~menting the ma­
terial in Se(.tion 2 .7.. Separatior, theorems, which are useful in bo!h ge,1eral equilibrium theory 

and opt,mizafon theory, are discussed in Sedio~ 13 .6. Section 13. 7 on "productive economies" 
and the f>erron--Frobenius root of n r.onr.egative square matrix concludes the chapter. 

Point Set Topology in Rn 
Th.is section begins by reviewing some basi(' facL< concerning then-dimensional Euclidean 
spa<)~ H", whost elements, or poinb, a.re n-vectors x = l.x1, ... , x.). The Euclidean dis· 
lance d{x, y) betwee.n any two points x ""(x,, ... , xr.) and y"" {y1, ... , y.) in IR" is the 

norm ;,x - y[I of rhe vector difference oc.rween x and y. (Sec (l. l.37).) Thus, 

r -. ---·-· .............. ; 
d(x. y) s,-, l!x - YII = y (.i1 -· Yl )- + · · · + (<., - y.J- ( l) 
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Not~.tllat.,i(x,y) ~ ,;(x1 - }'j)• = 1.xi-Yjl foreachj andthatd()(,y) ~ E1~1 lxi--Yil· 
(See Problem 3.) Moreover, if x, y. and z are point< in R", then 

d(x. z) ~ d(x. y) + d(Y., z) (triangle inequality) (2) 

which follows immediately from (1.1.39). 
Recall that if a is a point in R" and r is a positive number, then the set of all point~ x in 

W wh(~~ distance from a is less than r is called the open ball around a with radius r. This 
open ball is de11c>ted by H,(a) or B(a; r). Thus, 

B,(a) ::.1:/(a;r) = (x ER": d(x,a) < r} (3) 

On the real Jin~ R = IR1, with a= a1, the set H,(a) is the open interval (a1. - r, a1 + r). 
If n = 2, then 8,(a) is an open di~k: in the plane. In three-dimensional space ~3, B,(a) 

is the set of all points strictly inside the surface of a sphere with centre a and rndius r, as 
indjcate<l in Fig. 1. (Points on a dashed cwve <lo not belong to the set.) For n > 3. the open 
ball IJ,(a) is the set of all points strictly inside the surface of the hypersphae of points " 

satisfying d(x, a) = r. 

i 
IJ' •• 1 

/ 
.,.,,/ 

Flgu~ 1 The open ball around a with radius r. Figure 2 B,(a} is an open set. 

Let S be any subset of 1W'. A point a in S is cal led an interior point of S if there is aTI open 
ball B, (a) centred aca lhal lies entirely within S. Thus, an interior point of Sis immediately 
surrounded only by points of S. The sel of all interior points of Sis called the interior of 
S, and is denoted by int(S) or S". 

A set Sis called a neighbourhood of a if a is an interior point of S-that is, if S contains 
some open ball B,(a) around a. 

A set S in i:?" is called open if all it.~ members are interior points. On the real line IR, the 
simplest type of open set is an open interval. 

EXAMPLE l Prove that any open hall 8' = B,(a) is an open &et. 

Solution: Take any point 7, in B' and lets :: d(a, 7,). Thens < r. Con.~i<lcr the open ball 
H" := B,._, (z) with ccnm~ 7. and radius r - s. (See Fig. 2, which illustrates the pniof when 
n ::= 2.) For any point x e B", the triangle inequali1y implies that 

d(a, x) ::o ,J(a, :,.) + d(z. x) < s + (r - s) "'r 

Hence, x E 11'. We ha"c proved that B" s;. JI'. which shows lhal B' .is open. 

! 
' '-
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Show that ,1 = {(x, y) : ;c > y) is an open set iii Ri. 

Solution: 'lake any point (x(I, .•·n) in A. Deline r "" xa - Yo > 0. We claim that the open 
disk B::::: B((x0 , y0 ); r/2) wilhccntrc (:to, JllJ) and mdiu~ r/2 is contained in,\, which will 

show that .4 is open. .• 
To sec this, tah, any poinl (x, y J in B. Then both Ix - xa; < r /2 and !Y - Yo I < r /2. 

Hence x :> xo - r /2 and y < YO + r /2. lt follows thm x ·- y > xo - Yo - r = 0, and .so 
(.<, y) E' ,1 a.~ claimed. I 

The interior of any set S is open. Indeed, take any x in inc(S). Then for somt: positive 
number r, the ball B, (x) is contained in S. Take any point z in JJ, (x) and chooser' ~o small 
thac B,·(z) <;; B,(:i) (see Example l). But then B,,(z) <; S,and soz E intS. 

In fact, the interi<lt of a set is it~ largest open sub,ec (see Problem IO(a)). Hence, S = 
int(S) if and only if S is open. 

Some importanl properties of open sets are summarized in the following theorem: 

(a) The whole space '.~" and rhe empty set 0 arc both open. 

(b) Arl>io:acy union~ of open set, are open. 1 · 

----(.c)-~:.-~:~e:.~:ti~~-:::ly =~~cn-~=~~-~:~---------j 
Proof: (a) It is clear that B1 (a) <; R" for allll in R". so R" is open. The empty set 0 is 
open becau~e there is no member of 0 that fails to be an interior point. 

(b) Lee (U;};u be an arbitrary family of open sets in IR", and Ice u• = U;e/ U; be the 
union ofthe whole family. For each it in U • there is at least one i in T such that x E U;. 
Since U; i.s open, there exist& an open ball B,(x) with centre x such that. 8,(x) s;; U; £ u·. 
Hence. ,.; is an interior point of U'·. 1l1is shows that u• is open. 

( C) Lee { U;}7'~1 be a finite collection of op,:,n &CIS in i?", and lei U • :: nf'~ 1 U; be th.: 
inten;ectioD of all these ~els. Let,.: be any point of U •. Then for each i = 1, ... , m, the 
point x belongs to U;, and because U1 is open, there exi&ts an open ball /I; "" B,, (x) with 
centre x and radius r; > 0 sucb that B; ~ U1• Let B. = B,(x), where r is th<' smallest. of 
rbe numbers TJ, ... , , ... Then B. = n~~: R; ~ ri:'~1 U;, ,;o XE 8. implies X E:: u •. It 
follows that U. is open. • 

NOTE t The: intersection of an intinitc number of open set.s need not be open. For insrance, 

1he intersection of tht: infinite family R1; ~ (II). k = J, 2 .... , of open balls centred at the 
origin O is the one-element ~et (OJ. Yet the set {O} is nN open, becau&e B,(0) i., not a subset 
of (OJ for any positiw r. 

Recall that rhe complement of a $CC S <::: W i~ the ~et CS ::·· IR" \ S of all points in ~,,. 
that do not belong to S. A poinl '4J in R'' i.s cnlled a boundary point of the &et S C R" 
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Notcthatd(x,y):::. .,f{,J - r,f "' '.x; - >ii foread1j andthatd(x. y) ::: I::j_ 1 ~t, - yi/· 
(See Problem 3.) Moreover, if x, y, and 1. ate points in R", then 

d(x, z} ~ d(ll'., y) + d(y, z) (triangle inequality} (2) 

which follows iruruedi.ateJy from {l.1.39). 
Recall that if a is a point in iR" and r is a positive number, then tbc ~et of all points x in 

A" whose distru,ce from o. is less than r is called the open ball around a with radius r . Th.is 
open hall i.s deootcd by B, (a) or B(a: r ). Thus, 

B,(a) = B(a ; r) = { x c iR" ; d(x, a) < r) (3) 

On the real line IR = Rt , with a= a 1, lhe set B, (a) is the open interval (a1 - r, a 1 + r ). 
If n :: 2. then .lJ,(a) is an open disk in the plane. In chree-dimeosional space R-3, B,(a) 
is the set of all points strictly inside the surface of a sphere with centre a and radius r, as 
.illdicated in Fig. I. (Points on a dashed curve do not belong to the .~et.) For n > 3, lhe open 
ball B, (a) is the ~et of all points strictly in~ide the surface of the hypersphere of point~ JI: 

satisfyiog d (.1, a) = r. 

Figure l The open hall around a with rn<lius r. Figure 2 8, (a) is an o~ n s~c. 

Lt;t S be any subset of R". A point a in S is called an interior point of S if there is an open 
hall B,(a) centred at a that lies entirely within S. Thus, aninterior poinr of Sis immediately 
surrounded only by poio.ts of S. The set of all interior points of S is called the interior of 
S, and is denoted by int(S) orS". 

;\ set Sis called a neighbour hood of a if a is an interior point of S-that is, if S concains 
some open ball B,(a ) around a. 

A set Sin ~n is called open if all its memhers are interior points. On the real line IR, the 
simplest type of open set is an opeu inte.rval. 

E !\AMPLE 1 Prove that aoy open billl B' ::= B,(a) is an open set 

Solution: Take any point 'l in B' and let s = d(a, zJ. Thens ,·: r . Con~ider the ,ipen ball 
8" = B, .. ,(z) wit.h centre 7. and radius r - .r. (St."C Fig. 2. which illustrates the proof when 
11 = 2.) For any point x E B", rhe triangle incqtrality implies that 

dfa. x) :: J(a . .z) + d(z , x) < s + (r ·- s) = r 

Hence. x E B'. We have proved that 8'' s; B', which shows thar /J' is open. 
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UAl,Hl6 l Show that .'\ = i(x. y) :.t > y) isan,>pen set. inR2• 

THEOREM 

/r-

Solution: Take any point (xo, )'o) in A. Dcfi.ue r "'"· xo - Yo > 0. We claim that tl!c open 
disk B = 8((..ro, yo) ; r / 2.) with i;enrre (xa, y~) and radius r/2 is contained in A, which will 
show chat A is open. 

To see this. take MY poiot (.x, y) in 8. Theu both ) - xol < r /2 and !y - Yoi < r/2. 
Hence .t > .to - r/2 and y < Yu+ r/2. It fc, llows !hat x - y > xo - · yo - r = O. and so 
(x , y) (: A a~ d aimed. I 

The interior of Wl)' set S is open . .Ludeed. take any x io int(S). Then for some positive 
number r , the ball .lJ, (x) is contained. in S. Tako ,my point z in B,(x) and chooser' so small 
that B,, (i) s; B, (x) (see Example 1). But th~n 8,, (z) s; S, and so z E iot S . 

In fact, the interior of a set is ics largest open subset (see Problem lO(a)). Hena, S = 
int(S) if and only if S is open . 

Some iroportwit propertit'S of open sets are snmmariied in the following theorem: 

(a) The whole space rin and the empty ~et 0 arc both <Jpen. 

l lb) Arbitrary onions of open >.etS are open. L~·--- (c). The intersection of finitdy many open set~ is open. -·------

' I 
J 

Proof: (a) It is clear that 81 (a) ~ R" for all a in 1<1", so r~" is open. The ernpty set 0 is 
open because there is no mr.mbeT of 0 that fai ls to be an interior point. 

(b) Let (U,);ef be an arbitrary family of open sets in ~n , and let CI* = LJ;~J U1 be the 
union of !he wh.ole family. For e11ch x in U • then, is at lease one. i in I such rhat x E U; . 
Since U, is open, there exists an open t>all B, (x) with ccutre x such that B, (x) s; U, £; u•. 
Hence, x is an inte1ior point of u•. This shows that u• is open. 

(c) I.cc {U;Jf: 1 be a finite coUection 0f open sets in IR" . and let U. = n~~l U, be the 
intecseccion of all these. sets. Let x he any poinc of U •. Til<'Jl for each i = 1, . ... m, the 
point x helon~s to U;, and bec:i.u.,e U; is open. there e.xi~rs an open ball H; = B,, (x) v.-ith 
centre x and nr.dius r1 > 0 such tb..ll B; £ U1. Let B, ::.: 8,(.1.). where r is the smallest of 
the numbers r;, . .. , r,... Then B. = n:-:-1 B1 ~ n7'.~, Vi,$() X E B. implies X E: u •. It 
follow$ rhat U. i.~ open. • 

NOTE 1 The intersection of an i.ntinit.e number of open sets need not be open. For instance, 
the inu:rsection of the infinite family Bi, t (O), l: = l, 2. ... , of open halls centred at the 

origin O is !he one-<"Jemem set (0) . Yet the ser {O} is not open, because LI, (0) is not a subset 
of (0} for any positiv.:, r . 

Recall that the. rnmplcmcnt of :i set S s; P." is rhe set CS = R" \ S of all point, in R" · 
that do not belong lO S. A point. XII in R" is ~ lied a bound>1.ry point of the set S S: ~ 



468 (H;\rTFR 13 I TOPOLO GY AND SF. PA!\.A. TIO N 

if every open ball centred at XQ c<1ntai11s at l ease one point in S and M leust one poim in 
CS. Note that a bot1.1.1druy point of S is also a bo\lodary point of CS, and vice versa. Fo; 
installc~. the point ."<Jin Fig. I is a boundary poim of B,(a), 3$ well as a bo1mdary poiJlt of 
the complement of 8,(a). In this pa,ticular case x0 doe.~ nor bcloug to the.: set. 1n gcner.u, 
a set may include none. some , or all of its boundary point<>. An open se.t, howev,~r. contai.u.s 
none:.': of its boundary points. 

ff a poislr x belong~ to a sr.t S but is not an i..uteiior poim of S, then eve.ry opeu b11JI ccout:d 
ar x inte=LS CS, so x is a boundary point of S. The set of all boundary points of a s<:t s 
is o.:al.kd che b•>w1dary of S and is denoted hy FIS or M (S). In Fig. l, the boundary il 8,(a) 

of the open ball Hr (a) is the sphere consisting of all x with d(x, a) = r. The boundary of a 
no11empty open interval (a, b) on the real line consists of the two distinct points a and b. 

T hese simple results imply that, g.i',eu any set S S R", there is a corresponding part.ition 
of ~n into three mutually disjoint sels (.some of which may be empty), namely: 

(i) the interior of S, which consists of all points x in R" such that '8 ~ S for some open 
hall B arowid x ; 

(ii) the emrior of S, which consist~ of all poin~ x in~ for which !hue exists some open 
.b all B around :t such that B s; IR" \ S; 

(iii) the boundary of S, which consists of all points x in It" with lhc property that ewry open 
b all 8 around x intersects h<uh S aad its complement ~n \ S. 

A set S in R" is said lo be. cl05ed if il contains all i.t~ boundary poiots. The union S 'J ;JS 
of S and it~ boundary is cal led the closure of S, denoted hy S or d(S). A. point a belongs 
l<) S if and (mly if cwery open ball B,(a) around a intersects S. The closure f of any sc:t S 
is in d eed closed (see Problem 9(b)). Tn fact, Sis the sm:tlksr closed set containing S (see 
Problem IO(bj). It follows lhat Sis closed if and only if S = S. 

W e noted above th.it S aud CS have the same botJnd:uy point.:<. Furthermore, a set is open 
if and only ii' every point in the set is an interior point, i.e. if and only if it contains none 

of iL-s boundary points. On lhc other hand, a sci is closed if and only if it contains all its 
boun d3ry points. It is easy to see th111 the following is true: 

A set in ~n is closed if and only if it~ complement is Op<!n. (4) 

Herc arc the most important propenic.5 of closed sets: 

TIIEO RfM I l 1 2 (PR"JPE.IHI~~ OF '" IOH! - ----···----! 
i (a) The whole space R• and the empty set fl an: both closed. i 

(b) Arbitrary intersections of closed set~ arc closed. j 
i (c) ".fhe m.uon of tinircly 1na11y closed sets i.s close-11. j 
'--- - -·-·-·---·---- --·- -·--·----- - - ·------- ·---.. - -.J 

Proof: l'art (a) is ohvi()ns. To prove (h} and (c), ~ee Problem 12. • 
NOTE 2 lnfutitc tmion:. of closed sets need 1101 he clos<:d. ISw Problem 11 .) 

1,'· 
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Ouc should be careful m note the technical mGfl.Oiug o f the wor<ls <>pen aud closed. In 

everyday usage the~c words arc opposites. (A cafc is cithe.r open or close.<l!) l.u t<>pology, 
bowewr, any stt cont.ai.n.il1g rnmc hul not all boundary point!! is neitht,T open nor closed. 
The half-open intervals [u, b) am.I (n, b] in R for Cllample, are neither open uor dose,!. 

Am)tbcr exllillple i~ fudica1e<l in Fig. 3. (r,/e follow the u.sual convention that the da.sbt:(! 
c.:urves represent poin ts tlrnt do not belong to S, whereas the ~nlid curve consist~ of pointll 

that belong to S.) H,:;re. a i.• a bound.'11')' poiut thm. belong~ to S, whereas bis a houndary 
point that does not belong to S. l he set Sis neither open nor closed in ~z. By coon:asl, the 
empty ~-et, 0 , and the wb.ole spac.:, R", are both open 811d d ose.d. The."<C are the only two 
~els in 'R" that are both open and closed. (See Problem 14.) 

t 
1 

., 

I a ~ b 

L .--.- ·--·-
Figure 3 

Economic analy.~i~ oft~n involve$ sets defined in quite complicatt:<l ways. Tl may be difficull 
to sec th~ practical teh::v:mce ofknowing whelhera given set includes or cxctudc.s a particul:tt 
bound:iry poinr, yetsueh knowledgecan determine which umthe1natical tools areappJicablc. 

PROBLEMS FOR SEC TIO.;..N;....;..1,..3_1 __________ ...;....--------

1. Sh,1w thm if x anti y are p<>inL~ in R" such th&.l d(x, y) < r , then -r < x,; - Jj < r for all 
j = I, 2, .. .• n. 

2. Show that if x. y, and z are point~ in R". thCfl ld(z, :t) - d(z. Y)I !: d(Y., yj. 

3. Show thal ifx cc= (xi , ... , x.) aaJ y = (y,, . .. . y.}, then d(x, y) :, Li=l ix, - Yj l· 

4. 'The shaded .trca.~ and the c.ur•,c~ i.n lb<- figures belvw suggest five dill'L'TC1lt $CL• in the (lllllle. 
Which \) f them are open and/or clo:;e<l? (Since the scis are improcisely ,\~fined, tbc answer cao. 
Mly be rough.) 

s, s., 



470 Cl!.I\Plt::R 'J I TOPOLOGY /\ND ~E!'ARATION 

5. Sketch the ser S = I (x. y) E: R2 : :r: > O. y ~ fix} in the plane. Is S closed? 

6. (a) Let Ebe the. suhsetin R2 con,istingoflhe poim (0, O} and all point.~<>(the form (lin, l /m) 
for n "· 1, 2, ... and 111 = J, 2 •.... 1~ E closed7 

(b) Let Ii bctl>e sut>setinff1 defined by F = {(0.0)}lJ ((l/11. l/11): 11 ~·· 1,2, ... }.1$ F 
cll)sed'> 

7. Con~itlcr the following three subsct.s of R2 : 

1\ = {(x, y): y ,., l, x E u::(2n, 211 -t- l)} 

8 = /(x, )'): y E (0, 1), XE u:,{Jr, 2n + !)} 
c = tc.t. y): y ·"' 1. x e: u:::.ir2n. 2n + 111 

For each of these sets de.termim: wh~ it is open, cl01,ed. or neither. 

8. Sbow that 1hc boundary i!S of any set S in R" is closed. 

@ 9. ( a} Show that, if S :ind T are suhser.~ oflt'' such that S s;: T, then 

int(S) s;. im(T} and cl(S) S c\(T) 

(b) .Show that for aiiy set S io lR"', the clo~ure cl(S) i~ a closed set. 

10. Let S he a subset of W, and let 'l1 = {U s;: IR" : U s;: S and U i~ open} be the family of rul. 
open subset.~ of S. Similarly, let !F "' \ F s;: R" : F 2 Sand P is clo.Sl.'.d} be the family ,,fall 
closed ~up~r:.ecs of S. 

(a) Show that int(S) "' Uueu. U. Thus int(S) is tbe large~! open subset of S. 

(b) Show that cl(S) = nFeF F. Thus cl(S) is the smallest clvscd $0:I contaimni; s. 

11. Show by an example tbat tbe Wlion of infinitely many clo~cd secs need not be close.d. (Hi,;i,· 
Apply De Morgan's Jaws to the example in Note 1.) 

12. Use. De Morgan·s laws (.-\.J.10) and the results of Theorem 13.1.1 to prove prop<,.,.fies (b) and 
ic) i111l1corem 13.1.1. 

HARDER PROBLEMS 

13. (~,1.0 be rhe get of rational number.-. Prove that Q == R aml i/0. = R. 'W"hatis the interiorofQ? 

14. Ptove that the empty set~ and the whole space R• are theouly setsio R" that are. both open 311d 
closed. · 

@ 15. WJ,i.::h ofrhc following statements are uuefor all subset.~ S anrl T ofW? 

(a) intr_S) ,., int(S) 

(c) as,:: s 
(bJ '.rl;'f = SUT 

(d) S is open ~ Sn I' ;: fi'i't 

i 
I 
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13.2 Topology and Convergence 
A sequence {X.tl = (.X)·l.t':;..,.. txd; in u:!1" isafunctionthatforcachnatural numberk ;iclds 
a corresponding poim x.1: in R". (SeeSectionA.3.) The point x.1: is called thek1hterm or ktli 
elemem of the sequen~. Nole that the tcmns of a sequence need not all be distinct. 

A sequence {XA l in ~· converges to a poin! x if for each i; > 0 there exist~ 
a oatural number N such that llt e B,{x) for all k > N. or, equivalently. if 
d(:i:l, x)....,. 0 as le....,. oo. 

(l) 

L-----·-·------·--·-----------
In other words. each open ball around x, however small its radius s, must C<mtain X.t for all 
sufficiently large k. Geometrically sp,:aking, a.~ k increases, the points x* must eventually all 
become concemnued awund :1:. Note that ic,t oeed not approach x from any fixed tli{ection. 

and the distance d(x1, x) need not decrease monotonically ask increases. 
If { xk} converges to x we write 

x,; ... x as k ....,. oo, 

and call x the limit of the sequence. 

or lim JI}= x 
J;_.oo 

It follows from the definition or convergence that a &equence can have at most one limit 
(Problem 2). lf a sequence is not convergent, it is divergent. 

Toe dc.finitions of Jim.its and convergence generalize che corresponding definitions io 
Section A.3 for sequences of real numbers. Toe following result states that a sequence {xk} 
in R" will converge to a vector x if and only if each of its n component sequences converges 
(in ~) to the correspooding component nf x: 

_____ ,_3_.2 . . I CONVER me Of EACH COM PONENT, ·-----­

; Lei {xt) be a sequence in R". Then (xd converges to the vector. x i.n R'' if and I 
r· 
! only if for each j = I, .... 11, the real number sequeocc {..t?l l~1. con~istiog of I L __ ~1c )th compone~t~::~tor "b converges to ..i:Ul, the }th component of x. I 

Proof: For every k and eve.ry j one ha.~ d(xk, ,,;) = l\:Xk - xfl ::,: lxfl - x<f) ! by defmiticm 
(13.l.I). So ifXt ..... x, thenxt -> x<i),;;:: x<il. 

Suppose on the other hand that x?--+ xfJl for j "' I, 2, ...• n. Then, given any l > 0, 
for each j :: 1, ... , n there cxim a number N; such that 1xt - .<<j)! < e/ ,/ii for all 

k > Ni. It follows tha£ 

r-" ···---

d( 'I (IJ (I) 12 , or.) 1.\
1
2 .••2·- r-,; X.1:,X)=y..ti ·•·•X ·+···+)Xlt ···.t · <,/8/n+-··+&2/11~vt··=.f.: 

• 
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' 

This ch:uacleri:,.ation makes ir easy to translate tbeorem~ ahout sequences of numbers into 
theorems about. sequences in Rn. 

Let {:xd br. a sequence in R". Consider a suictly .increasing sequence k1 < k2 < k3 < · · · 

of natural numben;, and let y1 "" :r.k; for j "-"' I, 2, .... ~ sequence (yJ Jt1 is called a 
subsequence of {.xk], and is often denoted by!~; l~1• All tenns of !he. subsequence {xt1 )j 
are present in the original sequence {X. lk- (Sec Scctio11 A.3. l 

Cauchy Sequences 
Cauchy sequences of real numbers are studied in Section A.3. There is a natural gencral­
i1.arion to ~n. 

CAUCHY SEQUE N CES ------ -·-····-··---·-----.-------------, 

(2) 

L 

A sequence (xx} in lRn is called a Cauchy sequence if for every,; > 0 th.:re 
exists a numbet N such that d(Xi, x,,.) < E for all k > N and all m > N 

THEOREM 

Tue main result.s in Section A.3 on Cauchy sequences ill lR carry over without difficulty to 
.sequences in ,i;:•. In particular: 

13 2.2 GAUCHV'S CONVERGENCE CRITERION! ··· ]. 

A sequence { xk} in R" i~ ~onvcrgcnt if and only if it is a Cauchy sequence. 

Proof: TI1e proof that a convergent sequence is a Cauchy segue.nee is left to the reader as 
Problem 3. A8 for the converse, let (xt} be a Cau~·hy ~equence in IR". For each j = l, ... , 
n, the Jth component .sequence {x? h satisfies Ix? - x!fl I ~ Ux~ - x., Ii, and so it is 
a Cauchy seq11ence in Ill.. ThtU>. according 10 Theorem A.3.5, for each j the component 
sequence fx!i\ must converge to a limit x<i> i.n R. But then Theorem 13.2.1 implies that 
(xt} converges to the point i = (x<1l, ... , xcn)). • 

Convergent sequences can be u.~e<l to charn.cterizc. very simply the clos11re of any set in IR". 

TH!,OJUM 13 ] 3 Cl 5Ull1' AHO CONVERGHICE' ---- ,4 
(a) For any set S S !<", a point a in R" belongs lo S if and only if a is the limit 

of a sequence lxk} in S. 

(b) I\ s,~t S ~ II?' i~ closed if and only if every convergent sequence of points in ! 
S ha.~ it, limil in S. 

--... ·••>••··--·-.~.--··---- --- .. _...-----------

Proof: (a) Leta': .5, for e.ach natuntl .number k, lhe npen hall B(a; 1/k) must intersect 
S, so we c.a11 choose an -xA in B(a; l / k) n S. TI1co XJ: ...,. a ask --+ oo. 
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On the other hand, ai-sume thal a= limk-oo 1(,1; for some sequence {Xk] in S. We claim 
that a c S. Indeed, for any r > 0, we know that Xt E B(a; ,) for all large enough le.. Since 

"• al8o belongs to S. it follows that H(a; r) n S 'f' ~- Renee, a"' S. 
(h) Assume that Sis closed, and lc,t {xd be a convergent sequence such that x.i 1;. S for all 

k. By part (a), x "' lim( ~ belongs 10 .f = S. 
Conver~ely, suppose lhat every convergent sequence of point, from S has its limit in S. 

Let a be a point in-~- By (a). a ""limk llk for some se..1uence l<A in S, and therefore a E= S, 
by hypotbcsi~. This shows chat s· ~ S. hence Si~ closed. • 

Boundedness in Rn 
A set S in IR" i.s bounded if there exists a number M such that Jlx[I ~ M for all ,,; in S. 
In other words, no point of Sis at a distance greater than M. from the origin. A sec chat is 
not bounded is cal led unbounded. Similarly, a sequence ( xi l in Rn is bounded if the set 

( x. : k == I, 2, ... } is bounded. 
It is easy to sec that any co1T11ergen1 sequet1ce is bounded. For if Xk ...,. x, then only 

finitely many teuns nf the sequence can lie outside the ball Blx; I). This ball is bounded 
and any fmitc set of point~ is bounded. so tht. so::quence lxt l must be bounded. On the 
other hand, a bounded sequence {Xk} in ~· is not necessarily convergent. In fact, a bounded 
&equence (x.1 \ may well ''jump around" and not converge to any poinL A one-dimensional 
example in the: line~ is the bounded ~eqoenee Xk "' (- I )t, which has no limit. 

Suppose {xk} is an arbitrary sequence in a bounded sub&et S of ,Q•. Even though (x>.} is 
not necessarily convergent, we now show that it must contain a convergent sub~equeuce. 

Figure 1 

Consider tirst the .:ase where n "' 2. so that S is a h,)1mdcd set in the plane, a~ illustrated in 
Fig. 1. Then there exisL~ a square Ko so large that S is contained in Ko- Let L dcn.>le the 
length of each side of K~- The infinitely many tc.-rms of (xtl then all lie i..11 Ko. Divide Ko 
into four equal squares, each of which has ~ides of length L/2. At least oot~ of these four 
squares. say K,, must contain Xt. for inlini1cly many k. Pick one of tJ1ese tenn,. ~ay xk,. 
N~xl, divide KI imo four equal squares. each of which bas sides nf kngth L / 4. J.n at least 
one of them, say Ki, there will still be an infi1Jite numher of tcnns from the sequence. Take 
•>DC. of them, Xk2, with k2 > k1. Cnnlirroc in this way, dividing each succe~sive square into 
smaller and smaller "subsqu:iJ'es" K1, K~ •... , a, indicated in fig. l, while also obtaining a 
subsequence {x;,1} of {Xk} with X.; il1 Ki for j "" J, 2. . . . . It seems intuili'vely obvious that 
thi, subsequence con'1crges to a unique point \~hich is th~ intersection of all tl:,e .,quares Ki. 
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Fnr the general ,:a;;e whero n may not equal 2, SU flpose S is a b<x111dcd set in R" and let 
Ko be an n-dimen~ional cob.: containing S whose side.<: are all of k.ngth L . We can tllC!J 
divide e:i.ch. successive cube "Kj- I, j = 1, 2, . .. , into 2n equal pan.~. each having side~ 

of length L/V, just a~ we divide.d the 5quaxe into four equal parts whcu n = 2. At lea.st 
one of these smaller cubes, co.II it Kj, will comain infinitely many tt.'trn~ of the sequence 
\x.,}. This gives us a sequence f K1) of cubei., ~ch lying iDside iL~ predecessor ruid having 
sides of length L j2i and a diagonal or leogrl1 ,,/nL/21. j = I, 2, . .. , and o:.ich containi.ug 
infinitely many xk. As io the lM>-<limensional case, we can find a subsequence {xk1} of {xk \ 
such lhat x,

1 
E Ki for j ::: l, 2, .... Then whenever i, j 2:: m, the poiuts xi. and x1,,

1 
both belong to K., and therefore d(x1:,, Xk;) ~ .J,iL;zm. Hence the subsequence {xk1} is a 
Cauchy sequenee in R", and is therefore convergent 

It is both unsurprising 1111d easy to prove that, if S is unbounded. then there is a sequence 
in S witllout any convergent subsequence (see Problem 4). Hence, we have proved that: 

THEOREM 13 2.,,! .. ········ - ······•·· ·-····- ···-·"····· ---·- ·----···--- ---------{ 
f 

t 
i 

I 
A subset S of R" is bounded if and only if every sequence of points in S hns a 
convergent subsequence. 

-·- - - --·- ---··---.. ·---··--···--·-··-----.. -···--- ·--··- -·-·,.·--------· 

THEO EM I 

Compactness 
A set Sin R" i~ called compact it il is both closed and bounded . An i.wportant example of a 
compacl set in IR" is the closed ball B(a; r) = ( x ; d(x, a) ~ r J (v,ith r > 0). Of course, 
this is thc elosure of the open ball B(a ; r) =I t: d(x, a) < r ). 

Compactness is a central concept io mathematical analysis. lta!so plays :i.n importantrole 
in ma!.hematical economics, for example when proving cx:.i.steoce of solutions to maximi7,a­
tion problems. Compact sets in i.:" can be given the following very usclul cho.r'.icterizatiou: 

2. 5 (BOLZMJO-WEIER<;TRASS - -· .. ---------·----- . 
A subset S of R" is cornpnct (i.e. closed and bounded) if !Uld only if every 
sequence of p(>ints in S has a subsequence that converges to a point io S . 

f 

' _. .. 4-1 

Proof: Suppo~ Sis compact ancl let {xk) be a scquen.ce in S. By ThMrem 13.2.4. {x.t} 
contains a convergent subsequence. Since Sis closed, it follows f.rom Theorem 13.2.3 thnt 
the li.mh of the .~ubsequcnce must be in S. 

On the otber hand, suppo,;e thal. every sequence of points in S h$ a subscqucoce con­
verging to a point nf S. We must prove that Sis closed and bounde.d. BotUldt:dne.~s follows 
from Theorem 13.:2..4. To pruve that Sis closed, Jet x t>e aoy point in its closure ,( By 
Theorem 13.2.3 the.re i!!' a ~e.quence ix1J in S with lim, .... 00 'I(~ :.::: ''- By assumption f:'<t } 
has a suh~equence. (Xk,) th~t convcQ;eS ro II liruit r in S. But {x11 ) al~> cunvergcs :ilso to x. 
U:;ing dlC answer to Problem 2. it follows that x ~-?! e: S. • 

I 
I 
i 
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PR08llMS FOR SEC""ION 13 2 

13.3 

1. Find !lie liroiLS of the follcw,ng scqu~ncc:s in R1 if the limit~ c~ist. 

(a) x,= (1/k,! +1/k) (hJ x, = (k, 1.;. 3/fc) 

(C) Xi= ((k + 2)/3k, (-]}k /2kj (d) x, "·"· (1 + 1/k. (l + 1/k)') 

2 . Prove that a !<equencc in R" cannot con,·erge to tOOre th:in ooe point. 

3. Prove th~l every convergent scqucn1:e in W is a Cau~hy =111e.nce. (HinJ: Si:c 1hc proof of 
Theorem A.3.5.) 

4. Pro,·e that if c-.~,y :;equeoce of points in a set S in R• contains a C<nlvcrgeot subscquctlCe, then 
S is bounded. (Rinr: If S is Wlhounded. th.co for each natural number k there exists an X.t in S 

with ff~ n > k.) 

~ S, Let f x,) be a sequen~e of point~ in n compact suhsct X of IR". Prove th•l if every convergent 
subsequence of (x,} hllS the~= limit 1°, theu {ltk} C<.>oVerge.s to rl. 

@> 6. Show that if A and Bare ~ompaa s~ ofR"' and R", respectively, then the C..a=ian product 
A x 8 is a compact sub~c ofR"+- (when we identify R'" x R' with R"'~' in the obviou6 wayj. 

Continuous Functions 
Section 2.9 dealt with some properties of transformations (i.e. vector-vnlued functions) from. 
(Rn to Rm. ln particular. the notion of differentiabili ty was introduced. This section tal::c:s a 
closer look a l continuous transformations. (Logically, it should teally precede Section 2.9.) 

Considerfirstarea.l-valuedfunctionz = f(x) = f(x1 •... , Xn ) ofn ,·ariables. Roughly 
:;peakiog, f is contil\uous if small ch3nges in th.e i.ndepcndcnt variables cause only small 
change~ in the functiou value. The precise ''f.-f/' dcfi.o.ition is as follows: 

CONTINUITY OF REAL-VALUED FUNCTIO~I~ ,-,~----·---.. ·- •·-· ·--------~ i 

A ful\ction f with domain S ~ o;in is contilmotL~ at a point a in S if for "very 
t: > 0 there exists a S > 0 such that 

l 
I 

j 1/(x) - /(a)! <.: for all " in S with Ux - a! < 8 • 
i i 

(1) 

I If f is c1.mtinuous at cveiy poinl a in a set S, wc. say lhal f is contint1ous on S. l 
L_ __ __________________ ____ __________________ ,. ____ ............. . 1 

As io tho oue-vari:tblt: ca.~e. we b~vc the following useful rule: 

.l\ny function of 11 variables that caa be cnnst111ct.:d from continuous fnnaions by 
combining the opera.tions of adJition, subtraction, multiplication, division, and (2) 
t:omposition of fouctioos, is continuous whefevcr it i.:: ddined. 

Not(. tbi.t if f (x 1 •.•• • x,.) == g(x.), so that f depends <>n x; alone. then continuity of che 
function K with respect to x; implk's cuntinuiry of f with ru,;pect I.Ci (x! ... . , .x.) . 
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Consider next the case of tra'!lsfonnarions from ?.• tu nm inmiduc~d in Section 2.7. 

A mwsfonnatio.a (fuuction) r = (f1, •••• J.,) from a subset S of iR" to~"' is 
said to be continuous at x0 iu S if for cvei:y •: '> 0 there eitists a .S > 0 such that. 
d(f(:,,:), f(x0)J < ,.. for all x in S with d(x, x0) < ~. or e.quivafontly, such lhat 

C(l/8 (x0) n S) ~ B,(f(x0
)). 

. . .•.. . .......................... -··''· ..... " ··-· .. ·-·-~··· ,,. .............. - ............... ,, ................................ ~ ... . 

(3) 

Intuitively, contiouity off at xo means I.hat f(,c) is close to f(x0
) whenever xis ~ufficiently 

close to x:l. We call f cnnliuuou.s if it is continuous at every point in its domain. 
Frequently, the easiest way to show that a transformation is continuous is to use the 

following condition. lt can often be ve1ified by applying (2) to each separate componenL 

THEOREM 1~ 3 l (C0N'f1NUtTY 0F E (H COMPONENT L -·-·--·-··---, ........ ·-·-1 . . l 
A fuDction f from S :,; IR" to IR"' is coutinnou.~ al a point x0 in S if and only if ! 
each component func.rion Ji: S.....,. :il, j = l, .... m, is continuous at :i:0. ! 

i 
••• •••• • _ .......... , ··~ .,.,_, .. , ... _ .... ._ __ ,...~,n.,•-•,•••"•-··'""•..,••'"..__, _ _. ___ ,_.__ 

Proof: Suppose C is continuous at x0 • Because d(f(x), f(x0
)) :::= 1./J(X) - Jj(x0)1 for 

j = 1, .... m, it follilws from (:3} that for every ,: > 0, there exists a o > 0 such that 

IJj (x) - Jj(x0)1 < E for every x in S with d(x, x6) < 8. Hence Jj is continuous at iJ for 

j= J, ... ,m. 
Suppose, on the other hand, that each component /; is continuous at x0

. Then. for every 

f > 0 and evt.'TY j =I, ...• m, there exis1s a ~j > 0 such that l/1(x) - Jj(:x0)1 < •:/./in 
for every point x in S with d(x. xq) < OJ. Leto = min{ ~1, ... , 8., ). Then x E; B,(x0

) n S 

implie.s that 

This proves that f i.~ contianous at. x0
. • 

Continuity and Sequences 
Continuity of a functiou can ht: characterhed hy mc~ns of convergent sequt·nccs. This is 

often the easiest way m check continuity. 

T HE.OREM 13 } .2 ·· ·1 
A function f from S S: ~" into i:l"' is continuous at a point i:.0 in S if a11d nnly if l 
f(x1) .. , flx

0
) for every s,,qnence {xd o~~-"'.n~s-u1-~-~~~~~~n~~r.~~~,-~o:u: ... ___ .J 

I 

i 
I 
I 
I 
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Proof of "only if": Suppose rhat f is continuous at x0 , and lei {x.} be any seiwcnce in S thsi 
converges to ,.o. let P. > 0 he given. Then there exi.~ts a~ > 0 such thac d(f(x), f(:x0)) < e 
whenever x E: B~("Y.0)r',S. Because Xk --+ x0, 1hereexisL~ anun1ber /II ~uchthatd(xt. x(I) < il 
fornllk > N. ButEhcoforalU > Nonchasx.,, E B~(x0)nS,andsod(f(xk},f()(0)) < r.;. 

Thi~ implies 1h31 (f(x,l')} (>onv~s to f(x6). 

The proof of th~ rever.;e implication i~ left to the reader as Problem 6. • 

The following propc1ty of continuous functions is much used: 

LeLS ~ R" andktf: S--,. Gr be.continuous. Thcnf(K) = {f(x}: x EK) is 

compact for every ('Ompact .~ubset K of S. 
.. ___ ,.,. ____ _ 

I 
I 

! 
! 
L 

Proof: Let (YA J he any sequence in f(K). By definition, for each k I.here is a point Xt 

in K such that Yk :.o f(x_.). Because K is compact, the sequence {xtJ has a subsequence 
Ix~, I converging to a point :I() in K (by the Bolzano-Wcicrstrass theorem, Theorem 13.2.5). 

Becau.se f is continuous, f(xk,) .... f(XQ) a.s j --+ oo, where f(Xo) E f(K) because >io E K. 
But then {y;.1 l is a sul:>sequence of (yd that converge." to a point f(XQ) in f(K). So we have 
just proved that any sequence in f(K) has a subsequence converging to a point off(K). By 

Theorem 13.2.5, ii follows that f(K)·is compact. • 

'Theorem 13.3 .3 can be used to pnwe th~ extreme value theorem. TI1eorem 3 .1.3: 

Proof of Theorem 3.1.3: By Theorem 13.3.3, /(SJ is compact. In particular, f(S) is 

bot111ded, so -oo < o = inf f(S) an<l b = sup /(S) < oc. Clearly. a and bare boundary 
points of f(S). Because f(S) is closed. both a and b belong to f(S). Ht>nce, there must 
exist pilintscandd in S such that /(c):: a and f(d) = b. Obviously c is a111inimumpoinl 

and d is a maximum point • 

A Characterization of Continuity 
Suppose that. f is a continuous function from r_all of) IR" 10 U{"'. If V is an oilCn set in 
~·. the image f ( V) = {f (x) : x E \I} of V 11eed nol be open in P.m. Nor oet\d f ( C) be 
closed if C i.~ closed. (See Problem 3.) Nevertheless, the inverse .image (or prcimage) 

f"1(U) "-'- {x : f(x) E UJ of an open set U under a continuous function f is always open. 
Simil:,..rly, me invc.rsci.mage of any closed set is closed. Tn fact, we have the followi.ag result: 

HA Al_ Tf.RIZ·A nor 

Let f be any funt·tion from (all ot) :i,1" ro 8-l"'. Then f is continuous if and <•nly if 
citha of the following equivalent condition, is satisfied: 

ta) r- 1 (U} is open for each opens.er U in~~"'. 

(h) r··· 1 ( F) i$ closed for each dosocd set F" in !R"'. 

! 
! 
I 
! 

.I 
i -· -···--------·-----·-·-·-·--·-·--··-··---- _,_...,,,,,: 
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This theorem i.G a srr.tightforward consequence of'l11con;m 13.3.5 below, which deals with 
the mon, gener:tl case in which r i.~ not. nc.ccssarily dcfin.~d ou all of IR" . 

EXAtlP.lE 1 .Lo faamples 13.l.1 aud 13.1.2 we used Che ddinition of openness directly in order 
to prove that two particular sets were open. Such proofs oowme mucb easier once, we 
understand how the above test can Ix applied. 

For example, ro show that the set B' ""· l:l(x; r) = { x : d(x, a) < r } in Example 13. 1. I 
i s ope11, define lbe function f : R" -> R by /(x) "" d(x, a). Then f i:< continuou~ (sec 
Prol:>lem 4), (-oo, r) is open, and 8' = 1-i«-·x, r )). By 111eorcm 13.3.4, B' iij open. 

Tu pwve that the set A = f(x, yj : x > y) i.o. E:11:ampk 13.J.2 is open, defule the 
continuous fun,·tion g from R2 into R by g (x, )') = x - y . Note that (x , y) E A if aml only 
i f g(x, y) > 0. Hence A = g-1 ((0. oo)), and so A is open. I 

EXAMPLE l Let U(x) = U(x1 . .. . , x.) beabousehold's reaJ. valut;d utility function, whcrexdenoto,s 
its commodity ve.ctor and U is defiucd on the whole of Ill". Recal l from Example 2.2.2 that, 
for auy real number a, the set r., = ( x E H" : U(x) 2: u) is an upper level set (or upper 
contour set) for U. lf U (x0) = a , then r" consists of all vectors that the household value.s 
at least as much as x.0. (See Fig. 2.2.5.) 

Let F be the closed interval [a , oo). lben 

r. = {x E R" : U(x) ::: a) = (:x E R": U(x) E Fl = U - 1(F ) 

A ccotding to n,eocem 13.3.4, if U is eontinuous, then the set r a is closed for each value of 
a. Hence, continuous fwu;rions 1:emm1te closed upper level seis. They also gcnt"Xate closed 
lower level sets , which are sets of the form ( x E IR" : l} (x} s u J. 

In &tandard microeconomic thN>ry the set { x E R" : U (,:) = a J is called an indif­
ference surface for U. The subset of ft consisting of the single point {a) is a closed set. 
The indifference surface c-0,Tespoading to a is the set u-1 ({al). We conclude that if U is 
continuou..,, then !he indifference surfaces are all closed SdS. I 

Relative Topology 
Sometirncs we are concerned only wirh a give.n ~ub~et S of R". For example, S might he the domain 
of a function th11t. like a Cobb-Douglas proou.:tion function. is not defined <>n the whole of R" l'.<:ec 
E xa,nple2.5.5). Suhsc1s of Smay be open ordose.d relative to S in a scntoe that we shall now define. 
The~ dcfinitiom will be useful in p viJ1g a ch~rncteri1.atioo of conciouicy that applk.s to fuuctions 
whose domain is uoc the whole of R" . 

Given a ~t S in fl• , we dcfioo the refatiYc open ball with r.i<lios r around a point a in S as 
lJ;:~ !l1) "'' B5 (a; r) = B(a; r ) (', S. Once we have de/lne.d relative open balls, concepts like relative 
interior poiu~ rcl:,tive bounclury poinl, relatively open sel, and reh,tively clo~ed 8<:l are defined in the 
same ""~Y a.,; 11!( ordinary version~ of these wncepr~. exce.pt for the fact thar R" is replaced by S and 
balls by relau.ve balls. Thus, given a subret A of S, a relath,: interior point of A is a point a in ,t 
such tl1W. Hs(3 ; r ) ~ ,1 for .o;<ionc r > 0. A poit1t u is a rela1i"e boundary point <!f A if a ,;: S ruul .tll 
rel:11i ve halls around a inter.~r.:1 both A an<l S \ A. Ry definition, a relatively open :;ct consi~rs only 
of .-clalive inte.rior points. and ;1 rela1ivcly closed ~ t c,int.rins all ii,, rdntive h.wn<J.,ry point$. NO(e 
that A ~ .. S is relu1ive\y ck,~cd iii S if ~m.1 c•nly if S \ ii is rtlativcly open in S. 

j 

I 

I 
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Sometim..:.$ the WO'n.l "relativc(ly)" i~ rep\11ced by the expressiM ''in the reht,vc topolo~y of". 
e.g. ''.4 is open in the relative tnpolog)' of S'. Nore the following cesult: 

r- --- ----·-- -- - ·-- ·--·-~---- ··------ 1 
I (ll} A is n:IMively open iF S '"'·''-> A a·• lJ n S for sorno opeJ1 set U in R". i 
I , (4) 
I 

i 
(b) A is relatively clos,,ct in S ='} A = F n S for sowe dos.-.d set Fin ~· . 

:......----·--- - - -··---~-,.,., ... - -·- ---··,,·----·--·- - -----·-·----

J THl:ORFM 

I 
I 
I 

Proof: To pmvc (~), ~uppose lir~t 1hM .·1 i.s n:lath ely open in S. By tlefiniti,in, for each a in .4 th1..-ro 
e~ists a ball //(a; r,) su.:h rb.11 B(a; , .) n S £; tL It follows that 

ii.~ LJ(B(a; ,.) n S) ~ A and so A = LJ( B(a : r , ) n S) = (LJ B(a; r.J) Ii S 

Let lJ = U aeA H(a: , .). Then U is <ll1 open stl b)' Theorem 13.1. l (t:,), and we bav~ ju~l shown thac 
.4. = U f",S . . 

On I.he other hand, suppose U is open in R• and that A = U n S. If a is ~n arbitrary point in .{, 
then a E U, ~o there exists an open ball B(a; r) s; U. It follows that a E B(a; r ) n S ~ U (\ S ,,, A. 
s(, a is a relative interiQl' (><>int of A. 1'bis shows tbar A is relatively OJ)t·D in S, ,o completes the proof 
of su,tcmenl (a). 

To prove (t,), suppt.is.: A is relatively closcd in S. To,n S \ A is relatively open, so S \ A "'· Un S 
for some open set U in ll". But then 

A. = s \ (S \ A} ,..,. s \ ,.u n S) = s \ u = (R" \ U) n s 
wbere J,' = R" \ (J is clos,:,d in ~· . 

Conversely, if .4 = F n S foe M>ll\c clo~d fin R•, then 

S\ :l.= S \ F = /Ill" \ f')()S 

who;re U = tl" \ F is ope.n in R" . lt foUow.s from (a) thut S \ A iti relatively open in S, ;11\d so A. i~ 
rel~tively clo~. • 

Note tbal we can .:hoosc F = ii in (4)(b), i.e. A is relatively closed in S if and only if Ar: S = ,1. 
The following .:b.ir,t<.-teri:ution of a rd.iti,ely closed set is often useful fsee Problem 7). 

A subset A f;, S is relntively dosed in S if and only if when~cr :1 sequcnc,, lxt) in A 
converges c1l a Ii mil in S, this limit belongs to A. 

Hett i~ tix- promis.:<l char&C4erization of continuou~ functions in tmn~ of opon ,ir closed seL~: 

13 :3 5 ··--- .. - --·----· - - - .. -·---···-·--·- -·--- -. 

Let f be any function tmro S ~ R" 1.0 W'. Then f is continuous if anJ only if either of 
the following condition6 i~ ~atisfic.J: 

(n) r-' (U) i$ relatively open in S for ¢.lCb open Sci U in R·" . 

(b) r-: (F) isrdatively d osed io S for each closed set fin f?"'. 

(5) 

L.------ ··~-·-------- ----·- ---· 
I 

-·-- - - - ---···___) 
Proof: (a) Let us first prove. the •only if'. p'lrt. Suppose f is C<>nrin~ous aud U i~ an 01:rcn set in R'". 
We wanttv 8how th.atf"' 1(U) is op.:11 in the rcfative top<>logy of S. u.t x he :iny point ,n (-1 (U ). Theo 
f(:~) ,, U, and since U iH>pen, there is an~ > 0 ~ch that ll(f(x}; e) ~ . U. Since f i~ C.Ol!lmuous ar 
x, then,e.ti~ a 6 > tl soch that f (n f-: H({{,c); e) ~ U for ;di r in ll(x; Sl n .5 = B"(x: o). Tiien 
1,S(x; o) s;;; r ···1 (U). ~nd so xis a rd;1tive intei'ior point of r-1 (ll). Tt follows that r-1 (U) is open. 
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To prove ll,e "if' pa.rt uf (a), suppo,;c !ha1 the invcr~ image uf e,-ery open SCI in R'" is relati,cly 
opeu in S. 1~,t ll be any point in S. We shaU show that r is con1i.nuous al x. L:t ,: be a,1 a.rbitrnry 
p<i-titive numh~.r. Then U = U{f(x); t:) t.~ an upeu sel lo it", and r-·1 (U) i~ a re.larivdy open sel in S. 
Since. x t r- '(U), there is a relatively opco hall Bs(:i;; 6) amun<I x such tbal es(,:; 8) ~ r -'(U). 
11,cu for every x' in ns(x; ~) "·' fl(x; 8) n S, we have ((Jc') E U =: B(f (x); e) . ft follows tbal. f is 
,.:ontinuous at. x. 

(b) Re,:an that a set F iu It" is closed if ancl ooly if its C(llnplcmet,t R"' \ F in I<"' is open. 

the rC$ulc for chlsNl scL~ follow,; from that for open scL~ ( mid conversely). • 

PR BLE M <; fOR Sf(TION 13 3 

1. P rove th.'.ll tbe sei S = {(x, y) : 2x - y . , 2 and x - 3y < 51 is open in R2. 

2. Prove that lbc.sel S = (x c R" : s;(x) ~ 0. j ,~ 1 . ... , m) is closed if 1hc functions g1 are all 
continuous. 

3 . G ive examples of suhscts S of R and continuous functions f : H -> ~ such lb;,t 

(a) Si~ closed. bot f (S) is Ml clos,;d. 

(b) Sis open, but f (S) is not open. 

(c) Sis bounded, but / (S) is not bnundcd. 

4. Forafhetl a inR',l"rovetbatchefunctionf : i.• - R,1,,:flnedbyf(x) = d(x, .i) iscontinuous. 
(Hinr: See Problem 13.l.2.} 

5. Let S be t1 closed ~c1 in W and ya lixed ~nt inn• . Let l,(x) = d (r. , y) for all ,; in S. Then h 
is c,)nlinuou~ by Problem 4. Use the exlr~m~ value lheorcon to show that h auuins a mini mum 
at svo1e pt>int of S . (Hint: Jf r h an arbilrsry point in s. then any possible ruinin1um pOint for 
hl x) ,nus( tic in the intersection of S an,l lhe ck\scd ball 9(y; r) with rn<liu.~ r = d (x', y).) 

6. Pr ... ve the "if'' part nf Theorem 13.3.2. 

W 7. Provt (5). Then use this d.1ara~1~.ri1.atioo of relatively closed sels 10 offer an all;,mative proof of 
Theorem 13.3.5, J,"'•t(b ). 

@ 8. In b game between t t\'O plaJers, the chall<:nger and the defender, 1he de.fonder Irie~ to prove that a 
functi<,n r : S -> R"' with S s;; R" i~ conrmuou~ :ll l.-'> E S. The d ,elleo!,..;r tries 10 disprnvc this. 
Tue challenr,L1' mal;.c~ the ftr~t move in !he garut.: hy chvv$ing a rc~I s > O. which is observed 
by (be defender. Th<m the ,lcfeud,:r re&p<.mds by choosing a re~l J ::,. 0 .. ~ a foncr.ion ii(,.,) nf 
tlie ~l'\~I e. FinaUy, knowing oodi 8 aJUI s, ihc challenger chooses an x ,c S. The 11.1!e.$ are 
lhat. tbc ch~Jlcnge.r win~ if 9,c - ,.oR < o bnc ! f (,c) - !(,c0)3 ~ e; 01 herwise the <Jckllder wi11s. 
P.xplain why. with be,t rlny ,111 botb si<lcij, the do:f.ender wins if antl .-,nly if f is t:01Jtinuou~ at 
i'; otherwise ll1e chnll.:11~.r wius. 

. I 

s~cnoi.; 13. 4 MAXlMUM Tl-H.O IH: MS 

13.4 Maximum Theorems 
Economic theory abouods with "ccnnpamtive statics" n:s,1lts. These des<:ribe. what happens 
to au optimal solution il1 response to changes in exogenous parameters such as price~. In 
particular, will small C~'lllges in lbrse parameter:s lend to only small changes in the criterion 
fooction'/ And to small t:MDge~ in !h,~ optimal solution'? The purpose of this section is to 

give some such te.~ults. Otht.:r resulL, of this kind are prt:Seuted in Chapter 14. 
St1pptlse lhilt /(x. y} ""' f (x ,, .. .. Xn , )'1 , . .. , )'m) is a continll1JUS functiun defined for 

all ::< in X and all y in Y, where X S: R.'' and Y ~ IR"'. Suppos<' coo that Y is compact. Then 
the exlTemc valut: theorem (TilCQrecn 3. 1.3) implie.~ thar for e\·,~ry ic in X the problem of 
maximizing f (x. y) subje<:t toy E Y has a solution. The m;iJCimum value of /(x, y) will 
depend on x . Define the (optimal) value function V : X -> R for the problem by 

V(x) = max f (x.. y) 
y<:l' 

(1) 

The next theorem tells us that V(x) is in fact continuous. For a given x in X there may t>e 
several y in Y tbat maximi:,:e f (x , y) . However, if for every x thert\ i.s a wii.que y = y(x) 

that solves problem (1), lheo y (x) varie.~ continu0t1.~ly with IC. 

Suppost, that f is a continuous function from ){ x Y to R where X ~ IR:". 
Y ~ R"', and Y i.s compact, with X, Y ,fa 0. Then: 

(a) The value function V (x) = maxyeY f(x, y) i$ a continuous fun(.'tion of x. 

(b) If the maximization problem bas a IIJlique ~olution y = y (x ) for e..-ery x, 
chen y(x) is a continuous function of x. 

,--- ------ - ------·- - --
Proof: (a) W e argue by contradictillTI. By thee.xtreme vitluc theorew. V(x) is <lefincd for 
every x in X. Suppose V happens to be discontinuous at sornc x0 in X. By Theorem 13.3.2, 

there exiscs a sequence (x.k J converging to xn such that {V(xk) l does not converge to V (x0). 

So 1bei:e is an c > () sncb that 

for infinitely many k. Hence there is a sub!'Cquencc of (xkl such that. (.i,) h0Jd5 for every 

term of that. .subsequence. This sub,;equence also convergts to xn. By changing not.ation, 
denote this suhscquence by {xk l-

By thee:drcme value theorem, foH~hk there iH Yk i,1 Y ~uch that V(xt ) :::: f(xk. n ). 
Use the Bolr.an.o-Wcier~lrass theorem to choose a subsequence (Yk;/j that converges to 

~me yo in Y. For arbitrary yin Y, we haw. f ( x;,
1

, y,I :::c /<~,. Yt/ so laking limit~. we 
get f (x0. y) =:: f (x'J. y0). Hence, V(:~0) "'' maxy f(x0, y} :: /(x0, y0). But l>y definition , 

V(x<>) :! J(/J_ yo), so V(:r0 ) = J (t), y0 ) . Then V(x 0) :.;·: limi f ('Xfi • y;,
1

) := \imi V(:tt;), 

conlfadicting (i ) . 



!82 CHAPT~R 1:l I l'OPOI. OGY ANO S~ PA!\ATION 

MPLE 1 

(b} SuppO$e that y(x} is not coutinuous at x0 in X. Then there exists o. sequence {Xi:} in X 

coiwerging towards Y!l. such that !y(x1)} doe.~ not converge to y(x0 ). For some c > 0 there 
e:,1.h;ts a subseq~nce fxt;l such that ffy(x4) - y{lf0)1! ~ t for all j. By compactness of 
Y, this sequence again has a subsequence {id; such that {y;) = {y(i;)} converges to some 
y' ~ y(x0). 1hcn V(x0) = lim, V(x;) = lim; J(x;,y(i:;)) = f(x0 , y') . so y' also solves 
the maximization problem for r "" x.0. This contt'ddicts the hypothesis that the solution y(x) 

is unique. • 
Note that the value function V (x) in Theorem 13.4.1 i~ continuous even i{y(x) is not unique. 
Toe theorem ill illustrated (for ·the case n = m = I) in Pigs. 1 and 2. Figure l shows the 
graph of a function f(x . y). For eachx in X the function ha.s a r:n:ixiwum val ue V<x) w.r.t. y . 
The figure suggests that if die function f (.r, y) is continuous, then V (x) is also likely to be 
a continuous function of x. The graph of V is shown in Fig. 2. Furtheru1ore, if for each x 
there is only one value of y that maximizes f (x , y), it seems plausible that this maximiri1J.g 
y will also vary conti1J.uously with .t. 

I 
Yi.x) 

- ~(x) 

-W- ~ X 

Figure l Figure l 

LetX = lhrnl Y = L-l, 2]. Sapposethatj: XxY - Risdefinedby f(x, y) = x y2 . 

Consider the problem 

max f (x, y) suf)ject to - I ~ y S 2 

For a lixed x < 0, f (x . y) = x y1 is dearly roaximiY.e<l at y = 0, and the maximum value 
is 0. For a fixw x > 0, the function xy2 is ma.ximi7.ed at y = 2, and the ma.umum value is 
4x. Finally, for x = 0, all values of yin [ -· l, 2} maxiJniz.e xy2, and the maximum value is 
0. Thus. the value fnoctiou V(x) for the problem is 

V( ) ::: { 0 if X < 0 
:C 4x if X ~ 0 

Hcm·e. V is continuous for all x, and differentiable for. x ,fa 0. Note also tlmt I.he max.imuw 
point y(x) is unique for aU x f. 0, and is n continuous f-unction of x in each of the two 
intt,n:als (-00, 0) and (0, o.:,). I 

EXAMPLE 'l 

EXAMPlf 3 
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Let X = Y = R. and define f: Xx Y --+ R by f(x, y) = e"<n-n'. Jr is eai;y to 
see that when x ;e 0, then J(x, y) u; maximized w.r.l. y at y "" 1/ .r:, whereas when x = 0, 
any vruue of y is a maximizer. Hence. 

·" V(x )=maxf(x,y) = e 
{ 

- I 

1FR l 
ifx = 0 
if X ,f= 0 

Thus the value function is discontinuous at x = 0. In this example f is continuous. bur Y 
is not compact. I 

{Maximwn p rofit as a function of prices) Suppose the production of a commodity 
requites n input factors. If v = (v1 • •• • , vn) is the vector of inputs, Ibo, number of uni ts 
produced is f(v). Assume that the production function f is defined and continuws on 
R! :::: (v: v ER", v ~ 0},1 wilh /(0) = 0 and / (v) :=:. 0 for all v ~ 0. As.~ume further 
that, for each positive number a there ewts a number K11- such that if llu II = I and ). ~ Ka, 
then /().. u)/ ). <a.In particular, this implies that for ooch fixed u, one has j().u){J..-+ O 

:is 7- - oo. 
If the selling pri<.:e per unit of the product is p and the u1J.it priecs of the input factors 

are given by the vector q = (q1 • ... , q.), then profit a., a function of the input vector v is 
n(v) = pf(v) - q · v. The following facts can be established: 

(a) For given prices p > 0 and q » 0. the profit function ..c(v) attains a nwumum value 
V (p, q ) as v runs through R'.;_. 

(b) V(p, q) is a continuous function of (p, q) over R'.;.~! = ((p, q) : p >- 0, q » 0}. 

We would like to apply Theorem 13.4.l. The only difficulty in doiog so arises bc<:uu.se 
the vector v of choseu inputs can r:wge over the whole of the unbounded SCl R'+· The 
assumptions 011 f, however, allow us to prove !hat, for each fi.ted (p0 , q0) E R'.;.,., there 
exisc a neighbourhood N of (p0, q0) and a constant a > 0 such that the compact suhset 
K0 = {u E R~ : Jlull ~ K.} contains any optimal choice of v. Tben the probl~m of 
maxi.Jni1jng :r(v) over R! is unaltered if one imposes the additional constraint v e K0 . 

But because K0 is co•t. Theorem 13.4. l does apply to this cousttained problem, fOT all 
(p , q) e: N. Finally, becau.~e this works for every fi.xed (p0, q0) E IR'.;..+, the conclusion,s of 
Theorem 13.4.l applie$ for all (p. q) E R~+· · 

To show that maxv.:;o Jr(v) = llla"\,,;x• ir(v), choose fi;,;ed positive numbers k ;, p0 and 
c < mintfq?}, so that (c, .. . , c) « q0. Next, let 

N = f (p, q) E R~ .... : 0 < p < k. q » (c, .. . , c) j 

which i~ a neighbourhood. of (l', q0) . Define a= c/(k./n) and let Ka be dc.fi..oed as above. 
Given any u in IR+ with lluU = J, notice that u has nt lea.~t ooe component:=:. 1/Jn, so 
q · u :::. cf ./n = lea > pa by dcliuition of k. and a. Let us show that K0 contains a.11 
optimal v. Take any v E K0, i.e. ). = ffvll > T<.0 . Let u = v/ i., so th3t Huff = l. Then 
pf(v) = pf(>..u) <. p>.a, by definition of Ka, Hence, pf(v) < p).a < k)..a ~ ).q-u :-: q-v, 
so p f(v) - q · v < U = ir (OJ. This shows that mllX, ;:;o,r.(v) = max,q A'" rr (v). I 

·------···· ··-·--1 Tbe inequality f ;:=: u m=s "· ~ u, for all i = l, .... n. If u; > u; f(J( all i, we wri1e v » n. 
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let us now extend lhe scope of the maximum theorem by allowing the fixed .~et Y to be 

replaced with a constraint set of the fonn 

FM = (yEY:g;(X, y)5 ai, i = l , .. . ,l} (2) 

lha t ,-arics with x. Herc the fWlctioos g; and the numbccs a1 are given. TI1e maximization 
problem hleco.wes 

rnax.imir.e f(x, y) subject to y E F(x) 

Define !he corre&ponding value functioo, 

V(x) == ma., /(1, y) 
y€F(x) 

Then the following theorem holds: 

Suppose lhat f(x. y) and g;(x, y), i = I, . .. , l, are continuous functions from 
){ x Y into IR, where X s;; IR", Y ~ !Rm, and Y i& compact. Suppose further 
that for every x in X , the constraint set (2) is nouempty and equal to the closure 
of F°(xj = (y E Y : g, (:t, y) < a;, i = I, ... , /} . Then the value function 
V (x) is continuous o,·er X. Moceover, if the maximization problem has a llnique 
maximum y = y(x) for each J: in X. then y(x) is continuous . 

(3) 

The result follows from cowbiningThcorcm 14.2. 1 with Example 14.1.5 iu the uextchapteT. 

I: Ar.APl f ,I Let f(x1, y 1) and g (x7., y2) be,. two continuous production functions that give the quanti-
ties produced of two commodities as functions of the input factors x1 ::: 0, )'1 ?: 0, x2 ~ 0. 
and Yi ?: 0. Say x; denotes Jabour and Yi ener~. The sale prices a.rep and q, respectively. 
Let r > 0 and s > 0 he the price~ of the two inputs. 

An entrepreneur wishes to choose .x1, x2, )'1, and y~ such that total revenue pf (xi. )'1) + 
q g (.x~ . n) is oiaximized.subjt..'CC to tbe total outlay for the input factors not exceeding budget 
al.lowanre m > 0. Thu.~. the entteprc:neur's problem is 

1he conslraiot set 

is obviouslyclusetl. ltis also hounded, because if (x1, x2 , Y1 , y2) E f (r, s , m)the11 rx; :o m 

and sy; :-0: m, i.e. r ; E [O. m / r]. y; c [0 , m/,]. So F (r, s . 111) is compact, aod therefore 
Theorem 13.11 .2 already im plies that the maximum rCVl:JlUC is a conliilllous function of 
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( p , q). If f md g are sbictly t'.uncave, then pf(x 1, Yt) + qgl.x2, Yi) is strictly concavt. 
Since Y is convex and nny maximum of a slrictly cc:,ncave function over a conve11 set i~ 
uniqu<? (if it exists), in this case th~rc is a unique ITh'WII!Um point (.t i', x;. Yt, y2), wllich 
ruust be u continuous functioo of (p, q). 

But in thi~ cxampl~it is ea~y to ~ee that F 0 (r, s, m) ::: F(r, s, m), so Theorem 13.4.2 
implies that waximum profit is a cootinuous function of (p, q, r, s, m) wherever all five of 
these \'urinbl.es are positiw. I 

1. Let / (~ . y, z) = ln(4 -~ y + zi + x 1 + e•x2 + .,..i,, and define 

V(x) = max /(x, y , t) 
(y.<J•S 

(a) If S = {(y, , ) : y <: l, z ~ I. y2 + z~ ;:i 4} S W , is V c:oolinUCJUS? 

(b) U S ,= ((.JI,!) : y > (I. z > 0, y: ·I· z1 :5 4} ~ R\ is V continuous? (Him: Viith y and : 
p<Jsitivc, f(.t, y, t) is strictly i11cre.asi.ni; ii, y and in z.) 

2. t:se the theorems i,1 this section 10 dcrerm.i.ue whether C3Ch of the following functions is con­
tinuous: 

<IB> 3. Let f(x, y) = - 3xy• - 4(x - l)y3 + 6y2 for .x in X = (0. OC·) and yin Y = [-3, 3]. For 
eacb r in X. considertbc problem of m:~'\i.mizing f(x, y) $uojce1 to y ,,; Y. Let M(x) he the 
corre.-pondiog set of <glob.ii) ma.~iruum points y in Y, and lee 

\/(x ) = ~~ f(x, )'). 

Veri fy that \/(x} is continuous, and draw a graph in tltc.<y-plane shc,v,ing lhe set M{X ) (one or 
more points) for e.i,..'h .t . Are the ma:<irn.iurs given by a continuous function of x? 

4. Let X = (0. oo) and Y = (- 00. I], and tldi,:,c the functfon f ; Xx Y - • ~ hy 

/ (r, y) = ln{ l + xeY)-/ 

Snow tha1 V(xi = maxy•r f(x, y ) is a continuou.~ fuoctio11 of x for x > 0. 
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13.5 Convex Sets 
Section 2.2 gave the definition of convex sers and some of their basic pn.>perties. This section 
gives some further definitions and results that are occasio11ally u:;eful in economics. 

Let Sand T be two arbitrary sers in il". Toe (vector) sum of S and T is defined as 

S + 1' "'- { X + y : X E S and Y E 1' l (1) 

Thus S + T is !he set of all possible sums x + y, when x E S and y E'. T. For the case where 
S aod 1' are subset~ of 11?2 • the construction is illustrated in Fif!. 1. 

More generally, if a and b are aoy two scalars in R, define the linear combination 
aS + bT of !he two sets Sand T as the set {ax+ by : x E S, y E T ). Th.is definition does 
not requite a and b to be nonnegative: indeed, taking a "" l and b "" -1 gives the vector 
difference S - T of the two sets. Note that this is entirely different from the set-theoretic 
difference S \ T = (x : x ET Sand x ~ T}. 

Figure 1 The sum of two sets. 

EXAMPLE 1 Suppose that Sis a linn's pmducrion possibility se.1, i.e. the set of all net output vectors 
that the firm cau &upply. Tf T i8 the corresponding set of a second firm. the set S + T 
rcprc,encs the aJlgregate ncr ourpllt vectors that the two firms can ~upply together. I 

If Sand T are convex sets in I<", men S + T is also coov~x. as Fig. I suggests. In fact. one 
bas the following result: 

S, T convex and a, b real numbers ::,:;..:.} aS + bT convex (2) 

Proof: urza.odwbelongto Q = aS+bL The.nz ""aJC1 +hy1 and w = ax2 +by1• where 
ir:1. x2 i0 Sand y1, Yi c. T. Let j, ~ (0, I]. We must prove that i.z + (I - ,\)w c Q. In fltc{, 

i..z+(l-J..)w ~ )..(ax1+byi)+(l-.:...l(ax2+by,.} = a().x1 HI --~-)x2)+b(J..yc +(l-i,,)y2), 

This belongs to Q = aS + bT because i..x1 + (I - i..)xz E Sand ),y1 + (l - ,\)y2 c T due 
to the convexiry of S and r. • 
So any line:Lr combination of lwn c<mvcx sets is convex. It i~ ea.,y l<l exknd this re.suit t<> 

linear c.ombirlations of an arbitrary fio.it.e number o[ convex sets. 

, . 
I 
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Convex Hulls 
Suwise that x, •.... ~m ai:e vectors in~·. A point x that can be expressed in the form · 

M 

x: = J..i:"1 + ; ... + i...,x,., wilh .:.., ~ 0 for each i and L J..; == l (3) 
{=) 

is called a convex combination of the poinL~ x1, .... Xm. lt is a linear combination where the 
scalar weights .l; a.re restl'ict<XI to be nonnegative and sum {O J. Accordingly, these si:alars 
arc called convex weights. 

In parricular, a convex combination of two point:, x1 and x2 tilis the fonn A 1,;1 + i.2x2 with 

i,1?: 0,.\.2 :C:. OandJ..1 +J..2 = I. He11ceJ..2 = 1-Ar. and.\.1xr +i.21'2 "" J..1x 1 +(l-i.1}x2, 
with), 1 E [0, I}. Thus a set Sin iR" is convex if and only if it contains all convex combinations 
of each pair of points in S. Problem 6 indicates a proof of the following result: 

A convex set S in IR" contains all convex combinations of points from S. ( 4) 

If S is an arbi1rary set in IR", the convex bull of S, denoted by co(S), is defined as 

co{S) == the set of all convex combinations of points from S (5) 

A point in Sis clearly a convex combination of itself, because x = I . x. Hence S ~ co(S). 
In Problem 4 you are aske.d to prove thatco(S) is always convex. Because (4) and (5) imply 

that any convex .~et containing S also contains co(S), the following must be trne: 

co(S) is the smallcsr convex sel coutaining S 

TlLe C()nvex bulls of !he two sets are illustrated in Figs. 2 and 3. 

Figure 2 All convex· combination~ 
of .1.1, ll2, 1173. 

Caratheodory's Theorem 

Figure 3 If S is the un;ha.ded sci, 
rhcn co(SJ includes Ilic sh~ed 
p<1Ils in addition. 

(6) 

AD n-dimen$ional simplex in k" is a set S "" co( V ), Wh<,re V is a set consisling of n .;, I point~ of 
R", called the vertices of: S, such that S has a nonempty interior. A panicular example is the simplex 
T := l(.x,, ... , x.) E R" : x, >-: 0, ... , x. 2: 0, xi + · · · + Xn :;: 1 }, wht•se ve.rtices are O and the 
n srandanl 1tnit vectt>r.; el, ... , e•, where e/ h~s its ith component equal to l and the other ,, - 1 
components e.qual to 0. Obviously, any point in che. simplex S = col V} c,m be expressed a.," convex 
combination of at most 11 + I venkes. The r ullowing thc(rrcm shows that a similar re$ul1 holds for 
1he: convex hull of any set ia u•: 
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ifHEOREM 1_3 5 1 <C~ ilA tt1£006'il?.f·-- -- · · ······ - -······· 
If S S:: Rn and x € co(S). lhen x ,·;,n b" expressed as a convex combination of al. Ill(>>! 

n + l p<)ints in S. 

.............................. -....... _ ..... _,_, .......... ,,. ....... ·····-~······· ..... -., .. _..- ........................... ,-~·-----··-··-·- .......... ---·-' 

Proof~ Suprose x e,1uals the convc, coniilination ;.1x1 +··.+At lit of k point3 in R", where 
k > n + 1. For i ,,, l. ... , k, let y, = (x;, n .- R"'": denore the vccw x, aogwenred by an ex.rra 
c:omponcr,t eqoal m L The k > n + 1 vectors y;, .... y, in w+1 :ire lin=Iy dependent so there 
ciust scalats a,, ... , ai, not all U. su,h that u1Yr + · · · ~- «tY• = 0 <:: r...,1 , that is. 

Obviously, at leust one "J must be positive. Let r = ma,c(-i,,1/.:.c1 ; °'i > 0}. Then r ~ 0 and 
.l..1 + ra; ::: 0 for aU i = I. 2, ... , I:. This latter in,:qoality is satisfied with c<1oality for at least one 
index i. Hence, 

x ,,. x + rO = .l..1X1 + · · · + A1ll.t + r(otiX, + · · · + atli:, .. l 

= 0,1 + ra1)x1 + · · · + 0-t + rak)X, 

where :l.,+ra, C: Ufor i = 1,2, ... , k,and (.).1 +ra1)+· · ·+(Ai +rak) = L Because I, +ret, = 0 
for at Jca.~t one i, .i must be a convex combination of at mo~t k - I of the poiuts x1, .... Xi in IPJ•. 
Clearly, this process of eliminating points x; one a( • tin\c can be repeated until i;: is expressed a~ a 
convex combin:tti(ln of ;,t rnc,st n + I points. • 

Extreme Points of Convex Sets 
An extreme point of a convex set Sin IR" i~ a point in S thar. does not lie ''properly inside" 
any line segment in S. More precisely, z is an extreme point of S if .z E Sand th~e are no x 
and yin Sand).i.D (0, l) suchthatx ;6 yand.z == >.x+(l -J..)y. Equivalcntly,1:isapoint 

of S that ca1111ot be expressed as a convex combina1iou of other point.~ of S. In !Pl, a compact 
interval has two extreme points, an open inter,;al lu~ no c,ctreme points, and a half-open 

interval has one extreme point. 
C 

,8 , 
Figure 4 .-1. II, and C are extreme point£. [) is n-0t. 

Any exll"Cmc point of a c1mvex set mu.st be a bound:iry point ( sec Problem 5). Thus. an open 

ball B, (a) <:: R" has no extreme points. For a closed ball B,(a). however, every boundary 

point is an extreme point. But not all boundary poi.ms of every convex set are extreme points. 

To se.e why, look at fig.. 4, where A, B, and Care the only extreme points. The point f) is 

a bouncbry point that is not an extreme point. (Why·/ Hecause {) i.~ a convex. combinatil'll 

of the two other point, H :i.nd C.) 
For a proof of the following lhe.ore.m see <>.g. Co~ollary 18.5. l in Rockafollar (1970). 

I 
I 
I 
I 

l 
l 
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,...T .. H ... E .. O ... R .. -£_~ .... t ... 1 ... 3 ..... 5...a;.;;:....,;f.:..,,;;R'f;;;..;.;ll:.:.:1 =:f,,:.:.:l:.:.:1 L;.:~;.;A;.;A:.:.:N:.s.. ----·-···-·--·---·---- ---.. --·1 
\ 
I 
} 
1--. 

Every compact conwx &et in ij" is the convex hull oi its extreme poin1s. i 
·-------------~~--..! 

This finite-dimensional resull is actually due 10 Minkowski, and is therefore also known a.• 
.Minkowski's theorem. Krein and Milman extended il to c.errain inliuitc-dimensional spaces. 

Strictly Convex Sets 

A convex body in !Rn is a convex scr with a nonempty interior. Suppose Sis ,1 convex body 

in R" such that J..x + (I - J..)y i~ an interior point of S whenever" and y ace distinct poinls 

in S and J.. E (0. I). In this case S is called a strictly convex body. 
For example, a ball in n-spacc is a strictly convelC body, whether it is open or closed. On 

the other hand, a do,;ed pyramid in 3-spacc is co11ve1t but not strictly convex. 

It can be shown that a clo~ed convex body S is strictly conve)( if and only if every 

howidary point of S is an extreme point. Generally, a convex body S is snictly convex if 
and only if every boundary poin1 is an extreme point of the closure S. 

NOTE 1 Strict convexity can also be defined for ~etS S io ~· that contain no interior points. 
Call a point z in S a relative interior point if for every c in S there is a number ,, > 1 such 
lha1 Lhc point µ.z + (1 - µ)c == c + µ.(z - c) ES, i.e. the line segment from c to 1. can be 
extended a little bit beyond z without leaving the &et S. 

The usual definition of strict convcxi Ly is this: Sis srricrly convex if for each pair of distinct 
poiutsxandyinS,evcrypointoftheopettlinesegmenl(x,y) == {,\x+(l-A)y: 0 < i.. < ll 
is a r.elative interior poiur of S. For example. a circular disk (like a coin whose tlricknes~ 
is zero) lying in Ill~ is .~trictly conve.x according to this definition. So is a line segment, or 

even a set consisting of a single point. \\/hen S do.;s have interior points. the two definitions 

are equivalent. 

PROBLEMS FOR SEC:TION 13 5 

1. Construct the set S + T in the ~"s"s sh,iwn in Figs. (a) :ind (b }. 

:1 
! 

-t·· d S I, 

Figure (a) 

; 

h 1---··-·--·--·-•T i . 
a ~."",'."'i) _,.2.J ...... _ .. _ 

a b 

Figure (bl 
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2 . Dcrcrn1in~ co(S) i,.\ the c.ises shown in Figs. (~) and (d). (:CO (d). S consists of lhe four dots.) 

Figure (<) Figure (d) 

3. Suppose that N uo.irs of a commodity (SO 000 barrels of oil, for ao.mple) ate sprl!<l<l out over 
points cepreseated by a two-dimensional coonlill!lle system so !hat n I ooics are W be found al 
the point x,, n2 uoilS are at x2, ... , n,,. units are at x,., who.:rc I:7ui n; = N. Explam why 
z"" (1/N)(n1xJ + n2x: + .. . + n,,.:t,.) is a COJWe.l( combination ofx1, l:2, ..• , x..,. What is a 
comm,Jn n.1.me for the point z? 

4. Jf S i8 an arbitrary set in R", prove tbal the set co(S) in (5) i~ convex. (Hint: °ut X = J.1 u, + 
... .;, ).P" J' and y = µ. 1v1 + .. . + µ.qvq be arbitrary points in co(S) with u 1 • ••. ,_oP «nd vi, 

... , v~ all ins. u,1 ,\ E (0, J]aod prove by a direct argwnC1\ttbal J..x + (1 - J.)y 1s a convex 
combination of the pointsui, .. . , up, v; •... , v9.) 

5 . Show u,~l an extreme poinc of a convex set mt1st be~ boundary point of the set. (1Tin1: Sh(>W 
th.it ,n interior point .:;mnot be an extreme poinL) 

HARDER PROBLEMS 

6 . Prove (4). (lfin1: The stsrement i~ true for k = 2 (and fork = lj. Suppose lh.a.1 it is true for 
k '" 111, where m is a positive integer. a11d l~t :t1, .. . . :f,,,.,.1 bt, m + l points in S. Define 
x = I;7., , >.,x, + , . .,.,.1x,.,., 1 with all J.., <!: 0 and I:;".:'; 1 A; = I. If >,1n+1 '" I, then x ~ S. 
Suppose ncx1 that i.,.;.1 #= 1.. Theo 

x. = ll,1 + · ··+ J,.,..)[ t ·.--.. f:! ____ x;] + Am+ IXm+I 
, ft 1 '· l +··· +Am 

is a oonv¢x oombina.tio11 of two poinLs in S .) 

@ 7. Use C:iratheo<lory's (heocem to show that the convex hull of any compoc1 set in R• is .:ompact. 
Give an example to show that <'.O(S) n~ not be closed if S is do.'>Ctl but unbounded. 
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13.6 Separation Theorems 
This section cou.~iders some theorcws of a geometric nature "ith m'1lly applications in 
ce<momic theory. The main result states thar two disjoint convex sets in IR" can be separated 
hy a hyperplane. Ia two!,limcn,ions, hyperplanes iJie straight lines, and the geometric content 
of th-: theorem in IR2 is sb.own in Fig. I. 

Figure 2 shows an example of two disjoint scrs in R' that camu,r be ~an11ed by a 
hyp\;rplane; S is convex, bUt T is not. Of course, it may he p0$sible to S<0paratc two sets 
even if dthc.;r or both arc m>t convex. 

With it~ simpk geometrical interpretation, the separation thtorem in ~ is 011£ of the 
most fundamental tools in modem optimi.z.atioo theory. In particular, the theorem makes it 
possible to st.ate oplimality conditions without differentiability requirements in cases where 
the functions involved are cith.,, concavt: or convex. as appropriate. 

Figure 1 S und T are l:strictly) 
separah:d by H . 

Figote 2 S and T cannot he 
separated hy a hyl,)Cl'f>lanc. 

Separation the<Jrems are also useful in many other areas. An early economic app lication 
of separation theorems was to welfare .:conomics, where tltt~y "''= used to prove, under 
suitable hypotheses, that each non-extreme Pareto efficient allocation can be "dcccntrlllized" 
as a competitive equilibrium. (See Arrow ( 1951 ), or Mas-Colell er al. (1995).) 

Recall from Eilample 2.2.1 (and (J .1.43)) th.'lt if a is a nonzero vector in R" and~ is a 
real number, then !he set 

H :;. {x:a· X= a} (l) 

is a hyperplane in ~, with a a.~ a noanal vecmr. Moreover, the hyperplane Ji separ ... tes R" 
into two closed half-spaces (see Example 2.2.l ). 

Ji S and r a.re subset:; of Rn, then Ji is said to Separate Sand T if S i.~ contained in one 
of the closed half-spaces dcl<0mJined by Hand T is contained i 11 the other. ln other words, S 

and T can be separated hy a hyperplane if there exist a wctor a f. 0 and o scalar. a such that 

a . x cS a ~ a · y for all :>< ia S and all y in T 

If both i.ucqualiLie; are stric1, tl1en the hyperplane H =· {x : a · x = <rJ strictly s~parntes S 
1111d T. 

The first st:paration theoxew Wt' prove d<'.als wilh the cas.: where S is closed and conYex, 
and T consists of only ooc, point. T = {}'). W'll~n a hype\'plane. separates a on.::.-poia{ set 
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frow aootbeT ~ct, o.ne often says (a little imprecisely) that the hyperplane separates the JhJint 

from tlw. other set, as in the theorem below. 

TH[ORF.M I~ ~ I 

1...e! S be a dosr.<l, couvex set in R", IUld let y be a point in R" !hat doe., nor belong j 
to S. T hen iliere exists : n:1:r: : :1~rya i:

0
:~ ~d: :um~r a such that _ ,,,! 

For ~very such Ct the hype1plane H = { x : ll · x = Cl } strictly separaus S and y. 

---------- - - --- ------- --- --

f2) 

The geomwic idea of the following proof i~ quite simple: Drop the ''perpendicular" from 
y to the ne<IJ'eSI point w of the set S. Lc:t H' be the hyperplane through w wich tbs.~ vector 

a = Y - w a, a nom1al. Then H ' Y.in separate y and S bccau&e S i.s convex. Figure 3 
illustrate:; the ccmstmction in the case n = 2.. Toe ~ired hyperplane H is obtained by 
choosing ()( as any number strictly between a· w and a . y. thus shifting the hyperplane H' 
pait way from w toward y. 

Trus argument sounds qui te convincing iu 2 or even 3 dimensions, but wbat about the 

genera l case? What is the perpendicular from a point to a convex set in IP."? A rigorous 
proof is n~eded. 

Figure 3 H' separnt.:s y from S , 
and H s1ri1:tly separaf~~ y from S. 

fig\lre 4 Two &Upp<.>rti11g hyper­
pla= 10 S at y are shown. 

Proof: Because Sis a clo.sed $e£, among all the points of S there is one w :::: (wi, . .. , Wn) 
that is clo.sest ro y. (For a precise :trgumenl, see Prc,blem 13.3.5. Because S is convex, the 
point w is actually unique, but we do not need this fact 'in the proof.) 

Let a = Y - w. the l'C.:tor from w coy. (See Fig. 3.) Since w {, Sandy (/. S . it follows 
that a ,fi 0. Note that a · (J -·- w) = a· a :.> 0, and so a, w <. a. y. SuppO$C we prove tha1 

for all x in S (i) 

Then <2) will ht)ld for every numbc:r u'. in the op,:n interval (a. w, a . y). 

To prove (i). let x be any point in S , and let b denote x - w. Since S i~ convex, !he point 

W +>..I, ,,., }.x -+ (J - .i.)w belongs tu S for ,:,;u:h A i.11 ro. l). Now define g(,\.) 3!' tht- StjUatC 

,,o .. M 

l 
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of the distance from w -t- .l.b to the point y. Thu~ 

Differenti!lting g(>.) ..,., ((<1 - ).b, )1 + · · · + lan - >.h. )2 W.l'.t. ). give~ 

A bo R(O}"" !lall2 : llY - -.1\2, the square of the distance between y and w. It follow, tb.1.t 
0 ~ g '(O) "" --·2a · b. This proves (i) bt,.cause b = x - · w. • 

lo the proof of Theorem 13.6. l it w:i.~ essential that y did not bclong to S, and this gave 
the strict i.o.equ.ali ty in (2). If S is an arbitrary convex set (not neces~arily closeu), and if 
y is not an inrerinr point of S, then it seems plausible that y can still be ~epnrated from S 
by a hyperplane. I{ y is a houndary point of S, such a hyperplane i,; called a supporting 

hypcl'])laoe to S at y. It passes through y and has the property that. for a suitable normal 
ll = ((11 , .•. , a,.) -1, 0 I() it, a · x ~ a · y for all x = (x1 •. .. , Xn) in S (the vector a points 
away fron, S). Figure 4 shov,rs twn supporting hyp,."Iplane~ lo a set Sat the same point y, 

together with norlllllls to these hyperplanes. 

13 6'..2 ISEPA.RATING HYPERPLJI.N[ ------, 

Let S be a c.:<>nvex. set in !fli• and suppose y is not an interior point of S . Then there I 
'""' ' '""'° - ~' '" .. ... ~.. .,'1 

a · x ~ n · y for every x in S - (3) 

Proof: Let S ck:not~ !he clMure of 5. Because S i.< con,·<:~. SO i.< ,S· (s« Problem 2j. !k.calL,;e 
y i~ ,tot :lJl interior point O'f S and ::; is convex, y is 1101 ,m interior p,)int of S (sw Pcohlem 3). 
Hence thc(e is a ~ quence {Yk J of points ,u1t;i.lde S lhal converg~.s to y. Now y, ¢ S and ,5 is 
closed alld coo~·ex· . . <c oCC<lrding w tbt prec<>ling separatioo lheorem, for eaciJ. k "' l, 2 •. . . there 
exisL, a wctor ak i, 0 such th:u ~ · x < >l.t · y1 for all x in S. Without loss of genet:ility, after 
dividing by lla,li if nt'<'ess.:i'), we ,a11 assume tliat 'l.t, ;I " I for each k. Then (a.d is a sequence of 
veci,m iu the uni1 sphere c,f R". J:kcause chi,; $pltere is comp:ici. the BoJ·,.ano-Wcicrstra,s theorem 
(Theorem 13.2.5) ~hows that {Kt l ha.$ a couv,:rgcnr subsequence {a!,}; . Let a = Jiin,_,00 al,· Tbcu 
a. x = lim,~o-,(a•, · x} ~; li,n;-.,., (a.i,, · y,,) = a. y for cveiy x in S, as n~ui1ed. Mnreow.r, a f 0 
hecaus.: /Ia ~ = lim1-+oo !l•l;, i '" I. • 

The geDeral separation property illusuaterl in Fig. l Iurns out to be a rath~.r simple t·ou­
scqnencc of the last two theorems. 
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Let S and r be two disjoint nonempty convex sels in IR". Then there exists a 
nonz.ero vc.ctor a in R" and a scalar a such chat 

a· x ='o a ='o a· y for all x in Sand ally in T (4) 

Thus Sand Tare sepamled by the hyperplane H = {z E ~· : a. z = a). 

.............. -----·"" ... -·--- ....... -.... _ '''"''·--···~ ............ - --·-·· ,-.. ,,..-....... -.......... ,.~~-·--·-----..... ...,_ ....... _,,, .. _,._, __ . 
Proof: Let W = S ·- '[ be the vector dilforence of the two convex set.s S and T. Since S 
and T are disjoint, 0 ¢ W. 

The set lV is convc-x according to (13.5.2), so by Theorem 13.6.2 th~re eidsts an a ,f, O 
such tha1 a· w ~a· 0 = 0 for all win w·. Let x in Sandy in T be any two points of these 
sets. Then w = x - y e W, so a . (x - y) :5 0. Hence 

a · x ;5 a · y for all " in S and all y in T 

From (,.) ir follows, in particular, rhar the set .4. = I a · :l : .1 e S) is bounded above by 
a · y for any y in T. Hence, A has a supremum a. say. Since a is the lea.st of all the upper 
bound~ of A, it follows that a S a · y for every y in T. Therefore a · " s a _::: a · y for all x 

in S and all y in T. Thus S and T are separated by the hyperplane H. • 

An even more general separation theorem for con~·ex sets in Rn is the following (for a proof 
see Rockafellar (1970). TI1eore1n 11.3): 

THEOREM 13.6 4 -----------1 
Let S and 1' be two convex sclS in Iii" with no COllUllon relative interior point. 
Tiien Sand T can be separa1ed by a hyperplane, i.e. there exist a veclor a f, 0 in 
JR" and a scalar a such that 

i 
I 
I 

' I 
! 
; 

a · ll .::, <r S a · y for all x in S and all y in 7' ! (5) 

"-·--·····--·----·-·····--·--···-----·-----·····---·-··· ·-----·"···-----·-·-·-·-----.. --..i 

PR 

NOTE 1 Often in economics, a key pi:ice vector has components that are proportional to 
those of a normal to a suitable separating or supporting hyperplane. 

1 . Let She • nonempty, closed, convex. ~c in W thz.t doe.,j not contai11 the origin. Sh<JW that there 
exis1.s a ve-·1or a •. , ("• · ... , a.) and a positive real rmtnber a such that . 

Ea,x,>,:r 
i=l 

foratlx "'(x1, •... x,) in S 
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2. Prove that if Sis a convex set in R". then its closure, .~, is also convex. (flu,t: Assume x. y E S 
aml k1 x. ..... x. Yi -> y, where x,. '!k c S.) 

@ 3. Prnvc thar. if Sis a ~-onvex set i.n R". and x is DOI an interior point of S, theu x is noi an intcrior 
point of,( 

4. If S i.s a tcr in R" and y is a boundary poim of S. is y necessarily a boundary point of S? (Hint: 
TI1c irr~tional nvmber ...fi is a boundary poinl of che set O of rational nwnbers, bm what is 
C? If S is convex, then it is oue that a boundary p<•int of S is aho a bounda1y point of ,5'-·se<: 
Problem 3.) 

5. Some hooks in economics have. suggested the following generalization of Theorem IJ.6.3: Two 
conve~ scrs ill R" with only one point in commoo can be s"p;,rated by a byperpl:ine. ls chis 
stalct11cn1 conecl? What about the :i.S&enion that two convex sets in R• with disjoim interiors 
can tie scpar.1t.cd by a hyperplane? 

13.7 Productive Economies and Frobenius's Theorem 
The final section of this chapter wi II indicate how some of the rather abstr.,ct concepts lll!d 

results discussed lead to some interesting insights in economic models. 

Consider an economy with n commodities. Producing the commodity vector x = 
(.x.1, .••• xn) require.~. in general, inputs of all goods. For i = 1, ... , n, let/; (x) deno1c the 
amount of good i needed as an input to produce ic. so that f(x) = U1 (x), .... / 0 (x)) is tbe 

commodity input ve..·tor needed to produce x. It is reasonable to assuroe that the function f 
is int:1-easing in the sense rhat2 

u 2 v =} f(n) ~ f(v) 

lbc vector of ri.e, ou1pu1s left for consumption and investment, the final (net) supply, is 

y = X - f(xj. 

Suppose that there exists a commodity vector a= (a1, a 2 , •••• a") ;; (0. 0, ... , 0) that 
can be produced,and for which thctinalsupplyy = a-f(a) is?- 0. What other final supply 
vectors can be produced? A partial answer is given by the following lh<!.orem: 

. ---------·-----··--------··---·---------·-·-·----·-·--, 
I 

Ler f be a continuous, increasing lr'.l.n5formation from Rt into !l+. Assume lhat ! 
tht\rt· exist,; a vector a ~ 0 such that a 2. f(a). Then for every y such. that ! 
O ::;: y fa - f(a). the equation ll. - f(x} = y ha.5 a solution x with y ;S ll'. ;i a. l 

··--·-----·· ---···------ .-.. -----··--·-----·-.. --·-···--··•·· ···- ...... ---------·-----·-.. -.. -.. ) 
1 Rec al I thl!.l u ;;i_ v means that "' ~ v, for :tll i = 1, ... , n. If 1he inequal'r.y is $1tkt, with u, -.: v, 

for aJJ j. we wril~ u « v. 
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Proof: Suppose y satisfies O ;;;; y ~ a - f(a). Let iro = y. Defiue x 1 == f(xnJ + y, and in 

general 

X., := f(Xm-1} ,f· y, m '"' 1.2 .... (i) 

We prove by inducti-,u on m that 

X..,-1 ~ Xm and x,...1 :':'.. a for m "' l, 2, ... (ii) 

Indeed, (ii) holds when m "" l becau~c :1(1 = y i a - f(a) :::_: a and also xo "" y "·' x1 -

f(Xo) 5 X1. Asthcinductionhypothe.<is,supposethatk ~ J aDdthat(ii)holdswhcnm == k. 
Thcnx.., = r(xk-1)+y ~ flxk) +y = XH! andalsoxk = f(xk_1) +y ~ f(a) +y s; a,so 
(ii) is also true when m "' k + l. This completes the proof of (ii) by induction. -

. Define x .""' sup., ll., (meaning that for i == l, ... , n, the ith component xi ofx .~atisf1es 
x' ""supm x:.,). Because ~m-1 ~ Xm form = l, 2, ... , it follows that x~ -+ xi as m-,. oo 

for every i. and therefore Xm ..... t a< m -+ oo. Continuity of r and (i) together imply that 
x = f (x) + Y. and so x ~ y. Also, (ii) implies that x ;~ a. So ll. is the required solution. • 

NOTE 1 Suppose that the function r in Theorem I 3. 7 .1 is lu,mngeneous of degret: J, and 
tha~ a » f(a) for a » 0. Then a - f(a) >,'> 0, so the theorem tells us that for every y with 
0 ~ Y ;5 a - f(a). the equation x - f(x) = y has a solution x. But replacing a with J..a for 
any)..> 0 yields J,.a-f(1,.a) = )..(a - f(a)) » 0. Moreover, each component of )..a-f(i.a) 
can be made HS large as we please. Therefore, by Theorem 13.7.1, there i~ a ~olution x of 

:t - f(x) = y for ally ;;; 0. 

Now consider in particular the Leontief case. where f i~ linear, given by f(x) "' Ax for 
some n x n matrix A :::: (a;j]nxn with nollllegative clements. If v ?. u, then v - u ;;: O 
and A(v - n) s 0, or Av ?.: Au. This shows I.hat lht' function f is i~1crcasing, as well as 
obviously cont:i~uous, so Thcorcm 13.7.1 applies. If we want to get po~itive final supply of 

every good, u m Note I, we are led to the concept of producrive matrices: 

OOIJCTIVE MATRI ES ·---······--···-------·-·-·--

A nonnegative n x II matrix A is called productive if there e-xisL~·~:~:~::-:-i 
such that a » Aa. u I (l) 

·-·-·----·----------·--·-·----_J 
For productive m~trices, Theorem 1.3.7.1 can be significantly sharpene.j: 

ff A is pro<luc1ive, then for every y :?; 0 rhe equation x - Ax = v has a 
unique solution, and this satisfie.< x :i:::; y. • (2) 

Existence., but nc,c uniq11e11ess. of" follows fn,m the argument in Note I ahove. However, 
bol.h t,.,cist.ence aml uniqueness follow from Theorem 13. 7 .2 below, which al~c, em.bles us m 
find an explicit f<,nnula for x. namely x ~ (I - ;\)-!y. 

.,,I· 
. I 

I ' . ··''. i 
;/ t 

)l 

i 
l 
! 

.. 1 

·;\ 
.;·.-1 

/1 

S~(T\CN 13.l I PR(){);JCflVt ECOl',;OMIE~ ANO fROBEN!U~-5 :HEOREM 497 

The ne~, theorem give~ us several w3ys to recognize productive matrices. Two of these 
inv,)lve a c.onvergenl sequen.:c of square n1atriccs, detincd in the ob,ious way: If {Bk h is a 
~equcnce of matrice~. thcn Bk -+ 8 a~ k --,. oo mcsn~ that each eleme-nt bf, of Bk converge~ 

to the eorrespon<liag element b;i of B. · 

For a nonnegative n >< n matrix. A the following ~Latcments are equivalem: 

ia) A is productive. /c) (I-A)-1 =l+A+A"+···. 

(h) A'"-+ Oasm ..... oc. {d) (l - A)"· l exist, and is ooru1cgative. 

Proof: ft sufliccs 11, prove that (a) ::=} (b) a;} (c) =} (d) '* (a). 
To prove (a)=} (b), choose a vector a» 0 such thai a» Aa. Each component of a is 

then strictly larger than the corre,;ponding component of Aa. Therefore, there exists a i. in 
(0, I) such that )..a» Aa ~> 0. Then ).2a = ).(i.a) » ).,\a :::: A(Aa) ~ A(Aa) == A2

a » 
0, and by induc1ion we get i.."'a :» A"'a ~, 0 form"' l, 2, .... If we let m ...... cc, then 
;.ma...,. 0, oocalL~C ;. E (0, l). Hence A"'a-+ 0 as m-,, •X'. But fort:achj == I, 2, .... n, 

wt, have Ama = Am(L~=I a;e;) = E7=1 a;A"'ci ~ a;A"'ei• and so the )th column A"'ej 
of Am tends to O as a limit as m -+ c<l. Therefore, Am ..... 0 a< m -;.. oc. 

To prove (b) =l- (c), note thal, t>ecause A"' -+ (I and the delerminaot o{ a matrix is 

continuous in. its element~. we have !I - A"' I --' I and so 11- A"'l -:f- 0 form sufficiently 
large. But (I - A)(I +A+···+ Am-l) "'l - A'", and ~o II -Al ;t. 0. lt follows that 

1- A is invertible and 

I+ A+ · · ·+Am· I =- (I - A)-1 (I - ,\'") 

Letting m ...... oo yield~ lhe conclu.sion. 
The implication ( c) =} ( d) i~ i11UUediatc. 
Finally, to prove that (d) '* (a), choose any y » 0, a11<l le1 x = (I- A)-iy. Then (d) 

implies that " ;;; 0, and (1 - A)x = y ;>.> 0 implies 1' » Ax. so A is productive. • 

Th" last rc,;ull of this section has several applications lo economics. (See e.g. Ni k"-1i.do (l 970), 

Chapter 3.) 

THEORl:M 1'3 1 3 (PERRON fROBHllUS) ··-·-·--·---···-·--··-··-·····~-···-------i 
t 
t 

l 
Snppo~c that A "'{a,j ).xa ~ 0. and dcfin~-

;.A ,.,, inf{µ, : 1.1. > 0 and 1.1.- 1 A is produ,tive} 

I Then i..A ·:~ O j~ chc largest. real ,,igenvalue of A and has an associated nonnega1ivc 
eigenvector. The eigenvalue i-11. is c.alled the Perron-lfrohenius root of A. 

. . ···--· ·--··· -··-· ........... ····-·· -- -·-··--·. -···-.... ··-· ·····----······ .......... ·-···· ..... .... .. . . .. ·······--··· -_, ........... J 
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Proof: Let I denote then x 1 matrix with all clcmenL~ equal to I .. Forµ. large enough, one 
has µ.1 » A 1. so 1 » /L - 1 A 1. It follows that µ. - 1 A is ~lroductive, so the set 

J,,_ = { /L: µ. > 0 and tC1 A is productive I 

is nonempty. Moreover. if 110 > 0 is such that µ.01 A is productive, !hen µ.-1 A is productive 
for all 11. > µ,o, and also for some µ. slightly less than J.l-0. It follows that J A is an open 
interval that is unbounded above; in fact, h = ().A, oo). It is dear !hat .lA ~ O. 

Let /L > AA, i.e. /LEJA, 1i1en 11. > U and µ.-1A is productive, .~o by Theorem 13.7.2, 
/.LI - A = µ.(I - µ.-I A) is invertil:>lc. Therefore, /Lis not. an eigenvalue of A. 

lt remains to .show that AA is an eigenvalue of A with an associated nonnegative eigen­
vector. Choose a sequence {µt I in h, that converges 10 A;1., and let X.t = (µ41 - Ar1t for 
k = I, 2, .... Then 

(i) 

We demomtratc by contradiction that IIXk 11 ..., oc as k - oo. Indeed. if it did not, then 
the sequenc.: ( /IX1 II}; would have a bounded subsequence. Bur them. according to Theorem 
13.2.4, (x,1-h would have a convergent subsequence (x..;h, with limit :i:0 ~ 0. Replace k by 
ki in (i) and let j ~ oo. Then in the limit (J.,AI - A)x0 = I, so .t,.,x0 - rut)= 1 » O. But 
that would imply that >.,., > 0 and tha1 ). A 1 A must be productive. In other words, '·A would 
belong to -'A, but that i~ impossible. We conclude rbat lfxt I! - oo a~ k --~ oc. 

Putyk = :i:.t/llxtfl. Then IIYA-11 = l, and the sequence (y1} has a convergent subsequence 
{Yt, }; converging as i -,. oo to some y0 with IIYo II = l. Replacing k by k; in (i) and dividing 
the equation by llx.1-, II, we get 

(µ.k,I ·-A)yk, = (1/flx,;[1)1 

Now let i - oo. Jt follows th~t (.lAl - A)y0 = O. so Ay0 = ;...AyO. This equation shows 
that ) . .4 is an eigenvalue for A, with an eigenvector yo ~ 0. • 

NOTE 2 It can be shown that, ir A ?- 0, then l'-i ~ i.A for all eigenvalues ,. of A. whether 
real or complex. If A >> 0, then i.A is a simple root of the eigenvalue equatiou and all 
other eigenvalues are strictly smaller in absolu~ value. See Bennan and Plemmons (1994) 
or Hom and John~on (1985) for more information. 

(
, I '3 1 ) 1. (3) Show tha1 A = 119 ij; is productive. 

(b) Show •h~t if A i.s a n<>nnegative n x II matrix wi1h all row sums less than I. then A is 
ptnduc1i ve. 

2. Find 1hc Perron-Fml:ienius root and an ass,Jeiated nonne.gative eigenvector for each of the 
following ID!.ltriccs. 

('1 2) (a) 2 I (b) ( 1/3 l/2) 
l/9 1i3, (

2 l 1 )' 
(c) ~ A ~. 

Mathemaric; is like an addiction, or a disease; you can ncve1· 
truly shiJke it off, e~n if you want ro. 

-1. Stewart ( 1989) 

A function f from a ~et A to a set B r<!quires each element x of A .to be mapped to exactly 
one element f (x) in B. This is one of the most imponant concepts in mathematics and its 

applications. Many economic applications, however, use a generalization allowing any element 
in A to be mapped to ii se: consistiPg of sev,;ral elements in B. 

For example, suppose that p deno;es a vector of parameters-for example, the list of prices 
at which an economic agent c;m b1.;y or sell different commodit;es. Then F(p) might l>e the set 

of the agent's optimal decisions given these pararr.eters-for example, the set of a consumer's 
utility maximizing demands, or of a firm'; profit maximizing production plans. Because optimal 

deci~ions may not alw~ys be unique, ~conomists need to 9eneralize the concept of a function 
in this way. Such "multi-valued'' functions are uwafly calied correspondences. Section 14.1 
studies correspondences and some of their main properties. 

The maximum theorems of SP.ction 13.4 have a n.itural gener;ilizatior. to correspondences. 
Section 14.2 deals with such generalizafons and also includes some economic applications. 

Ar.other focus of this chapter is on fixed point theorems. The brief SecMn 14.3 forrnul;i:es 

and prove~ the existence cf a fixed point for ?. special t:ypE> of contractior. mapping. This result 
has imponant applications to problems in the theory of differential equations, cor.trol theory 

and to infinite horizon dynamic programming. 

Ne;,:t in SKticn 14.4, we study the fixed point tr.eorems of Brouwer and Kakutani. In eco­
nomics these results are widely used to prove that equilibrium exists in various models of pertcctly 

cornpetitvP. markets ar-d in genera! strategic form g;ime~. The~e application~ are regarded <JS 

major triumphs of mathematical economic:;. According to Scarf (1973), "Th:s demonstration 
[ of the l!Xi~l1:nce of an P.quil!briuml h;is provided one of the rare instance.~ in which ilbsrrnct 

mJthemat;cal techniques are indispensable in order io solve a prohlP.m of central importance to 
economic theory·. 

lhc iinai Section 14.5 proves !he !"Xis!ence of an equilibrium in a pure PXC:hange economy 

hy tJ~ing the Brouwer fixed p<>int thP-or~rn. 
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14.1 Correspondences 
This section considers correspondences and in particular introduces several cnntinuity a.~­
sumpcion.~ that have lx"Cn found u~eful by cconomisL~. The rather intricate relati011ships 

between these different concepts aTe set out in some det.'li l. 

---·---.,,.,--·--·------

'
; 

A correspondence P fmm a set A into a set B is a mlc that maps each x in A to 

a subset f(x) of B. Theu one WTi.tes F : A _,. R anJ x i-,. F(x) (with double 

1
: 

arrow~ to distinguish a correspondence from a function). 
! 

(1) 

-----------·--·---·······---··· -·-·- ···-·-·-···--···· ---·-----·-··-·--·----·---··___J 

EXAMPLE I 

Toe set F (x) in the definition is allowed to be empty for some elements x in A. The domain 

of F is A. the set of all x for which F(x) is defin,;d; the effective domain is the sec of all x 

in A at which f(x) i~ nonempty. 

Correspondenc,;s are also called set-valued maps or multi-valued functions. If th<! 
subset F (x) always reduces co a single point, the correspondenc:e is effectively lhe .same as 

an ordmary function. The eoncept of a correspondence from .4. <:; iR3 into IPJ2 i~ illustrated 

in Fig. l. 

f
~-~'- I!~, 

- • ....__ F { l 

·---~-·-· .. --p --... --------+- / -OF(xl / 
\., . .--·····-- l \ . ! 

> <::__-:- I " J 
------------- ! ---= 

Figure 1 F is a conesE)cmdence from A s; R 1 to R2 • 

01:1e familiar example of a correspondence is y i- 1-1 (y). where f is an ordinary function 

from IR to R. Recall that f ··· 1 (y) i~ the pre-.i.tnagc set {x : f (x) = y \. It may well be empty 

for some x, (\f may con1ain moTe than one elemc:nt unless f is one-to-one. 

Example 2.2.2 dcfiucs a consumer's budgd sd 

.S(p, m) = ( l( ER" : p · ll Sm, X ~ 0 l (2) 

for each pdc:e vector p :;; 0 and income l.:vcl ,n ::=. 0. 11m&, the budget sel consists of 

all affordable nonnegative couunodity vecmrs. Note that (p. m) t·" .il(p. m) defines a 

C{JtTespondicnce from M~+ 1 into f?'.;.. Sc.c Fig. 2. I 
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Li 

~~~ I 
_,., --

.... -·-· t
; -- _,,,,_..-~···;< P2 ---------------~~.:> 

... -·---··-·--·-·--·---••. __ ~ P: 
-x1 

Figure 2 An iudi:vidual's budget oorrcsponr.kncc when there are two commodities. 

Con.~ider a firm producing a single commodily. Suppose that the tolal r.:ost of.production, 

a.s a function of output level Q ::,: 0, .is given by 

{ 
0 if Q = 0 

C(Q) = f' + aQ + cQ1 if Q > 0 

where F, a, and care po.~itiv.: constants wid1 P > (I. Noto! that C(Q) > F whenev('r 

Q > O. In chis sense, F is a "fixed" or "setup" cost that must be incurred in order to produce 

any positive level of oucput. 

Suppose the. fimi faces the 011tput price P. Then its profit, as a funr.:tion of Q, is given by 

. { 0 if Q = 0 
;r(Q)==PQ-C(Q)= -F+(P-a)Q-cQ2 ifQ>O 

For Q > 0, one has n'(Q) = P -11 - ZcQ and ;'1"
11(Q) = -2c < 0. Note that :rr'(Q) = 0 

for Q = Q· ""(P - a)/2c, with :rr(Q*) = (P - a)2 /4c - F. We see that ;re Q·) ::: 0 if 
and only if U' - a )2 ~. (2M )2 , i.e. if and only if P ;::: a + 2./cf. It follows that 1he 

profit ma'l:imizing choice of output is 

{ 
0 if P ~ a + 2Af 

Q(P) = (P - u)/2c if P?. a+ 2Af 

:i,idding the. profit level 

;r(Q(P)) :::.: { 0 2 
(P-a) /4<" -· F 

if l' :::'.a+ 2.JcF 
if P ~a+2.Af 

Nott: that the producer" s behaviour is described by a supply r.nrrespondence rather than 

a fnncti.oo because, when P = ,, + 2B, hoth O and ,JFlc are q~ntities giving the 

i,roducer zc,m maximal pmfil. Tu(" supply corresponden,·e is illu~trated iu ·fig. 3 and also 

in Fig. 4, where tht: axes have h.-~n intcrd1angcd lO .;onfonn with the standard convention 

in economics. I 
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EJ(AMPLf 3 

\/Fie t.__' __ / __ ·-}' 

.z+2w 0ic -------- Q 

Figure 3 Flgure4 

The graph of a correspondence F : A -,, B is defined as 

graph(F) = { (x, y) EA x B: x EA and y E f'(x)} (3) 

If F is an ordinary function, its graph reduces to the familiar graph of a function. 
Given a coITCSpondence F : A H> B and any set S ~ A, the range or image of S under 

Fis defincdas the set F(S) = U«,s F(x). 

· Let F be the correspondence from IR to R that maps every x < 1 to the interval [ 1, 3 J, 
and every x ~ 1 to the set consisting only of the number 2. Hence, 

F(x) _ { [l, 3], x < I 
'."'" [2), X ~ l 

Draw the graph of F. 

Solution: The graph of Fis shown in Fig. 5. The dashed line indicates boundary point~ 
that are not part of the graph. I 

Figure 5 The correspondence Fin Example 3 
is lower hemicontinuous, but il~ graph is not 
closed. 

Correspondences as relations 

X 

Figure 6 The corrcspondea--e has the closed 
graph property, bur. i~ not lower hcmicontinu­
ous. 

The gmph of a correspondence from A lo 8 is a subret of the Cane.sia{I product A x 8. This subset 
can also be imerprcrcd as a ro/ari()n from,\ to B (see Appcncli1. A). Tndecd, for every com:spoudcnce 
F : .1 - 8 then,is a unique relation R, from Aton such that a RF/, ='l> h E f'(a.l. Similarly, t0 

cachrelatioo R from A to R there i~acorrespondencl! "" : A, ··• B g.ivr.nby Fp(a) =lb,;: B : "Rb\. 
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The Closed Graph Property 
The rest of this section will deal with correspondences that m:ip points i11 Rn to subsets 
ofR"'. 

Cootinuity is an imponant concept for ordinary functions. It ensw-es that small changes 
in the indcpendent variitblc do noc lead ro large changes in the function value. For a corres­
pondence Fit is equally important to introduce certain continuity conditions ensuring that 
small changes in x do not change the image set F (x.) too drastically. However. unl.ilre for 
(single-valued) functions, there are several different kinds of continuity for (multi-valued) 
correspondences. Thi; distinction.~ between them are of some importance in economic the­
ory. Of these different kinds of continuity, the simplest is the closed graph property; 

I A correspondence F : X s;; IR" - W' has the closed graph pl'Operty at a point 
I x0 in X if, whenever [x~} is a sequence in X that converges to x0, and {Yi l is a 

i sequence in or thatsarisfi«SYt E F(xk), le= I, 2 .... , and converges to y0, one 

l
. has y0 E F(11.0). 

The correspondence F bas the closed graph property ifithas the closed graph 

-

-----property at every point in X, i.e. if for every convergent sequence ((xk, Yt)} in 
graphtF) whose limit is a point lXo, r°) in X x iim, one has y0 E F(x0). 

·--------·--------------···-------------

(4) 

If a correspondc.nce F bas the dosed graph property at :i:0 , then in particular the set F (x0 ) is 
closed. In the language of Section 13.3, F : X ~ Rn -» ftm has the closed graph property 
if and only if grapb(F) is relatively closed in X x IR'", i.e. if and only if graph(F) is the 
intersection of X x ~"' aod a closed set in R" x IR"'. In particular, if X is closed, then F 
ha& the closed graph property if and only if graph ( fl) is closed. 

Figure 6 shows the graph of a correspondence F : [a, b] - R which does have the 
closed graph property. It is clear from Fig. 5 that the oorre~pondencc F in Example 3 does 
not have the closed graph property at x = l. 

Suppose lhat g : P,1t+m -+ IR is a continuous function. For all I in R", define 

9'(x) = { y E llf" : g(x, y) ~ 0) 

Shc)w that the correspondence x t-i> /P(x) has Lh.e closed graph property. 

Solution: The domain R" of the correspondence /J> is closed. Its graph is the subset 
g- 1 (-oo, OJ = l(:i:, y) : g(x, y) ::, O} of R"~ .... Because (-oo, OJ is clos.ed and. 8 i~ 
<:(lnti11uous, this inverse image is closed. Because :P has a closed graph, it has lhe closed. 
graph property. I 

Upper Hemicontinuity 

A concepc closely n:la1cd to the closed graph property is upper h<:micontinuity. Note I and 
Theorem 14.1.2 show the relationship bcrween tbe two concepts. 
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A correspondence F: X S R" -* Rm is said to tie upper hewkontiouuus (or 
u.b.c.) at a point x0 in X if for every open set U that contains F'(xll) there exists 

• .,.;gh bowho,,J N of , • ,O<h ili" F(, ) £ U ffil '""' , ;, N o X. i.u,,h I 
1hat F(N n X) <; U. 

F ~~~:er he.micontinuous (~r u.h.c.) ill X if it is u.h.c. al every Kin X. 

The following resulr is IUl immediate implication of definition (5): 

(5) 

HEORE M 14 1 1 C<..ONTINUOUS FUNCTIONS ARE UH C ORR£5PONDEtKtS1 

The fullction x I-'> f(x) is continuous at a point x0 of it.~ domain X if and only if ! 
the associated correspondet:c x ...., (f(x) J is upper hemicontinuous at x0. ~ 

Proof: Let U he a open set containing f(x0) and let N be a neighbourhood of x6. Note 
tbat f(N n X) <; U ~ N 1-1 X £; r- 1(U). Because of Theorem 13.3.S(a), the theon:m 
follows from this equivaleJJce. • 

NOTE 1 If F : X ..... IR"' is upper hcmicontinuous at a point x() in X and F(:K.0 ) is a closed 
set, then F(xi has the closed graph property at xO. (Proof' Let x. ..... xO, Yk -> yo, and 
y;, E F (XJ. ). Consider :toy y ¢ F (x0). there i.s a closed ball B aroUlld y wlucb is small 
enough not to inteisect the closed set F (x°). Applying (5) to tbe open set CB = R'" \ 8 , 
there e xist~a neigbbourhood N ofx0 such that F(Nn X) c;:; CB. 8 11tfork large, xi: E N nX 
and so Yt € F(xk) ~ CB. Thcrefore.yt doe.~ nor converge toy. Hence y0 e F(xo).) 

On the other hand, the following theorem alw holds: 

H E-Oltf M 14 1 7 ,-----

Suppose that the correspondence F : X ~ R" ..... W' ha.~ the closed graph 

pmperty at x0 and that Fis locally bounded near x0 in the sense that there exists 
a neighbourhood N of x0 such that F(N n XJ is hounded. Then Fis upper 
hcmieonrinuous at x0 . 

Proof: Let N be as in the theorem, and lei B(x0 ; a l~ N. Suppos<l that Fis not u.h.c. nt 
1.
0 in X . Theo there mu~t ex.i.~t an open set U ;?. F (1fJ) such th.1t, give11 any ball B(i.1\ a/ k), 

k "'- 1, 2, ... , there exists an xdn H(x0 , a/x)ri X for which F (xt) £ U. Choo~e arbitrary 

vectors Yt in F(x,) \ U . The boundedne$s property in tlle theorem implit s that {Yt} has a 
convergenl ~ubscquence {Y.1:. l. which converges to some p,:,i.ut yo in F(x0) as ,. -> oo, by 
tile closed gr.tph propccry. Because Yt, e: f'(" \ U llnd R" \ U i~ cloS<xl, y0 ::a. lim, _,.,., Yi:, , : 
Rn \ U. Hence y') ¢. 1-'(x.0 ) . cootrndicting tht: clo~e.d graph property at rl. • 

SF CTION l4 . 1 I CORRES PUND f.N CES 

The foJJowing itnportaot rc:;ult is ao immediate coruDll.C)': 

I tOREM 1•1 1 3 ---, i.-,..r.;.......=--'-"'~..;..;....:;.'-"--'-...-.....,.___ ........ _... ___________ __.__ I 
lf a corre,Jl()nde.nce F frotn X S R" to Y s; R"' bas a compact graph, then it is I 
upper bemiconti.nuous. . 

sos 

Problem l conc.:cms an example of a co.r.espondenct:, some of whose values are not com­
pact, that has the dosed graph property, but is not upper h¢miconti.uuous. Theorem 14. 1. l 
shows thaJ.. if a corre.~pocclence is single-valued and so collapses to a function, then uppct' 
bemicootinuity implies that tbe function is continuous. 

Lower Hemicontinuity 

Aoother frequently encountered co11tilluity condition for correspond.:nces is the following: 

LOW R HEMICONTINUOUS ORRESPONl>HI E ··--·-----------, 

I A correspontlcocc F : X £ R" _,. R"' is lower he.micontinnous (or Lb.c.) at a 

l
i point x0 in X if, whenever y0 E F (x0) and \x.i} is a sequence in X that converges 

to x0 , there exi&t a number ko and a scquenc:t: {Y>. )r-1 .. in ~'" that conv~es to 
y0 and satisfies y, E F (x1.) for all k ~ kQ. 

- --- ---F- is_. _io_w_c_r_b_e_llll_·_eo_n_t_in_u_o_u_s_(_o_r _1.h_._c._)_in_ x_1_·r-it_i_s_l._h._c_. a_· t-ev- crv ___ po_ in_t_x_io_ X_.___. 

(6) 

l.owec hemicontinuity requires a correspondence to be continuous in a sen.~e that is almost 
tbe opposite of upper hcmic<'ntinuity. For c~arnplc, the correspondence sh<lwi.i 1n' Fig. 5 
is lower but not upper hemic:ontinuous. Yet tbe opposite holds fof the correspondence in 
Fig. 6. (fo se.e why the correspondence in Fig. 6 is not lower hemicontinuous, consider tho 
point P on the g;raph. and let the sequeooe /xt l be as suggested by the dots in the figure. 
In particular, suppose (xk l converges r.o x. It is ob~iously impossible to choo.1c a sequence 
)'k E F(xk) that converges toy, because the corresponding sequc11ce {(x, , .Yk) I can only 
converge to a point on the line scgmeDt R Q, and not to P.) 

Roughly speaking. if a correspoodence F is up~-r berniconrinuous at a point x0 of irs 
domain, then J-'( ,c) cannot "explodt:'' as x moves slightly aw:ry from x0

, a.~ happen~ nt 
. t :::: 1 ill Fig. 5, but it may .. implode". as happens at x in Fig. 6. For lower hctuicontinuou~ 
correspondcu.::es the. opposite is tmc: F(x) eanDot implode as x move~ slightly away from 
x0, but it may explode. 

f A.MPl S Lee g "' (g, •... , g1J : 'R" .. "' -+ ~ 1 l:>e eonriouous, let b be a gjven I-vector. kt A he 
a given closed set in R.,, aod let. X. be a given set i.o R". For eai:h x in X. define th,, ~et 
:p (x) ~ R"' by 

i. 
' 

!: 
L , .. 
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/Ax) "" I Y "= A : g(x, y) ~ b) = I y E A : g;(x, y) .:::· l>i, i "" 1, .... I) 0) 

Show that the <:orrcspondcnce :i: 1--,, :P('X) bas the closed graph property and is also lower 

hemimntinuous if :7\x) = .9'0(x) for every x in X, where .1'0 (:r) = { y E A : g(x, y) « b]. 

Solution: Proof of the clo~ed gr.1ph property: Assume that xl -+ xO E X and Yt --,. yo 
when k -,. oo, where Yt E J'(xk) for all k. Then Yt E A and g(:1:k, Yi) ~ b. Because A is 

closed, yo E A. By rnntinuity of g, letting k-+ oo in the inequality yields g(:r{\ y'>) ~ b. 
It follows that yo E :J' ('xo). 

Proofoflowerhewicontinu.ity: Lelyo c ,1'{x0) andletx1 -,. xr, EX. Because$'{xO) =, 
9'0

(rlj°. there exist vectors yi in .1'0 (x0) such that Jlyi - y0 11 < 1/j for j = l, 2 •.... 

Because g;(x.
1
l,yi) < b, for i"' I, ... , I, there exists a scrictly increasing sequence of 

numbcn: kj such that fork~ kj, the inequality gi(Xt, yi) < b; holds for all i. Letyt = yi 
for ki ;:, k < k;-,.c. Then IIYk - y0 II ::: lij forall k ::: kj, so Yt _,. y0• Also, Yk belongs to 
5'(:x.k) fork ::: k1, thus con finning lower hcmicontinuity at :t°. I 

EXAMPLE 6 Show that the budget co1respondence $ (p, m) defined in Example l bas the dosed gr.iph 

property and i~ lower hemicontinuous at any point (p, m) where m > O. 

Solution: The closed graph property follows immediately from the previous ex.ample ( with 
A =- Ix : x ~ OJ). 

To prove that the coJTcspondcoce is lower hcrnicontinuous when m > 0, because of 
Example 5 it is eMugh to show that :B(p, m) ~ $ 0 (p, m). where $"(p, m) = fx ~ 
0 : p · x -~ mJ. Given any x in .B(p,m), let Cl!k "' (l - l/k), k-== l, :2,. ·-· Then 
CY.kX ~ x ask -,. oo. Moreover, because p · x ~ m, 0 < ctt < 1, and m > 0, one has 
p · ettX ~ akm < m, soak:.: belongs to $"(p, m), and x = lirot akx E ~"(p. 111). which 
proves the ,1Sscrted i.Dclu~ion. I 

Herc is an alternative condition for lower bcmlcominuity: 

. ALTERNATIVE CHAR.£1CTERIZATl0N OF LOWER liEMICONTINUllY 

I A correspondence F : X s;; R" -,, I'll"' is lower bemicontinuous at :¥.0 in X if and only if 
for ra~h y

0 
in l'(,IJ) •nd each neighlxiurbood U of y", there exists a neighhourllood N 

of ,co such that F(,r:) n U ,,f 0 for all x in N n X. 

; 
I 

l 
I 

' i ~ . . - ............. .-....... ,--.···--·-·-...- ......................... ~.-.. _·····-·-·--·--........ --------··----.. -· ... --...... _.,.. __ . 

{8) 

Proof: Lei us show f1rs1 thal f' is lower bemi,-onti11uuus at a point x0 in X if condition (8) holds. 
Lee yq E F(x

0
) and k:1 xt _.. x') ask ··• :x,. for each ball H(y0; 1 f.i), j "' 1, 2, ... , the c.)ndition 

in (8) implies that :here exisrs a neighbow·hood N, of x0 such that F(x) n /ltyO; I//) f· 0 whenever 
,c ~ N1 n X. TI1erc exist<: a k; such !hat k :-:; k; implies ,r, E N, ri X, so rhcre e1tists a yJ E. F(x,) 

~uch tbac ,; cc B(f', 1/j), k = k;, k1 + I, .... Obviously {kj} may be ch0$cn to he increa5ing. Pur. 
Yi "-' yJ when~;~ k < k,~1. Clearly Yt ,.., y0, so F ~;itistic.~ (6) at • 0. 

To prove dle.n:verse implication, supjl0$C F d,xs no1 s,itisfy (8) at a point l1o in X. Then rticre 
c_tjs1 a puiD! y

0 c: F(r') and a r.cighl>ourbood CJ of yO ,!'llcb !hot every hall TJ(g0 ; 1/j). j ,., 1. 2, 
.. _. includes at least one point Xj satisfying F(x,) n U = 0. Hence, there e:xist,; a ~qu,·nce {:r.

1
) in 

X suclt dlat xi -• x
0

"" j _.. oo and l''(Xj) f"\ U = i1I for ~ll j 2:: l. Hut then oo sequence IYi) widl 
y, •= F(x,), .i =· L 2 •... , can possfoly converge fl' yl>. S,.1 F cannoc satisfy (6) ~t x0. • 

:;I' 
:,.· 

; 

i 
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Comparing (8) with lhe com:sp,>ntling mpolugical condition for t·ontinuou, funt'tions lead~ 

immedia1ely to the following important result: 

A function x >-> f (x) is cominuous at a point x0 of its domain X if and only if 
lhe associated com:spoudcnce x ..... (f(x)J is lower hcm:icoJ1tiituous a, x0 . i 

·----·------------·----
________ j 

! 

Proof: Given any neighbourhood U of {f(x0)}, one has {f(x}) n U 'I- 0_ ~ f(x) EU:· 
so {f(x)J :1 u I 0 for all x in N n X if and only if ftN n X)_ s;; U, 1:e: if and only 1.f 
N n X c r-1 ( U). The result follows from (8) beca1L5e the topological cood1uon of Theorem 

13.3.5 f~rf to be continuous at x0 is that N n X S::: r-1(U) for some neighbourhood N of 

,fl whenever U is a neighbourhood or (f(x0)J. • 

A correspondence that is both upper and lower hemicontinuous is called continuous. Of 

.:our~e. any con8t.ant-11alued correspondence is continuous, as 1s any ,mgle-valued corres­
pondence that collapses to a continuous function. But &o are many others. 

Composite Correspondences 
If J : ;\-, 8 andg : lJ-+ C arc func1ion5, tbenthec·ompo:l1ion h "".go( is thefonction h.: A,""" C. 
given by h(x) = g(f(x)). S101ilady, 1f 1-' : _4 ....., B ,ind C, : B ..,, C arc correspondeoccs, tho;n the 
compo,;lte correspondence H = G o F : A - C ,s dcflnr:d by 

H(.<) = G(F(x)) = LJ G(y) 
!,'(:J:'(:c) 

Tbos. ff(,<) is the union of all 1he sci$ G(y) that ace obtained as y runs through F(x). This means 
1hatz E: H(x}ifandonlyif ~ e G(y) foratl;;astont y in.F(x). . • 

Recall that the composi1io11 of 1.wo ,·ontinuous funct1011& ,s ~ontrnuous. For corresponden,es 
between scrs in Eocli<lcan spaces we have rhc following fl!Slllt&: 

Let F : x c R0 
-· y ,:; ir and G : l:' -· Z S JlP be cc>rrespoo<lcnccs, ~nd lc1 

H , .. , G" F-:--X -M Z be their composition. Then: 

(a} lf F and G have che closed graph property and Y is comp:?CI, then H has the closed 
~'raph property. 

lb} If F is uppe~ hemicontinuoos at ,t, in X and G is upper h<'mi,:011tinu,)11S a1 evi,ry 
point of F (,t J, then H is uppt-'1 hemicontinucms at x0 . 

(,:) If F i_s lower hernicontinuous at ,,!J in X and G is lower hemiccmtinuou.\ al every 
E)Oint uf f'(,0), 1hen lf is lower he.micontinuous ac 'If'. 

L .. --,., .. ··---·----- ... _ .... ,.,-.......... --··-------.. , .................... -...._ ...................... ___ 

Proof: (a} Suppose that Ix,} and h,, \ are co11v~ge.at sequences in X and Z respectively, s~~ll tho! 
Zt € H{x,1) for all J:., y_O = limk x, E X, and z~ "' lim1 7.t. We rnu~t show !hat i> ~ lf(x J. The. 
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c.ldin.-i!ioo ,,f II C<HllJlOSire etwre<pon<lcn~c implies that for each k rb,:rc c~iSt$ a Yl iu F lx..) 8uch tlmt 
2.t E G(Ji). Bccall.~C Y is cornl=l, {y, ) has a coovecgem subs(quen.x: /y1,}. ut yo ,-a .l.im,. Yt,· 
The correspl.lnding subsequences /x},} aiid !z,.J of tx,J aud fZkl n•nwrge to x~ and zO respectivdy. 
f.!ec.a,i$c r' .iod G have the clo~,d graph property, ,ind hecause Yt. c F(xs,,) f,ir all r, it follows th;t 
y0 e 1-'(i') and z0 E (i(}..i). lfotce, zv Ee H (t°), 

(b) L.et U be ruiy open sct~<lt11.8ini,1g li(x0), Sin<.:e H(xu) "' U,eF(r'i G(y), lh.: s-,1. (I contains G(y) 

for e,.;ery Y F. F(x"). Because G is u.b.c., for each such y thcro <:Xi.st, an <l[len ueighbourhood N of 
1 rue Ji 1h3.C Ofy'j ~ U whenever y' c; .V7 f'\ Y. Deline ,v· = U,,,~ 1 N1. As tbe ~on of opeo ::1.s. 
fhi$ i:s an <>pen S<:I containing F(x'>J. Because Fi~ \J.h.c. at x", there must <1i<.i.st a ""ighl)<lurhood ,v 
oh such that F(") i::; t,• n Y whenever x e N n X . But theo, for all such x, m,c h,1s 

H(x) "" LJ G(y) £ LJ G<:y) =-· LJ. [ LJ . G(y)] r; U 
yflP(1) J'l":N·nr !ti:fl.z.U) Y'•:Nyn>' 

This c on.firms that H is u.h.c. at rJ. 

(c) 1bi~ (much ea~ieri proof is l<>ft to the reader~. tbe Si.u.Jcnt's Manual. • 

1 . !-et F (.t) "'-" {1/~lfor_x ;f 0, with F (O) ~ (01. Prove thM f has the closed graph property, hu1. 
IS not uprer heDllcOntmuou.~. 

2. ncwrroiot hy a geometric argument whe1hcl' or not the correspondences given by the following 
graphs have the closed grnph property and/or are lower hemfoontinuvus. 

t 
i 

! [>> 
-4-- ·-· 

(a) 

1 

-1~ 
(b) (c) 

3. Lei •be corre.~Jl<)ndence F : IR, = [0, ,,o} ...., R.. be given by F(.r ) = [0. lj.r) for x > o and 
F (O) = P.+. Pro"t that F has a .ti.,s the .:J=d graph property und is low« hcmirnnlinuou~. 

@ 4. Jf F : X ·'' Ii ~m1 G : X - R"' a.re corresponcknccs dcOntd on a set X a;: o:t• , the pr<,du~t 
CO<TCSponde.nce. H = F x G : X-> R'.,... is dellnc<l t,y Ji (x) = F(x) x G(xj for all x in X . 
Prove th:it if F and G an, J,:,wcr he111icontim1ou~ «t x0 , then 8 is also lower heonicontinuous •t 
x 0

. Similarly, pro1•e th~t if f' and Gare compact-valued 3nrJ 1,l\;<.1 upper hemicr,utinuous at xn, 
th en f.f JS al.,;o upper hemi<:un1jnuo11~ at xD. 

5. Suppose I.hat. I.he two c.,)mpact- value<J com:,spondeuces F , G ; X s; ft• ..... H .. .'.IJ"<.' upper 
hemioonli.n11ou.~ •t: a 1><)int x'' u, X. Consi,kcr the summatinn correspouden-:e- H : ,\ ...., R"' 
denned t,y H<xl = F(x) + O(x) for a1J" ir. X. Prove fhar f1 is upper h~.micontinuoos a1 xo. 
\1\'h:1t muy go wr•;nit if f, and G are not compact-valued? 

I 
I· 

.,;·1' 
~:~ 
. ' 

I 
:;:·j 

I 
I 
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~ 6. Snpp()sc I-' : X a; If!" ... , 1:r' is ]ow~r bcmicontinuous at n p(•int -1' iu X. l .tt G : X ··• fi'.'' 
he the correspo11detl<.'<' who~ vaJu.; at ea,-J, x in}{ is thc convel< hull e<.)(F(x)) . Prove thal G os 
l.h . .:. nf x0 . 

7. (Sequ.,nc~ test tor nepcr h~micontinuity) u.:1 F : X ~ R" -·~ R"' be a comp~t-valued 
-,cmre,-p11nden1:c. Prove the following ruult: Fis upper henlic,)ntiuuou.~ at x~ in X if, whencYCI 
!(x,, Yt)} is a sequence ofp<.,ints in graP,b(F) for which i ~ -·• 1-0 ask ..... -:o, the com:sponding 
six,uenc:c lY• f ha., a subsequence c,,,weri:ing ton p,,inl of F(l,0 ). (Th.; convi:t,;e is also true.) 

HARDER PROBLEMS 

8. Let the functi(>ns g;(:o:. y) in Example 5 be coutinuou• i1l lli, y) aud convex in y . funherrnore, 
suppose <hat /y : g,(;c. y) <. b, for i = I, . .. , I) is nnMmpty for :lll x. Show tbat the <Xl_r­
re~pondc11ce :l' defined in Example 5 is 1hcn lower hemicontinuous. (flint: Use <be result 10 

faaro.pld anc.l, for :iny y' in .?(x), lake yin 9'0 (,:) and show that y" = J..y + (1 - J..)y' ~ :!'0 (x) 
for J.. in (0, l }, then le! .I. --, 0.) 

9. Let the functions g, (x, y) in Example 5 be continuous, ~nd huve continuous partial derivarives 
w.t.t. y1, . . . , y.,. Furthennore, supp<:>~e th;1t for all pairs (x, y) with g(x, y) :<; h, lbe rank of the 
matrix with entries ilg1(x, y)/ilx,. where j = I, . . . , n and I E S(x, }') "' (i : g, (x. y) 0= bi) is 
equ31 to the number of e.lem1>nts in the set S!.x, y) . Prove that thl! co1T~spon<l1.:nce J>(xi i• then 
low~r bcinicontinuous. (Hint: Use Example 5.) 

~ 10. Let a(.t) and b(r) be 1.wo co11tiuuou~ fwK:rions mapping A into R. with a(x)::: b(x ) for oil x . 
Of all lbc dilfe re,1t possible corresp(,ndence~ F : R .... ll that ~atisfy 

(a(x), b(.t)) ~ F(x) ~ [a(.r), b(.x)] 

for 11Jl .t, which 11rc l'1wcr hernicoutinuous, and which are upper h~•nicuittinuou~? (Hint.: First 
exnmi11e the ca.~e when a(x) and b(x) arc botJ, constants.) 

@l 11. I.et F : X c R' ..... R"' be a c,i,npacr-valued coaespoa.knce ttlld let G : X - Ir be lbc 
C•)IT~spnnde~c~ whose value at each x in Xis lhe convex hull co( F(x)). !'rnve lhat if Fis upper 
bemicontinuous at 1.°, then G is :,lso upper hemkontinuous at x0. (Him: Apply Carath.codory's 

theo~rn.) 

14.2 A General Maximum Theorem 
As~ume Lhat F(x) is ~ correspoudenc~ from X £ l~ into Y ~ Rm, and let /(x, y) be a 
fu1ictio11 from X x l' into !R. Consider the ma.x.iuu.,.ation prol.>lern 

maximiZl'· f (x, y) ~uhjcct LO y, F(x) 

Define t.hc choic.c nr behaviour <'Orrc.~pondcncc Y' frnm X into Y hy' 

(1) 

Y'(x) = arg maxj(x, y) ~ {Y E F(x) : /(x, z) ~ /(x,"j) forall z in F(x)} (2) 
yt<:F(:,;) 

J fo g;n,:ral, for" function rp: S -7 R d,e aoL1tion argm:.t...s9'f.,} (.1rgmin.,,s9>(,<)} is u,;ed l(l 
denote ,he :,,:t of all values c,f the :tr)lwnent sin S th.ul ,ru1.,i,1frze (mininriu) rp(.,). 
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Thus, for e.ach x in X, tbe set Y • (x) COlll,1st.5 of all the valU<."S of tbc argument y that muimi:,.e 
/(x , Y) as Y runs through !he s,~r F (x). The problem is illusttatc<l in Fig. J. 

X 

Figure 1 

Also define the corresponding value function: 

V(x) = ~up f(x , y) 
y~ F!"() 

(3) 

:111~ f,'.nction V is ":eU defined on the effective domain of F. If for some x the supremum 
1s att:uoed at some y, lhe.n V (x) = f(x. y) = max.ytF(• i f(x. y). Note lhat if 1 E X and 

Y .E Y'(x), then V(x). = f(x, :S'). In fa.ct, Y*(x) = ( y E F(x.) : f(x , y) = V(x) }. 

Here is a ge11cral (but son1ewhat vague) economic interpretation. First, x is a vector of 
exogenous parameters that jointly describe the "envin1nment" faced by some maximizing 
eco~owc agent. Given this vector x, the feasible set F (x) describes whac option~ are 
~VJJlabl~. Let J (x . Yl measure the benefit to the economic agent from choosing the pointy 
m F (x) 10 s1l\11l.t1011 x. Then r (x) is the set o f choices of y tbat maximize benelit. 

In general, we are inrcrested in lmding the s1rongest possib le continuity ptopcrlies of 
y • (x) and V (x). Here is tfi.e main rcsuh: 

Suppose tbal x ,-.. F (x) is a cortespondence from X £ '.ll" into Y !;: Rm that has 
nonempty cc>mpact values for all x in X and is continuous (i.". both upper and 
lower hemkontinuou~) at x0 in X. UL / (x. y) be a continuous function from 
X x Y into R. Define 

y • (x) = { Y G F(1:): / (x, z) :S flX, y) for all z in F(::i:) } 

Then f' (x) is nonempty for nlJ x in X. Mor<:over, the choke correspondence 
'l< i-,., Y'(x) is u.h.c. al x.o, and thevaluefuncLion V(x) is couti.ouous M xO. 

- ·-- ·-·---- --- -·--- -- - - - --- -
Proof: Be.can~" f• has noneiupty contpact values for all x in X, the exm:me-value thoorern 
implies that Y' (x) ,f: 0 for all x in X. Also, becausi: l'(x0) is c-ompacc. th,:-.cc exists an open 
and oounde<l set W containing F(x0). and ~iocc Fis a~~•uned to be upper heruicontiuuou.s. 
l'hcre 1s an open ball U around x0 s-uch that F (x) s; W foT 31] 1 in U. Then for evay x iu 
lf mid every y iJi Frx). !l1e point (x, y) belilngs to the. compact. set fJ x W. 

S E(l'IO N 14.2 ! A GF NEP. Al ~AAXIM lJM T k EO REM S11 

Upper hemi,:onrinuity of r : (a ) Applyin.g Thcorolll 14. l .2 (with X = U and F == y ·•), 
upper hcmicontinuity of r•(x) at x0 will follow provided we can show that r bas the 
closed graph property at x0. Let {xt I be any sequence of points in X that COOVCTges to xo 
3.~ k - > oo and let Yk f:: Y* (Xt ) <:Ou.verge to yO . Bccnuse F has the closed graph prope,ty at 

x~ and y, I! t' ' (xk) 5,'.; F{x~) for each k, we have yn E F (x'J) . 

(b) Take an nrbitmry il in F(x0}. Because F is lower hem..icontilluous at x
0 

and :<t -+ ,tJ, 
chereexfat,asequence {zk)with z~ E f'(x.1)and zt -+ z0

. Nowy, E Y-(x1)andz, E F (x;). 
so tbe delirution of r implies thar /(::i:k. Z;) ::. /(xt, Yt ) , Taking limits ask -+ oo, 
conti.ouity of f impHes that / (x0 , z!l) :s / (x0 • y0). Because !he choice ofzo in F(x

0
} was 

arbitrary, it follows that y0 (:' r (xo). Hence r does have the closed graph property at x0. 

Conrirndty of V: Let lx.tl be a sequence in X tbllt converges to x0
, aud assume for a 

contrndiction that V(Xt) does not coovcrge to V(i>). f'Ne can assume ~ E U forall k.) 
Then there exi , t an e > 0 and a subsequence { x1, ) such that IV ( Xk, ) - · V ( x0

) I > & for all r . 
Let Y!, E J" (xk, ) . lhe points ( i.:k. , Y1., ) all belong to lJ x W . so by Theorem 13.2.5 the 
sequence{(~. yk,)} has a convergent "subsubsequ.ence" {(x'm, y',.)J,,. , who:,;e limit must 
be a pair (x'', y') with y' E r (x0), and so f ('i.0, y') = V (x0

). Oh~iously, y;,, E Y ' (X:.,) 
for each m, and so V (X:,. ) = f (:x~ , y'm) . Since f is continuous. V(x:,.) = /(x;., Y;n) -+ 
J(x0 • y ') = V(x0) . But IV(i.:;,,) - l' (x0)1 > .:, wbich yields a contradiction. • 

NOTE 1 Suppose there is a real-valued c:ontinuous function a (x) such that the corres­
pondence x ,- F +(x) "' F(x) n {Y E Y : / (x, y) ~ a (.x) I ha.~ nonempty and compact 
values for :ill x in X, and is upper hemi<:ontinuous at -fl. Then in Theorem 14.2.1, upper 
hcmicontinuity of F (x) at x0 and compactnei;s uf F(x) can be dropped. Lower hemi­
continuity of r'(x) must be kept, however. Note tlw1 the set Y' (x) in the theorem equals 
{ y E F + (x) : f (x , z) ::: f (x, y) for allz ill F 1' (x) j. Tu prove upper hcmieontinuity of Y" 
at 1.0 • we now let W be an open and bounded set containing p+cx0) and let U be an open 
ball around x11 such that FT (x) s; W for all x in U. Theo replace F by r + in part (a) of the 

proofabow. 

l=XAMPLt T 'In com1ection with Example 1:3.4.l define the correspondence F for all x by F (x) = 
l- 1, 2). Then all the a."!<umptions in Theorem 14.2. l are satisfied and the set Y-1.x) i~ 

Y-(x) = (y E [-1. 2): x z2 ::o xyl for wl t in [-1. 2]). It follows tl1a1 

[ 

{Ol when x < 0 
r•(x) =-' [- 1 . 2} whenx == O 

(2l when :x > 0 

(Fm in~tance, if x < O. then r (x) consists of all y in [ - l , 21 such that z2 
::-:; y2 for all 

:. in 1- 1, '2]. In particular, y2 ~ 0, soy= 0.) ~ correspondence .:x ...,. Y*(x) is upper 

hemicontinuous. (Draw a figure!) I 

8 AM f 1 E 2 Let K be a nonempty comp3cl C'.ouvex .<;et i IJ IR.". for all x in IR", define 

S(x. K) '"'· mill d(x, y). ~~{x) ::: arg. J11in d ('t, y) 
y,;I( y<, /( 
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whc1·e d(x, y) is the Endidcan distance .. Th\15 o(x, K) can ix, interpreted as the minimum 
distance from x to K, and ,{i(x) as the set of dose~t points. Since [d(x, y)]2 is a sttictly 
conve.x function ofy, it has a unique minim.um ove.rthc convex set K of possible values of y. 
Hence, 1/t(x) is singlc-valut'.d, i.e. t/t(x) ::: /y"(x) J for some function y*(x). In addition. the 
correspondence x , .... K is constam-valued, so continuous. Hence. the maximum theorem 

applies. Toe correspondence x , .... ,/,(1) is therefore u.h.c., implying that the function 

x - :y"(x) is continuous. ln addition, x r> li(x, K) ""d(i., y"(x)) is also contilluou5. I 

(J>rolit ma>:imization) Suppose a firm produce~ a single outpul commodity 'U,ing " different 
fac10TS of production~ inputs. Let th~ vect,'lT of stiictly posi1ive unit prices for the: inpuL< be w = 
(>l!J, •.. , w.) » 0. Suppose th~t the firm's minimum cost, when faced with inpul p,icc.s w » O 
and producing ou!put y :::: 0, is given by lbc {unctio11 C(w, y). One expccb C tc> be increasing in 
w in the S<,'ll&e that C(w', y) :::. C(w, y) whenever ,v' ?, w, and that C(w, 0) = 0. 111is will be 
assumed, as well as that C(w,y) is" con1inuous {unction. One also expects C to be increasing in 
y and homogeneous ofdegreeooein w,in1hescnselhar C(i,.w,y) = J..C(w,y) for all .I.> 0. All 
ihese properties a,;e simply assumed here; their plausioiliry i.s demonstrated in die nt.,t. cx~mpl~. 

Finally. in order to ensure that pmfits remain bounded, assume that for each fixetl w ;:!:· 0 lhc 

average cost C(w, y)/y rend~ tooc a~ y .-,. oc. 
Let p > 0 denote the pl'ice per unit of output. Consider the pl'oblem of maximizing the firm ·s 

profit py · • C(w, y) hy an appropriate choice of output y. We are imerMted in showing Lhar the 
s,q,ply corre.spon<le,u:e (p, w) H• IJ(p, w) = argma~~ / py - C(w. y)J is u.h.c., and that the pro.fir 
function (p, w) ,--,. rr(,,, w) = maxy[py - C(w, y)} i~ continuous. lt seems that the maximum 
thoorem should be helpful. but there is a difliculcy because the relevant feasible set ( y : y ::: 0 l is not 
compact. However. defmed1esetF'1'(p, w) = fy ~ 0: py- C(w. y) ~ O}. Itisnonemptyb«(:alls~ 
0 ,;, F+(p, w). Cboos.; any p0 > 0 and w0 » 0. BcC/JUSc average cos1 C(wo /2, y)/y .-,. cXJ as 
y -+ oo, by hypothesis. a number y• can be so chosen tha1 CIJ•o /2, y) > 2p0 y for all'!' > y". We 
claim that F"'(p. w) S [0. y•] for w ::l> w 0 /2, p < 2pij. lo see 1his, nore that-~> y' gives nei,:a1iw 
profits because py- C(w, y) < 2p0y - C(w0 /2, y) .: 0. Arguing as in Example 14.l.5, F+ip. w) 

ha.< the clo~ed graph propcny for w >.'> w'l and p < p0
. Bl!'c:tuse [0. y'J is hounded, Theorem 

14. 1.2 implies thllt F+(p, w) is upper hemicontinuous for all such (p, w). Finally, applying Note l 
with F(p, w} ·,~ [U. x) shows that rr(p, w) is continuous and 11(p, w) is upper hemiconrinuous for 
p < 2 p" and w » w0 /2. The same resule extends to all p > U and w » 0. since p0 and wO were 
arbitrary. l 

( Cost minimi7.ation} Consider rht, same firm a~ in the p1·evious example. Suppose that the level 
of output is dctcnnined hy the production function /(xJ. where x "" (x1, ••• , .t,,) is the input vcccc>r. 
Suppose also 1ha1. f is defined llDd continuous on the set R'.!, .,, ( x ..- R" : x ?, 0], that f (0) = 0. 
and thi1t f is also 11wnm1Jne in the sense thm f(x') ::: /(x) whenever x ~ x, with j(x') :, Jr~.) 
whenever x' » :c. 

Consider lhe sc\ Y = f(R1) ~ IR of :ill possib!c <Julput levels chat !he firm can produce. l! must 
be ,m interval of thc: form [0, _i'). where y may be +oo. (Tberc can be no x such dial f(x) = .Y 
t,e~·ause l(x) > /(x.) whenever x » i.) Given any input. prit:c vcc1or w » 0, lhe. finn's (total) cost 
i51,,'iven by w · x. We ~h.dl uow .study the firm's cost function, which sp,..::ifies the minimum cost of 
producing a given 011tp11t level y in Y when the inpul prict, vcr,,1or i~ w. 11: is given by 

C(w, y) = ~11{ w x: f(x) ?.: .. YI 

ln pa,·1.icular, we would like 10 apply 111eorem 14.2.l in order l.o demon8Crntc rhat C(w, y) is a 
coatirn,ou.s function, and Umt the i>1put tlmumd com:spo1sdencc, defined by 

Hw. y) argmin{ w · x: f(x) :,: y I . 

F 
I 
I 
! 
l . 
i 
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is nppe,· hemkontinvou,. A difficulty bere i~ that the constraint set X(w. y) = X (y} "'· [ X" R': : 
J (X} :::_ y ) i., definitely u11houndc,I. TI1us, even though ir is closed, it is uo1 corop3<-"1.. So kl. u~ rum 
to Note 1. Given any w >,'> Oand any yin f = (0, yJ, iliHnou~ ro pmve('ontinuityof C amlupper 
hemicontinui1.yof tin andghbourhc.>-0doi(w. y) such a$ Wx Y. wbcrc W ,.~ {w: w/2 -.,: w ,~ 2wJ 
and Y ,,. [ U. y) for some riint y in G. y ). Let l denote the vector whose compouenls arc all l. 
Monl)COnicity guarantcc:s due f{.'I.IJ is a strictly increa~ing function of /3 ::: 0, with f (0~) = 0 aud 
f(/31) :::: f(:t) when /!.>:) ''"· y and ff is so farge tbitl /ll ~ x. Hence, there c~is!~ a f; such d1ar 

f (P 1) '" y. Given this fi. define 

F(w,y) = {x ?O: J(x)::: y, W·X '.:'.: 2w- (,,Bli) 

Consider anv fixed \W, v) in W :.: Y. Note that til E F(w, y) . ."t,l.\o any x in i'(w, y) must.~atisfy 
!w · ll: :,: w: x ~ 2w. (Pl), an,! $0 F(w, y) t; A, where .4 = {x ER::_: F · ~ ::, 2w · (/11}}. which 

is obviously a bountied set . .1:.!i.a1nple. 14.1.5 impli~ lhar f. has the closed graph propeny a1 every 
point of IV x Y, so Theorem 14.l.2 implies that Fi~ u.h.c. throughout W x Y. So Nore 1 applies 
illld give,, continuity of C(w. y) and upper hemicontinuity of l;(w. y) i1t W x Y. Since wand y were 
arbitrary, lhesc properties hold for all w » 0. y 2::: 0. I 

~ROBltMS fOR SECTION ,,.2 

1. Let J(x, y) = -y' -=;- x(yZ ·- l) for all x and -1 :-, y ~ 1. alld consid~r the Jlllt)(i.mization 
problem mM .. 1"'~'1 f(x,y}. Determine the value foncrion fortllis problem. and describe th~ 
corre~poodcnceY"(x) = \y E, i-1. 1l: ymllinilies/(x,y)ovcr[-1, I]}. Show that Y'has 

lhc closed graph prop,;rty. 

2. Suppose thatacon~ullll'r has a continuous aodstrictlyquasiconcavcutility function U (J') detined 
on 1he set R: .. which is maximi:tcd subject to the. cons[faint x E £(p, m), where (p. m) 1-;, 

..2l(p, m) is the budgetcorrespondcnccde5crib¢d inExiunple 14.1.1. Explain whyrheconsumer's 
(sin~lc:-valued) demand function !l'(p, m) and die as~ociated indirect utility function V (p, m} 
:n:e both continuous wht..'Icvc,· p » 0 and m ::: 0. What can go wrong if p, = 0 for some i? 

~ 3. Suppo&e rhal 1hc utility function of the consumer in Problem 2 is continuous but not even 
qua~iC(,ncave. Whal con1inuiry properties can then be <:J1pe.:ted of 1he consumer's dema,,d cor­
respondence (p. m) >•· ~(p. m) and fodire.:t utility fum:li<m V(p. m)? What differen1,:c would 
quasico11cavity make to th .. demand correspondence'/ 

14.3 Fixed Points for Contraction Mappings 
Thi~ brief section present~ a so-called fixed point theorem with important applications to 

economi.:~. Jn paiticular it.is u~eo:l in Section 12.3 in connection with the Bellman equation 

in inlinite hori7,0n dynamic programming. 
A function F from a ~d S into Rm i~ calk.d houuded on S if there exists a po.,itivc 

number M such that IIF(x)!I ::; M for all x in S. 
Let S be a subset of H", and fol :B deuote the set of all hounded functions from S into 

11r. We define the distance between two functions 'fi and t in :B as 

J(q,, f) = SU~l fl,p(~) - tl,i)lj 
)1€S 
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l.et T : :B - :B he a function (or "operator") that ruaps each function ,p in iJ to a f1mction 

T(IP) in :B. ·n1us T(q,) is also a bounded function S ..... R"'. We will write T(,p)(x) for 

the value of T(,p) at. a point x ill S. The function 1' called a contr:1ction mapping if there 
exists a con.~lant fJ in (0, 1) such that for all rp and t in :B. one has 

lfT{<p)(x) - T(tHxr! :s: f)d(<p, t) for all X ins ( l) 
or, equivalently, 

d(T(q,). T(y)) ~ {Jd(<p, t) (2) 

For any two elements <p and t of 13, the distance between T ( IP) and T ( t) is then at most 

fJ times the distance between IP and f, hence the name contraction mapping. 

14 . 3 I 

--,l! 
Let S be a nonempty subset of IR" and let 53 be the set of all bounded functions 

from S imo llr. Suppose that the operator T : 2 -;- :B is a contraction mapping. I 
Then there exists a unique function IP* in !B such that 'I'' = T(,p•). 

---·----------... ---··---·----
Proof: Since Tis a coo1mcuou, there cxlsLS a fJ in (0. I) such that (2) is satisfic:d for all <p a11d,;, 
in :lJ. Choose an arbit,ary function~ in :B. Define ,p1 = T(~). and generally ,p.;.J = T(<p.) for 
n = 0, l, 2, .. ,. l.ct Vn = d('l'n+I, 'I'.). Then (2) implies that 

Yn+I = ,f(,Pn+2• 9',.+1) = d(T{'l'n+:), T(,p0 )) :$ f/d(,P.+J, 'l'n) = /J'Yn, II~ 0 (i) 

An obvious induction argument shows that y. ::, fJ"yr,. We want to prove that for each p,>inl x in S, 
the .,equen<.:e f 'Pn (x) J is a Cauchy sequence in or. To this cod note that 

<Pr.+.t - 'Pn :.,. (q, •. , I - 'l'><+l-1) + ('P.,+t-1 - 'l'n•A-2) + · · · + (<Pn+J - 'l'n) 

Therefore, to,· every " in S, whenever m > 11 it fol lows from the triangle inequality that 

(ii) 

Th<' last expression is small whell II is large. Hence, q,.{x) is indeed a Cauchy sequence, wilh a 
limit that we. dc.11011; by q,•(x). Letting m -• oc in the inequalities (ii), with 11 6..xed, we sec that 
[191'(x) - <p,(X)I: ::: /J"Yn/~I - fi} for all i,; in S. Now. 

li1'(q,')(x) -,p •.•. 1(x)II = IIT(,p')(x) -T(q,.lx)1:1 :o fJ"' 1 ro/O - /J) 

by (I). Lettii1gr.--, oo yields q,"(x) '" T(,p')lx) for all x, and ~o T(q,') ,.~ q,•. 
If anotl1N functi(111 rp'' sati.~fies T(q,'") ='I''", then by (2), 

if('I'", q, .. ) ,, d(1'(rp•). T(q,"")) ~ Pd(q,', rp"i 

Ilccau~e O ._. f:I < I. and d('P", 'i'-).:::. 0, it follows that d(,p•, rp"') = 0. htsuce: ,p'" = q,•. • 

F 
1· 
, .. ,, 
r 
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NOTE 1 TI1c COlll' lusion of the theorem remain.~ true if :Bis resn·ict1.:d to only !hose bounded 

fuuccions ({) : S ··~ R."' that satisfy the inequality :f'{J(X) - Yo I! ~ A for a given point :Vo in 
~m and a given number A, i.e. every 'I' in :B maps S into the closed ball of radius A a.round 
the point YO· IC ttlso remains true if we require that l!q,(x) - <p(x')!l :: Mllx - x'il for all 
x and ,( in S and a common given numher M. It even remains true if both conditions are 

imposed on th<'· l'lcmcms of$. To see this, nore lhatif the relevant inequaliiy or im:qualilies 

bold for .:ach "'• in the proof above, they still hold after passing to the limit (a., n -> oo). 

EXAJl,1 PLE 1 As an example of how one can use the contraction mapping theorem, we prove TI1corem 

5 .8.2 on the existence aJJd uniqueness of solutions of differential equations. 

Proof· We use 1be notation in Theorem 5.8.2. Further, Jct 

K = max 1F;(1, x)I 
(1.x)~r 

and k=min\a.b/M, l/(2K)I 

By the mean value theorem, I F(t, x) - F(r. x')I ::: K!x - .t'I for all I in [to - a, f<> + al and all x, 
x' in l.xn ·- b, .tn + b). 

We fir~t prove the e~i&lCncc of a unique bolution over the interval I = [r0 - k. rG + k] i.11stead of 
(to - r, rn + r). A function x• solves the initial value problem .i = f(r. x), x(r0 ) = .tr, if a.lld only if 

.t"ll) "'· x,i + [' F(s . .r'M)ds 

"' 
foe lll t in 1. Suppose x • is a solution. Then fort and t' in I we have 

lx"(r') - x•(r)j = Ill F(s,x"(s))ds[::: Mir' -ti 

since iF(.t, x}I :::. M for all (s. x) in r. Let :B be the set of all funccioos x : I -> R that satisfy 
x(r0) ""x0 and 1.,(t') - .,(t)I ~ Mir'·- ti for all r, 1' in /. The sec$ is noncmpc.y, siru:c it contallls 
the constant funccion .x "' x0 , and all functions that belong to $ are continuous. Iben the operator 
T: $ "'* 3:l defin.;d by T(.~)(f) = x0 + 1:;, F(.~.x(.,.))ds is well defined. (You should verify that 
(s. x(s)} lies in I'.) For any two functions.rand i in :JJ and auy sin I we have 

IF(s, i(s)) - !'(,,. x(s)}I :, Klx(s) - x(s)I ::::: K,f(i, x) 

,mdso 

!T(x)(r) · T(x)(t)I = If (F(s, i(.r))- F(s,x(s)))<isl.::. Ir - ~,IKd(i, .r):, !d(.i, x) 

si11eeft-1<JI ~ k::: l/(2K). ltfollownfl~td!T(x), T(x)) = sup,0 , IT(x)(t)-1'(x)(t); ~ {d(x,x). 
Hence, T is a contraction, and hy Thct\rcm 14.3.1 and the ~uccce,1ing n,,,c, it has a unique fixed 
poi!ll x' in th<'. set :JJ. 

So for we. Jia,e proved the eXi$lli>nce of a unique ~olution over (r0 ·- I:, to .;, k). To extend this 
solution to all of (to - r, to+ r), noit: that we can us<' the s=e construction m sh,1w that then- is a 
unique solution in a 11cighbnurh(•.1d of any roinl .in r. One c.an then splice togetlier 1wo s(,1111.ions 
t!Jal agree 011 some coJT1m<.>n subi n(crval of their domains, and obtain a solution Ol!er the union of lhc 
domain~. In this w,.y, one c.~11 <.•bl-1in a so]l![iCJn over all of (iv - r, 10 + r). We rd'r•i11 fr~•m ~-oing 
inlo th(: ratJ,t.r tedioos dc1ails h,)n,. • 
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14.4 Brouwer's and Kakutani's Fixed Point Theorems 
Cnr>sitler a fonction f that m:i.p~ each point x of a s.:t K in R" to a poi.at f (:,:) of the ~a.me 
set K. We say that f roaps the set K into irsclf. u~ually, x and C(x) will he different. Ifx• 
is a point such Lhat f lxy) = x ' , thru is, if the point x• i.~ mappeJ to itself, then x' is called a 
fixed point of (. 

We would like to fi11d condilions ensuring that any conli.auous function mapping K imo 
itself has a fixed point. Note that ~ome restrictions must be pla<Xd on K. For. instance, the 
continuous mapping f(x) = x + I of the rt:al line into it~elf ha.~ no fixed po.inl; Lhis i~ 
because J(x• ) = x• would imply that x• + I = x\ which is absurd. 

The following result by L. 6. J. Brouwtor yields sufficient conditions for the existence of 
a fixed point (see Ichiishi (1983) for a proof): 

1 I 4 1 (BROUWl:R'S FIXED POINT 11·ffOREM c··--------1 

Let K be a nonempty compact ( closed and bounded) convex set in R", and f a 
i 
i 

I 
•• I 

cootinuotL~ fw1ctio n mapping f( into itself. Then f has a tb;ed point x• , i.e. a 
poi ot x• in K such that f(x•) = x•. 

L - ----·--.. -------·------ -
The function rin the theorem maps points x in R" into poinL~ y in f-(" . ltis therefore described 
by the system 

(]) 

Yx = /,.(xi , ... , x,) 

So a lixed point ,i • >= (xi, .. . , x;) off mu~t satisfy the equation system 

(2) 

Xn = !,,(xi, ... , x.) 

This iJn111ediatcly shows how l:lrouwer's fixi::d point theorem <:an be used to t:Slablish the 
t:i<istco.::c of a !'olution 10 n non.Ii.Dear system of equations. Note, however, that in order to 
apply the theorem <lne must t'Stablish the cootinuity of f and prove that f nmps a suitabk 
domairi K into itself. 

There are numerous applicl\lioos of 8 rouwer·~ theorem in which the set K is the standard 
unit !>implex ti•-• in R" detinted by?. 

t.• .. ·l = l x =(Xi, .. . ,x .. ): xi ::: 0, .. . , x,, ?.: 0, I>i '-" t J (3) 
i:.::.l 

' Nole that A"-1 is(» - IJ-<limwsional. For "~ample, ,;.1. is com.uncJ in rhc (two-<lim~.nsi<ln&!} 
pla11<- x, + x2 ~ :r·, = I in R3 . See fig. !. 
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ry ,~x 

1,j .. ................ ·--········;( 
I / • 

. / ' ) 

/"~k~' 
-· ,- / - - -~- - ; 

Figure 1 t m,q:,s n.1 into itself. Figure 2 /(x ' ) := x • 

For inst:mce, xi, ... , x. might tlenoLc the nonnegative pricc.s of n different commoditic.s, 
tht:SC prices being normalized l>y the convc:otioo that x 1 + -· . + Xn = I. 

The set 6 •-1 is convex and compact. To see whether Brouwcr's theorem applies to a 
gi vcn continuous funcotion f defined on t. • ·· 1, it is only nec.:e,sary to check that f maps 
c,•-1 inlO itscU-. lff is given by (1), then ( wi ll ruap Ll.n- l into it.,elf provided that for all 
(x1, ... , .rn) in Ll.n, one has 

fi(x1, ... ,x.) :::: O, ... , fn (Xi , .. . ,x.)~ O, LJ;(x,, .... ..c.) :=l 
,.,.. 

(4) 

The case whc.n n = 3 is illtL~lratcd in Fig. I. Brouwer's theorem implies that if f map~ Li. 1 

continuously into Li 2 , then there must be at lel!St 011e poiot x~ in the simplt:x t:, 2 for which 
f{x•) ~ x•. 

In IR1 (the real line), A 11~1nempty compact convex ~et must be a closed and bounded 
inter\'al ('a , b I (or a ~inglt•. point.). So Brnuw-,r's theorem asstorls that a. continuous function 
f : fa, b] _.. [a, 1>] must have a fixed po.int. But this follows from the intcnued.iare value 
!heorem. (.Indeed, g{x) =- /(x) ·- x satisfies g(a) ~: 0, aud g(b) :5 0, so for wme x ' in 
[a, b] , g(x•) ==- 0.) The geometric conLenl of this pmp(1~i1fon is illustrated in Fig. 2. Tht' 
grnph of f must cross the diagonal )' : .. ,: x. 

An Illustration 

For lhe two-dimen.,ional ca.se lhe following illustration of the theorem might aid your intu­
ition. Do ru>t take the illu~tration loo serio11sly, hOW('VCrl 

Imaginto a Hock of sheep crammc.,-d in10 a eir.:ulat pell. S11pp<~~ that the flock sutldcnly 
st:irts mo~int- and then ~tops 11.fter a certain time. At a given mome11t nf time each sheep has n 
delinhe position in the pen. as shciwn in Fig. 3. Although eadt~hccp can movi:, no sheep can 
mew~ again~l or across the st.re.aw, so each sbtcp must st;iy ck,se to its original neighbours. 

CnnsidC'r the. mappin~ from the posit.ion original.ly <X.'Cu.picd by ea.:h .~ht't'p to its final 
JX>sition af11er stopping. By th<.: ~mptioos al>ove, this is A continuous ruappiug (a dubious 
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clai.m) of the pen inco it~elf. Because che pen is a compact convex set, Brouwer's theorem 
applie.s. Su there. mu~t he at least one ''fixed sheep" wb.i<.:h ~tups exa<-'T.ly where it smrtcd. 

Figure 3 Figure 4 

Now a,sume in~tead that the flock is c.ncloscd in a circular ring, as indicated in Fig. 4. 
Suppose all the sheep move 90 de.grees clockwise around the ring. Then each sheep will 
stop in an entirely new position. No "fixed sheep·· exists in this ca.~e. As above, the movement 
indicated defines a continuous mapping of the pen into itself, but there is uo fixed point. In 

fact, Brouwer's theorem does not apply since the ring of Fig. 4 is not a convex set. 

The importance of this re.suit for sheep farmers can hardly be undt:restimated, but it docs 
indicate au important "topological difference" between a circular disc and a ring. 

A Generalization 

The convexity hypothesis in Theorem 14.4.l can be relaxed. Let L s;- ~· be a homt-'O· 

morphic image of K in the sense thar there exists a one-to-one continuous mapping g of K 
onto l (i.e. g(K) = L) whose inverse mapping g-1 is also continuous. lntuilively. homeo­

morphic images of a rubber ball are obtained by squashing or stretching, as long as wedo not 

tear it apart, make any bolc.s, or glue pam together. Note., in particular, rhal homeomorphic 

images of a convex set are not necessari.ly convex. The narural gcncrali1.ation of B.-ouwer's 
theorem is: 

Any homeoml,rphic image L of a nonempty compa.:t convex set J<. £ R" has the 

fixed p;1i11t property. i.e. any continuous function f mapping L into L h,L, a fixed (5) 

point. 

Proof: lei f be the contimwus funct;on mapping l into L, and let g he a bomeomorµhlsin, i.~. 
a continuou.,; mapping of K cmto l, wi1h a continuous inverse g··1. [f x E K. then g(x) i:: l, so 
f(g(x)) E 1., wl:tid1 implit:s chat g-!(t(g(x))) E K. So che mapping g-1rg 111us1 be a continuous 
function of K inlo itself. According to Theorem 14.4.1, there eiti.st~ a Gx.;d poinl x• in K such that 
g-1 (f(g(x'))) ""· x·. l::lur then g(x•) ,·cc f(g(x·)), and so g(x') in l, is• fL1'.('.0 point for f. • 

llrouwcr's original motivation for his thcorcm wa.~ In exan1ine the topological difference~ 

bet.ween va1inu.~ set~ in !ft". It was recogni1ed only lar.:r that the theorem had iutc:rc-.sting 
applicatious outside topology. Tue ncx1 sccrion shows how Brouwer' s theorem can be used 

to prvve the existence of an equilibrium in a pure exchange economy. Although thi.~ rype of 
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economy is very simple and umealisti{'., the. existence pmof comains many of the e.ssential 
features that arise in .-ichcr g,·11eral equitibrium models. 

Kakutani's Fixed Point Theorem 

Br.ouwc.r's theorem deals with tix.::d points of ~outinuous functions on appropriate dowains. 

Kakutani's theorem gencrali2.e., the 1hcorem to c:orn:.spondences. It e:uends au exi~tence 
theorem for saddle point, proved by von Neumann in 1928 and used in his work 011 both 

game theory and growth theory. It also gr early .simplified Na.,h 's proof that a mi :ced strategy 
equilibrium always exists in an 11-playcr game with finite strategy S<!Ls. (for a proof of 
Kakutani's the,)rem, see Aubin and FrJDkowska. ( 1990).) 

Let K be a nonempty compact convex set in R" and F a correspondence K -,, K. 
Suppose that: 

(a) F(x) is a nonempty convex set in K for each x in K. 

(b) F is upper heuiicontinuous. 

Then F has a fixed point x• in K, i.e. a poinl x• such that x• E f(x"). 

It is worrh emphasizing that, becausl~ of Theorem 14-1.3, the correspondence F from the 

compact domain K into itself will be upper hemicontinuous if and only if ils graph is 
compact. Notice that Brouwer'~ theorem is implied by Kakutalli's bccau.~e a cont.inuou~ 

funclion f mapping the compact do.main K ~ Rn inro it~el.f has an associatedcom·spondence 
with nonempty convex values defined by /<'(x) = !f(x)} for all x in K. This correspondence 
i~ upper hemicontilluous by Theorem 14.1.1, and so has the clo~ed graph property. 

In the one-dimensional case, TI1eorern 14.4.2 takes the form: 

lf the correspondence f : I.a, bj ··• [a, b.l ha.s the closed graph property and F(x) 
is a nonempty closed inrcrval for each x in [a, b I, then F has a fixed point. (6) 

Proof of (6): For each x in [ll, b}, the image Clf F is a closed interval depending on x, say 
F(x) = 0 [/(x), g(x)J. Define .r• = sup(x ~ {a, b]: .f(x) ~x]. We claim that f(x.") ~., x• ~ g(x•), 
which means tl:t•lx' E F'(.r') and thus x· is a fixed point. 

Suppose for a contradiction that!(.,') > x•. Then also /(x') > x• + s for some E > 0. Dy 
Theorem 14.1.2, Fis upper hemicontinuous ar. x•. According to definition (l4.1.5j. 10 the o~n set 
U "' (x* + e, oo), which contains F(x'J = [f(x·),g(x')l, there exists a neighbourhood N of 
x' snch that for .t in N n 1a, bl, w.: h~.vc F(x) ,., [/(x), g(x)J ~ U. 111(:n, in particular, for x 
i11 N ri (a, b). j(x) > x• + e. lf w1: cb,x,se N so sr:nall chat all,: iu N ~atisfy x < ..r• +"·then 
f(x) > x· + F. > x, contmdicting Lho: detinition of x•. Hence. f(x*):;; x•. 

To prove that 8(.,•) :::: x•, supp<)$(> to 1heconua,y that g(x.') < x•. Tn('n also g(.t') -.: x' ·- e tor 
some E > 0. lJpper he.mlcontinuityof F 111 x• implies that F(x) = [/1.x). g(.~)i ~ (-oo, x· ·-F.) for 
all.tin i«m•~ neighbomhood of x•. Tn particular, f(x)::; g(x) <: x• ··· E < x for s!l x in (x• - ,:, x•j 
that an: close enough to .r •, yieldini1: •not her ron1.r;,(lictio111.0 ch~ *linition 11f. ., •. l! follows !l1a1. we 
m,L~I ha.ve g(x')::: x'. • 
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The on<>-<iimcnsional ca<:e is illu.,tnlted in Fig. 5. TI1e fixed point is .c• . Figure 6 illusuatcs 
that in (6) one cannot drop the requirement that F (x) be ~n inter.al (and so convex). 

.YI 

K 

figure S x• is a fi){et.l p,.-.inc for F. Figure 6 F bns mi fixed point. 

1. Con~ider the funccit'11 f defined for all x iu (0, I} by 

f(xl = ~(., + 1) 

Prove that f mups (0. 1) into irselt~ bul f bas M fixed point. Why dnc.~ Brouwer's thco"'tn 00! 

apply? 

2. Consider the continuous tramformation T : (.t , )') ,-, ( ·· )', x} from the xy-plaue into ilsclf. 
corrnhting ~fa 90° n>l::!tion around the. origin. U.:fin~ the sets 

E = f (x . . f) : x 2 + y2 = l }, 8 "' \ (.<, Yi : x2 + :-i 5 I} 

Are lb<'.:,C sc~~ compact'' 'f indoccs continuous maps Te : R ...... E and 'f D ; B -, 8. Does 
either transfon'l1ation have a f1.-w'1 point? Explain the result~ in th~ light of Brouw~r's theorem. 

3. Let A = l<11;) he an n x n m:11rix whn:sc elements ull satisfy a11 :::: 0. Assume 1ha1 all column 
swns are I. s,> 1hat 2::;=.I a;;= I (j = l, .. . , n ). Pro,-e 1hat if x E 6." .. 1, then A,_ ~ ,i.•-1, 
where ll."-1 i~ the unit simplex. ddine<i by (3). lleoce., .~ H· Ax is a (linear) transfvTmAlion of 
6."--r into itself. What d0cs Brouw~-r·~ theorem ~ay in this case? 

4 . Consider the oom~.,1~>nden.:e F : (0, 2] ""'* [0, 2) that maps each x i.n (0 , 1) to {2), maps x = I 
to (0, 2), and 6nally niaps each x in (1, 2} to (OJ. Draw the gr«pb of F and derennine wh<;:rhc,­

F ha, a closed graph. n,~,~ Kalcutuni's th<:orem apply? 

HARDER PROBLEMS 

5. A~~wiie that f : LO, IJ -~ [0, I) satisfies 

lim /(s) •: f (x) ::, ffm f (s} 
,-~; . ;·-+• \ 

for :ill x in LO, l J 

(Only the fight-band (kf!,h3rul) in~.quality i~ requi.r~d t,, hold fur x = (I(.< = J ).) Prove lhnt f 
ha~~ fixed poiot. (Hint: C<:,nsider x ' ,~ sup A , where ,1 = {r ,: [0, !J: f(x)?.: x).) 
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14.5 Equilibrium in a Pure Exchange Economy 
Con,ider an economy with m cousumers. each of whom is i.11.itially endowt'.d with fixoo 
quantitie~ of n different commoditi~s or goods. No produ.:tiun is possible. so lhc ..:on~umers 
merely engage in cxch-!J18't:, Trnde takes pln.:e becau&c each t·onsulll(!r wishes co acquire 
a bundle of commodities thal h preferred to the initial endowment. This is described as a 
pure exchange economy. 

As tLSuw when di:scussing perfectly competitive warketS, we as.surue that t:onsumers can 
exchange their <:ommodities at lixed price rntios. Specifically, we assume that a prit:c v,:;..:tor 
p ~, (p1, • •• , Pn) is announced, where p; is the nonneg.u.ivc price per nn.it of commodity 
numbeT i. Thus, a!ly consumer can sd\ one w,it of commodity j for the amount p; . and 
use that amount to buy any otber commodity i at~ price p,. In this way, the ooc unit of 
commodity j has the same value as Pi I p, units of commodity i (a~suruing th.at p; > 0). 

The price vector p determine~ the mark.et value p · c = Li=l PiCi of any commodity 
bundle c = (L't, ...• en) , including any consumer's initial endowment. By exchanging at 
tbe fixed price ratios Pi/ P i , the c.-onsumec can schieve any commodity bundle whose mark.ct 
value equals that of the initial eodowmenl These are the affordable cons1unption bundles 
at which the consumer ~atistics his or her budget cvru1roi11t_ 

Among aJl affordable commodity bundles, each consumer selects Ollt' rbat is preforrcd to 
all the others. {n other words, each consumer's demand~ represent the-choice of commodity 
bundle that maximizes a utility function subject to rhat coos1.uncr's owo budget consttainr. 
(We assume that thrrc is a uniguc utility rruixi!oiiing consumption bundle.) 

Nexl, add the demands of all cousume.rs for each conu.uodity i and subtract the total 
initial endowment of i. The result is calkd the excess d1m1anJ foe that commodity. Becau~e 
it dt·-p~nds 011 the price vector p, the eicess dernand will be denoted by ·g1(p). \'v'bcn the 
price vi,cror is p. tht: sign of g;(p) ioJicate., wbethef the total demand for commodi ty i is 
greater or less tbao the tots! endowment of that good. 

The following question arises naturally in the minds of most economists. Is it possible 
to find prices of all co,umodi tie~ which ensure that the aggregate dt·.mnnd for each do<',S 
not exceed the corresponding aggregate enclowruem') Prices with this property ace calk.d 
equilibrium prices. This is because, if all consumers <k> face such prices, then all their 
deman<ls for every good can be sati&fied simultaneously. So there ar~ no uufultilled demands 
that can force co11sumers to change their plan~. 

Let p• :=, (P1, ... , p;,) denote such an equilibrium price vedor. By detluition, it must 
&atisfy the i.n~qualitics 1/i(p•) :S O for i ::,-: 1, .. . , 11. It will now be shown how Brouwer's 
t.ixcd point theo.rem cat1 be u~ 11, prov>.~ C.:\istence of an equilibrinro price \'cctor, pro\'ided 
~ui1able cont.inuity conditions are imposed. 

To proceed furtlmr requires a littk ex1.r:i not<1tion. For eacb consumer j and commodity i , 
kt wf denote j 's initial endowment of i , a11c:l xf (p) the saml! <·onsun,er', final demand whc.n 
the price vt,e1oc i.s p. In addition. let 

"' 
and x1(p) = I>{(p). i"" 1, .. . ,11 

j~l 

denote resp..~ctivdy the tatCJI end()Wm,:nr and axgrei:aw dmu mcl for each con1111odity i. TI1e 
lattcr is ,:qnal 10 the total drnmu<l for coinrnodity i by all con., umcrs. The excess demand 
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functions referred to ahove are then given by 

g;(p) = X;(p) - W; 

Now, the total value of consunie-r j's initial endowment at the price vcctorp is 1::7,,,1 p,w{, 
so the budget consttaint is 

n • 

LPiXf(p) = LP;w{ (I) 
i~t i=l 

This i~ valid for each consumer, so summing (l) from j 
definitions of the aggregates 11,; a1Jd x; (p), we obtain 

I lo j = m and using the 

n n 

LP;X;(p) = LPiWi (Walnis'sLaw) (2) 
i=t c~a 

Thus, the value of the aggregate excess demand vec£or g, (p) = L~= 1 lx, (p) - W;) at prices 
p is identically zero. 

An equilibrium price veclor p• is characterized by the inequalities 

x;(p*) .$ w; or g;(p') :SO for all i = I, ... , n 

so chat the e.quilibrium market demand for each commodity does not exceed the total en­
down1ent of that commodity. Also, observe that becai.1.~e p• ::: 0 and x;(p•) =:;: wi, each 
product p1(:,;;(p*) - 11,;) is=:;: 0. But the sum overi = l, ... , n of all these products is O 
because ofWalr4s's law (2). Consequently, it is impossible that p;(x;(p") - 111;) < O for 
any i. Hence, we have proved that if p•· is an equil.ibrium price ·vector, then 

X;(p*) < W; ~ Pt = 0, i = L ... ,n (4) 

This is the rule <>ffr(,e good~: if any cowmodity is in excess supply in equilibrium. it~ pr.ice 
must be Zt,'TO. In other words, if there. is a commodity for which the markel demand is strictly 
less than the total stock, then the eqllilibrium price for tlwt commodity musr be O. 

It is rather obvious that only price ratios, or relative prices, matter in this economy. 
For this reason, we can normalize by dividing the price vector p hy the (positive) sum 
Pi + · · · + p,, of the prices £0 ensure that this sum is equal to 1 ($ee Problem !). Then all 
normalized price vectors will lie in the simplex 6"-1 defined by (14.4.3). 

Any existence proof requires continuity assumptions. It will be enough 10 assume that 
the market demand functions p ~ x;(p), i = l, .... n, are continuous functions 011 the 
simplex t> "-1 or, what amounts to the same thing, that the excess demand functions g ! , ... , 
g,, are continuous on ll."-1. Our problem can now be stated as follows: 

Suppose that g1, ... , g,, are continuo1,1s on fl.•- 1 and ,1ssume thllt 

LPi.S:,(p) ""0 fora/Ip in ll.n·l (5) 
f;::( 

ls there. o. vector p• =. (p;, ... , p;) in li11 such that 

g,(p•) ::_ 0, g,,(p') ~ O? 

(Nore that (5) is a resl.aternent of Walras's law.) 

SLCTION 14.5 I [QlJillBRIUM IN A PURl EXCHANGt ECONOMY.• 523: ·. 

We shall use Brouwcr's thcorem lO prnvc e.tistcnet~. To do so, w~ con.struct. a continuous· 
mapping of t,.•-1 into it.self for which any fixed point gives equiljbtium prices. Cow,ider 

first the mapping (p1, ...• Pn) ....._ (p;, ... , p~) defined by 

P~ = P! + g1(p), p; "'- P2 + g2(p), .. ·, P~ == Pn + g,.(p) (6) 

This .simple price adjustmcm mechanism bas a certain economic appeal: it maps p;, the 
"old" price of commodity i, to the new adjlL~ted price p/ = p; + g, (p). If excc.\s demand 
gi(p) i~ positive •. so that the market demand exceeds the total available endowment. tben 
the price is increased. The opposite is true if g; (p) < 0, when the price is lowered. So far. 
this is all very sensible. Note, however, that there is no guarantee that p( ~ 0. Moreover, 
the new price~ p; usually will not sum to 1. Hence, the new price vector {p1 .. _ . , p~) will 
not necessarily belong to the simplex ll." .. 1. As a consequence .. Brouwer's theorem does 
not apply to the mapping defined in (6). l11e mapping must be altered somewhat in order to 
work. 

Before we present an allemati ve mapping, recall that if x is a real number, then max{O, .x} 
denotes thelargeroftherwonumbersOand.x. Hence, if x > Otbenmax{O, xJ = .x, whereru; 
rnax(O, x l == .0 if x ~ 0. Evidently the hlnction .t 1-+ max{O, x} is continuous. 

With this in mind, instead of (Ii) we define a mapping (p1 . ... , Pn) 1-+ (p1, ... , p~) by 

i = 1, ... ,n (7) 

when~ d(p) = 1 + L~=l max{O, g1(p)J ::::_ I. It is difficult £0 provide a good ecooomic 
motivation for this particular mapping. Nevertheless, it does what is needed. Note first that 
p; ~ 0 for all i. Also, the new prices p; sum to unity whenever the old prices p; do. Hence. 
(7) defines a mapping of ll."-1 into itself. We see, moreover, that each p/ is a continuous 
function of (pi .... , Pn), Thus Brouwer's theorem applies, and so there must exist a fixed 
point p• = (pi, ... , p;) in i,. •-1• At p•, for any i = I, ... , n, one has 

P'i = d~·) (p";' + max{O, g;(p•)J) 

This is easily seen 10 be equivalent to 

(d(p*) -· !)pi = max (0. gi(p")J (8) 

The defirution of d(p) implie~ that d(p•) ~ I. Suppose that d(p•) > l. Then (8} implies 
that for those i witb p; ;,, 0 one has max{O, gi(p•)} > 0, and so g,(p•) > 0. Because 
pj + ... ·t- p; = I. however, at Jea~L one p: is positive. It follows that E7~1 p1 Xi (p') > 0, 
a contradictiou of Wa!ras's Jaw. Hence, we conclude that dlp*) = I. But then (8) implies 
that rnax{O. g;(p.)J = 0 for i = J, ... , n, and so g;(p') :::: 0 fo{i :.: l, ... , 11. This proves 
thal p• is an equilibrium price vector. The existence of an equilibrium in the pure exchange. 
economy is thereby estabfo;hed. 

Brouwer·s fixed point theorem can only be used !o prove exist~ncc. For 1he la.,t. example in 
partkl1lar, it docs not by itsdf imlic,ne any practical method for flndi1Jg equilibrium prices. 
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The economic model considered above wa~ one of pul"e exchange in the sense that there 

wa.5 n<> production of commodities. Moreover. consumer demand functions were single. 
valued. More realistic: equilibrium models include producers as well as consumers, and 
allow (multi-valued) demand (and supply) correspondence~. Obvionsly. cx.isrcncc of an 

equilibrium is an important issue in these more general models a~ well. It !urns out that 

existence can still be established. under suitable ~sumptions, making use of Kakutani's 

fixed point theorem fur corrc~pondeuces. 

_PROBLEMS FOR {((TION 14 -5 

1 .. In the pure exchange model studied above, suppose l!t3t each conswner j's dewand functions 
x{ (p), ... , xi (p) re~ult from utilitymaximizalion sobjectto j's own budget constraint. Explain 

why the demand functions x/ (p) are then all homogeneous of degn,e 0. and why this c,n:illcs us 
to normaliz.e prices by setting Pt + · · · + fJ• "' I. 

APPENDIX 

s~:,;: s, !=OMP. 11 1:TENESS , 
AND CONVERGENC E 

If we ,:;in·t ,magine t.ow somf!thir.g mig/lt filil to happen, we ate 

tempted to conclude that it must a,'Ways h;;ppen. Of rnurse. 

,1ccor<1;11g to thi~ prifl<iple of rea.~oning, the poorer our 

imiigination the more ram we could establish! 

-Loomis (1974) 

This appendix considers a few selected topie, from the foundations of mathemiltical analysis. 

Section A 1 introduces terminology \1sed in almost all of mathematics, like the b.isic concepts 
of set theory and general funrnons. Section A.2 discusses the leas; upper bound principle, 
whJCh is a crucial property of the real number system. Sequences. subseq1.:en(es, and Cauchy 

sequences on the real line are the topics of Section A.3. The last Section A.4 introduces some 
results ;1bo1.11 the infimum ;ind supremurn of function~ thm are occasionally useful in economics. 

A.1 Sets and Functions 
A sd is a "colJection of obje..'ts". The~e objects are called the demenlS ur members of 

thL: set. A finite sel can be described by listing the objtlCts: {a, b. c, ... , r}. Some infinite 

sets can be wrillen in a similar way. like the set N = {I, 2, 3 •... I of all namral numbers, 
provided it is clear from lhe context preci.sely what the clements of the set are. We use the 

notation x E S to indicate that x is ao element of S (or "belongs to S" or ''is a m~mher 

of S"). 
Two set, A and B are equal (A = B) if and only if they have the same elemems. Tbis 

implies that repeating any lislt:d clement has no effect: {I, 3, 5, l, 5, 2, lJ "" fl. 2, 3, 5}. 
Tbis example also illustrate.~ thal'the order of the element, in th~ !isling makes uo difference. 

If A and H are two sets such that every element of A is also an eleme.nl of B, then A is 

a subset of B and on~- writes A ~ B (read as "A is a substt of B'' or'' A is included in B") 
or H ~ A (" B includes A·· or" B is a superset of A"). The set ti is a proper subset of B if 
A S: Band A f-. B: some.time., one writes A;; Bin this case. The symbol~ i.~ called the 
inclusion symbol. 1 It is clear that .1\ ;:-, B if and only if A ;: Band B ,; A. It is also easy 
------····--·-····---
1 S\11ne authors us~ ,:: as tbe iwJusi<m symhol. :111<1 some u.,c ~ for inclusion 3nd rc.erve C: fot 

pn.lJ*-r i11clurjon. fn chis book we u.se c: for i11d1Lsioll. whellicr prnrer or 11ot. 



526 APf>ENO IX A i S~TS. COtv'.PLEH.NES~. A:-.:D CONVERGF.Na 

to see- ilia[ if 4. S:: B and II :;:: C, thm A ~ C. 

The empty set, 0, is the only set wilh 110 ekmems at all. 1t is a sub~et of every set. 
1bcre are several w11ys tc> build new ~ct~ ou1· of old sets. One very common consrruction 

is tllc l:rearion of a subset of a givco get by se\e,;ting those elements that have a certain 
prope.ny: if Si~ a 5et and a(x) is a <'On<lition that an clement x of Smay or may not satisfy, 
then A= {x ES: or(x)} is the set of all tbOSl' elements of S thac satisfy the condition. Fof 
example, the sci A = fl, 2, 3, 4 J of all natural numbers between I and 4 l:an be wrincn as 
{.x E N : I ~ .x S 4}. li ii is clear from the comcxc exactly what lhe set S is, one often 
simply 11.Tiles f:c: «(.x)l fnrthe scl {x ES; a(x)J. 

ff .4 and B are sets, then A U 8, the union of A and B. is the sel of all clements that 
belong to A or 8 (or bolh). The intersection A n B of A and Bis the set of the elements 
that belong 1.0 both A and B. If An B = 0, the sets A and B are disjoint. The set theoretic 
difference A\ B ("A minu~ B") is the set of all ekmcnts in A that do not belong to B. The 
symmetric difference A.t..l:l ::,: (A\ B) U (B \ _,1) is the set of all elements that belong 10 

exactly one of the sets A and B. 

The following arc some in1ponaot identities involving the opecations defined ahove. 

AU B =BU A, (AU B) UC= AU (8 UC). AU 0 = ,4 (I) 

A 11 B = 8 n A, (An H) n C =An (B n C). An 0 = 0 (2) 

Au (B n C) =(AU B) n (Au C). An (Bu C) =(An B) u (An C) (3) 

A\ (B ;__, C) = (.1 \ 8) n (A\ C), A\ (B n C) = (,t \ B) U (A \ C) (4) 

At:,.B = Rr.,.A, (;l.uR)t.C = ALl.(8Ll.C), A.6.0 = 11 (5) 

The formulas in (3) an~ called distributive faw.~ and the formulas in (4) are known a.~ 
De Morgan's laws. 

In discussions involving ~els, it is often I.he case that all the sets consid,m~<l are s11bsct~ 
of some given "universal" set, n. say. When this is the case. the set difference n \ S is 
often written as Ac or CS. and called the complement of S. When we discuss ,ub&cts of 
!R", for instance, CS=: IR"\ S. With thi5 notation, and regarding A as the universal set, De 
Morgan's laws can be writcen as 

C(B UC) '" CB n Cc, C(B n C} ""' CB u CC (6) 

The collection of all s11bsc1s of a s.:t A is als<~ a sc.t, c:i.llted the power set of i\ and denoted 
by 9'(A). Thus, B c- .?"(A) ~ B f. A. 

We notl",cJ above that ill a set speciiication such as fa. b, .... ti the order in which the 
elements are listed docs not matter. Thus. in partil:Uiar {a, b J ,,.,. f b. a}. However, 1)11 lllany 

occasions one is imerested in dislfoguishi.ng hetween the first and the second ch,ments of a 
pair. On.: sul'.h example is rhe coordinate, of a point in the x_v-plane. These cooniinaccs are 
given as an ordered pair (a, b) of real numbers. The important. property of ordero<l pairs is 
that (a, b) = (c. ,l) ii and only if a= c and b :·:: d. In particular. (fJ., h) = (b. a) if and only 
if a = h. See Probkm I foronl~ pos,ible way toddine an ordered p,tir in .<et-theorc·tic tem.1s. 
Once order..:d pairs have. lxen defined. one l:an go ou to define ordered triples, quadrnples, 

etc. as (a.. b, c) =((a. b), c), (a. b, c. d} "'' (Ca. b. c), d). etc. Of course. there is a natural 
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ouc-io-onc. correspondence ((a, b), c) ~--> (fJ, (h. c)), so it would not matter much if an 
ordered triple were defined as (a, (b, c)) instead of ((a, b), c). The important thing again is 
that (a, 1,, c) "'(lt, e, f) if :mdouly if <1 = J, b = e, andc "-' f. 

lf A and B are sets, their Cartesian product i~ the set A x B consisting of all l>rdcred 
p,tirs (a, b) such that a.-<:. A and b E H. Similarly, the Cartesian product.oithcsets A, B. and 
C is the set of all ordered triples (a, b, c) such tltat a E A, b E. B, and c E C. Tue: natural 

one-to-one corre,spondencc ((a, b), c) .... (a, (b, c)) rctemxl 10 ahove gives a one-to-one 
.:orrespondence betwcc::u (A x B} x C and A x (Bx C). ~,i ()lie can wdl identify the iwo 
and write ci!h.:r product simply as A x B .>< C. 

The Euclidean plane R1 is I.he Cartesian product Hix II-!. More genetally, or = Rx · .. x R 
(with m factors), and !here i~ a natural one-to-011e correspondence between the clcmcnL~ 
((x1, ... , x,.). (Y1, .... Yn)) oflR'" xiR" andlheelements (x1, .... Xm, YI, ... , Yn) ofi!r+•. 

Indexed Sets 

1l1cre is often a need to go beyond ordc:re-d pairs. or triples, quadruples, even n-tuples for 
any finite 11. Suppose tha[, for each i in some .set I, we specify an ob jeer a; ( which can be 

a number, a·sct, or any other entity). Then tht-se objects form an indexed set {ai};Ec/ with I 
as iL~ index set. In formal terms, an indexed se.t is a funeriou whose domain is the index set 
(.see below). 

Th.ere is an important difference between the indexed set \ai );~1- and the set of all th~- val­
ues a;. For example, an n-vcctor x = (xi. xz, ... , x.) is an indexed set with { 1. 2 .... , n} as 
its index set. Hero the onkt of the elements does matter, and m11ltiplc occurrences of the same 
value will alson1atter. Th11& the five-dimensional vecror (3, -1, 3, 3, -2) is different from 
the vector (3, -2, -1, 3, -1). whereasthesers {3, -1. 3, 3, -21 and {3, -2, ... J, 3, -i} are 
equal (and equal to the set {-1, -2, 3}). lndex.ed seL5 allow one to distinguish between set.S 
whose elements appear in a different order, and also to tall: about sets where some elements 
are repeated. A sequence i$ an indexed set (<lk h.;N v.'ith the ~et N of naiural numbers as its 
index set. In~tead of {a,h-.'11 oncofien writes lakl_;";'.,1• 

A set whose element~ are them~elves sets is often called a family of sets. and so an 
indexed set of stit.s is also called an indexed family of ~etS. 

Consider a nonempty indexed family {A, );,.1 of sets (i.e. the index set I is nonempty}. 
The union and the intersection of this family arc tht seL~ 

U. A, = the ~et consisting of all .t that hel,)ng to Ai for at least one i in I (7) ,~, . 

n. A, = t:he sel cnnsisting of all x that belong 10 A; for oil i in I (S) 
l ~; I 

The distl'ibutive laws in (3) can be gcnerali.zt'd to 

and De Morgan\ laws (4) to 



28 AP PEND IX A I sn~-- COM P1. n ENr.$S, AN D CON VERGF NCF. 

TI1e u.11'.lion and the intersection of a sc.:iuem:e I A,. ).,,11; ~ {A,, 1::::.1 of set~ is often written us 

u:::r An nnd n:al A,, . The meaning of notation like U!~1 ,1. should be oh,nou~. 

One can l\l.s(' fonn the Cll!lesi3\l pwduc! of indexed famil ie~. If {A;)1.,1 is an indexc<l 

family. 1hen ni,,1 A , is the set of all i.udexed sets (a;},Er such rllata; E .1 , for all i <:: I . Jn 
pllfticular, 

" n Ak"" A1 X ·· · x A,. """ {(c,, ... . , a,.) : Ok E A 1 fork= l, .. . , n}. (11) 
.. f"'"; 

Relations 

A relation from a ~et A to a set B is a sub~er of A x B, rruit is, a s~l of ordered pairs (a. b) 

~uch tliat a E A and b E B. lf R is a relation, one often writes aR b in.~tead of la, b) E R. 
A r efation from,1 to A is alsocalle<l a (bin:u y ) n latif,n in A. As anex;unpleofa rclation 

in R. c .oo.sider the "less th.'Ul'' relation consi,tiog of all ordered pairs of real numbers (x, y) 
with.JC < y. 

Toe domain of a relation R from .1 to B is tl1e $el 

do m (R) = {a EA : (a, b) ER for some bin 8) = {a ~ A: Cl Rb forsomr bin El 

of possible first elernen1s, whereas the range of R is the set 

range(R) == {b E: 8 : (a. b) E R for some a in A] :: {h E B : a Rb for some a in AJ 

of possible secoud element~ in !he set R of o.rden:d pairs. The In verse of a rcla1ion R from 

A 10 B i~ the re.larion R - 1 fr<>m B to A given by R - 1 ~ [(b , a) E B x A. : (a. h) E RJ . 

Tf R is a re.lation from A to B and S is a ,elation from 8 to C, we deti.ne the composition 

So R of R and Sas the set of all <a, c) in A x C such that rhere is an elerowt b in B wilh 

aRb a nd bSc. So R is the11 a relation from A t.o C. 
A rclatiou R in X is reflexive i f x Rx for all x in X. It is transitive if x Ry and yR z 

imply x R t, it is symmetric if xR y implies )'Rx , it is anti-symmetric i f x Ry and yR x 
imply .x =. }'. and it is (.'Ompkte if for all x and y iu X al lea.~t on.: of xR y or y Rx holds. 

A partial ordering iu X is a relation in X !hat is reflexive, transitive, and anti-symmcuic. 
ff a partial o rdering is complete. it is ca lled a linear (or total ) ordering. The relation !, in 
R is a Jin~,ar ord,~ri.ug. 

r-or n :::. 2., the lcss-than-<•,-equal-10 rdarion -;S i11 R" i~ dctined by (x1 • •• • , xn) S 
(Y1, . - .. Yn) ~ Xk :~ Yk fork = 1, ... . 11. The svmbol < is tb.en usoallv taken to mean 

' ·;:; , b'ut not = ". (Some authors also use < in chi: ~cnsc ~vheu coinpari~g vectors. C au­

tion is neces~ary!) There is also a sUic::l inequality relation «. given by (x; .. .. , xn) « 
(y,, .• . . Yn) Q Xie < )'.I for allk o= l, .... 11. The relation <; is a partial ordering in R" . 

An "quivalence relation in X is a relation that is rr.flcxiv,, transitive, :ind svmmetric. 

Ji R is 30 ~.y_uivalcucc relat.i,)n in X, I.hen R i.nduce~ a partition of X into pair.wi;e disjoillt 

e.quivnleuce classes [x ] = {y t. X : y b' x }. The. uuiou of all rhe~e equivalence cJa5ses is X. 

Funct ions · 

A f11nc.::tion (also called a ma1>ping, m ap, or tran,,fonnation) f : X -+ Y from a set X to a 

s<'ti.' i s a 111le lhata~si~!L5eJ<actly,me element y :.:: f(x) in Y to~ad 1..r in X. . fo !<el-lheorciic 

1crws f is a relation fr11m X to Y $11eh that: 
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(Ii dolll(/) :: X; 

('.?.) for each x in X mere is ex.1ctly one y in Y such that x J y. 

Thus f i~ "single-valued'' and "('perut.:s on" evt•ry x in X. One usually writc.s f(x) .:.: )I 

iostcad of x f .v. The SC!,.X is the domain and Y is the codomain off. The r.uige of l is 
the ~<illlc as the range of f considered ;;s a relation: 

range(!)= {.y .- r: y = /{x) for:,tleast onex in X} ~ [f(..t) : x c X} 

TI1c last fonuuJatioo is an example of a somewhat sloppy 11o<uliou that is often u.sed whe.o 

the me311.illg is clear. fwm the eon t.,-xt. The graph of f is the set 

graph(!)= ((x , y ) E X x Y : y =·' /(x)l 

This is of course the same as the relation .f as denned in the previous subscc.t.ioo. 
If f (x) "° y, one also writes f : x i-+ y . The squaring function s : R .....,. l~, for 

exarupk, cl!Jl then be written a.~ s : x - x 2 • Thus, P- indicates the effect <lf the function 

ou an element of the domain. 1f the domain ,\ of f : ,\ -+ B is a subsei of a set X , it is 
sometimes co.nvenient to w{i.tt< f : A ~ X -+ B, and maybe even f : A !;; X -> B f Y if 
8 is a suhset of Y. 

If f : A - .- Bis a function and S s; A , the restriction off to S is t11e function f!s 
defined by f!s(x) = f (x) for e,•ery x in S . 

A function f : A -+ Bis " one-to-oue" or injective if f(a) 'f' f{a' ) whenever a :fa' , 

i.e. if f always m.-ips d i$tinct points in A to disti nct points in B. 
If the range ot' f : A -+ Bis all of B, then / is called surjective or onto, and f is said 

to map A onu, B. 
When f : A __.. B is b('th injective and surjective (i.e . when it is botb oo.c-to-one ao.d 

onto), it is called bijedive. 
If f : A -+ Bis injective, then f bas an inve,se function 1- 1 : rMlg.e(f) --+ A, defined 

by r ·1 (b) = a # b = f(a ). (Considered as ll relafio11, f nlways has an invers¢ with 

range(!) AS it~ domain, but this inverse relation is a.fimc1io11 only when f is injective.) 

Tht: con1po5ition of a function .f : A ....,, B and a function i; : B -+ C i~ the fullction 

g,, f : A -+ C given by (&" f )(a ) = g( f (a)) for all a in A.. Tt is easy tu ehec.:k that lhis is 

the. same a\ 1he composition off o.nd g as relations. 

Direct and Inverse Images 

I.elf : A -+ fl be a functiot1. The (djrect.) image oader .f of a ~uhsd S of A is the set 

f(.5) = {y E R: .>' ::. f(x ) for smnc x in;\) 

and lhc in verse image or preimagc under f of a ~ct T !~ B is 

Pin>.ct and inverse irnilgcs satisfy a numb« of rdarions. Given inde.11.00 farnilie.s {S; },,; and 

! 
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{ 1; };u ,.>f ~nbsets of A and B, respectivdy, these i.ndmk: 

f(S1 USz) :::.: f(S1) U f(S1). 

/(S1 n Si} S'.: f(S1} r) f(S2). 

r 1m u Ti) = r!<T1} u 1-1<T2). 

f 1(Tr n T~) = 1-• Cll) n f-1 (Ti), 

/(LJiel S;) = UirJ .f(S,) 

J(nd s;) <.= n.1 t(S;> 

r 1<U,..1 T;) ,.: u,~; r'(T;) 

f' I (n,,, J;) "'nioel r'(T;) 

(12) 

(13) 

(14) 

(J 5) 

Note 1hat i11vcr:sc images prese.rve both unions and inlersections, wbc:ccas dire.:t images 
preserve only unions, not intersections (see Problem 3). 

PROBLEMfFO 

Some other properties of dire.:1 and inverse image& arl): 

S £ .r-1(f(S)), JU-1(T)) <; T. r'O') = r1<r n rnnge(f)) (16) 

SJ<; S2 = f(S1) £; f(S1) and f(S2) \ f(S1) f J(S2 \ Si) (17) 

1"1 £ T2 =? r 1<T1):;: r 1 (T2) and r 1 (T2 \ T1) = J-1(h) \ f-1(T1) (18) 

1. The ordered pair (a, b) is mos1 commonly defined a.< th~ S¢t (a,b) = l(a}, {a, b)I. Shov.- that 
widl this definition, (u, h) = (c. d) if and only if a= c an<l b = d. 

2. Show the equalities dom(R-1) = ra.n&e(R} and rangc(R-') ~, dom(R) foe a rclafrm R from 
A to 8. 

@ 3. Giv.: •n example lo show that the inclnsioo signs in (13) ca,moE be replaced by equals signs. 

@ii 4. Show that if R is a linear ordering in a se-t X, then the inven;c relation R' 1 is aho a linear 
orde.1ing. 

5. Prc,vc ( 16). i\lso, 1,<ive examples m show thal S cannot always he rl!p\a~cd by=. 

A.2 Least Upper Bound Principle 
The ;ea( number sy,tem is fully characterized by a r.1t!Je1 small number of axioms. The 
usual algebraic rules and the rules fot inequalities are all wdl known. Here W<' consider 
briefly only the so-called least upper bound principle. i\n uncler~tandiog of this principle is 
cruci~l for lll:lllY of the argument& in this book. The need for this prindple can be illustrated 
by tht' problem of determining the area of a circle. We know how to cakularc the area of 
plane regions bounded by ~r.raight line~. Figure I shows a sequence of regular Jl('lygon~ 
inscribed in a circle. For n ::: 3, let II., he the area of a regular n-.sided polygon inscrih~d 
in the circle. Tims, ,1; is the area of an c.:iuilatcral triangle, .44 is the an:a of a square, As i~ 
the 11rea of a regular pentagon, and so ,m. 

l 
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Tue an:a uf lhe circle must be greater than each of the numbers ,13 • .4.1, 11 5, .... On the 
other hand it seems clear that by choosing II sufficiently large, we can make the difference 
between the area of the circle. and the area of an inscribed regular n-gon a~ small as we 
plea.e. We now define the area of the circle as the smalle.~t number greater than or equal 
10 each of the numbers A3, ,t,, As, .... Ibis definition make~ sense only because the 
existence of such a number is a basic property of the ~et of real number,;, called the principle 
of lea.~l upper bound. 

Recall that a set S of real nwnbcrs is bounded above if there exists a real number b such 
thac b ::. x for all x in S. Any such number bis called an upper bound for S. A set that i.~ 
bounded above has m!llly upper bounds. A lell.!.1 upper boond for the set Sis a number b• 
that is an upper bound for S and is such that b' ::: b for eve.ry upper bound b. 

The existence of a least upper bound is a basic and non-trivial property of the real 
number syste.n1. 

Any nonempty set of real numbers that i.s bounded above has a lea~l upper bound. (.1) 

. ._ ________ ....... .,_. ____ ..., .. ·-·----······----·--"-··------------·--···-- ' 

A set S can have at most one. least upper bound, because if hj and bi arc both least upper 
bomids for S, then bj ~ b"z and bi_ ::: bj, and thus bj =bi.The least upper bound b• of s 
is often called the supremum of S. We write b" = sup S or b" = sup,ES x. 

f ··--,,------
,,.=sups 

Figure 2 Any b ~: b· is an upper bound for S, but 
t,• "' 3up S is the unique le;,st upper bound for S. 

The set S = (0, 5), consisting of all x ~uch that O < x < 5, ha~ many upper bo1inds, 
including 100, 6. 73, and 5. Clt:.'ll'ly. uo number smallcr than 5 CM he an upper brnmd, so 5 
is the least. upper bound. Thu~ sup S = 5. 

·me set T = {x : x2 < 2} =-= (---../'i, ./2) hits many upper bonnds, whit:h include 9, 2.. 
and ..fi. Clearly. no number 1,maller th.'U\ . ./i. ,.1n be an upper bound of T, ,ind .so j~ is tlle 
least upper bounrl, sup T "- ../2. I 
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A set S is bounded below if there ex.ist~ a re-al number (1 ~uch that x ~ a for all x in S. The 
nwnber a is called a lower bound for S. A set S that is bounded below has a. greatc,;t lower 

bound n•, with the prope.rty a' ~ .t for all x in S. and a•·::: a. for a.11 lower bounds a. Toe 
number a• is ,ailed the inti.mum of Sand we Y.,ite ,1• ~, inf Sor ,r• = inf.,.,s x. Thus, 

sup S "' !he least uumbcr greater than or equal to all numbers in S ('2) 

inf S ,.7. the greatest numher less !han or t'gual to all numbers in S (3) 

rr S is not bounded below, we write inf S = -oo . .If S is not bounded ahove. we writ.e 
.~upS.:..:: oo. 

Ev<~ry real number is an upper bound for 0. th~. empty se1. Th~refore 0 bas no lelw upper 

bound, and by convention we write sup 0 == -:x>. Similarly, inf 0 = oo. 
The followiDg chllractcriz.ation of the. suprcmmn is easy to prove: 

HEOREM A.l I - t 
Lei S be a ~et of real number~ and b· a real number. Then sup S = b' if and o,llj 
if the following two conditions are satisfied: 

(a) x ::::: b' for all x in S. · 

(b) For each t > 0 there exists an x in S such that x > b' - e. 

-------·---.. -·---·-----·-- ... -·--..... ---·----·----
NOTE 1 The existence of a supremum of a set bounded above may seem to be ''intuitively 

evident": Starr with a nonempty set S of rcitl numbers an<l an upper bound b for S, a\ in 
Fig. 2. The!l move b to the left until it is ··~topped" by the set S. The number his still an 

uppt.-r bound for S, and it is the least of all the upper bounds. 
11,c least uppcr bound principle i~ a non-trivial prop.:.rty of the real number system. To 

appreciate this, oh serve that the principle does not hold within the set O of rn.tional nwnbets. 
For instance, let S be the .set of all rational numbers r such that ,z < 2. Within the ratioual 
number sy.s1cm, the scl S has no least upper bound. All rational numbers largt'T than or equal 
t() ,,,,12 are uppe.r bounds for S. but there is not a smallest one. among the.,e numher.~ becatL,e · 

./2 is .irrational. (See Problem 2.) 

1. Detennine sup and inf for each of these three .sec.s: 

1\ = (-3. 71, B ,.,. {l/>t: r. ,.,. I, 1, 3, ... }, C = {x : x ,. 0 ar.d x 2 > 3) 

@ 2. Suppose thac r is a ralional number with r > ../i. Show tbac the rational numbers ., . (2 + /!) /2r 
satisfies ~12. < .< < r. 

3. Show chat sup S .. ,, oo iff for cvc1y i, in n tkrc cxis~~ an x in S such Hmt x > b. 
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A.3 Sequences of Real Numbers 

EXAMPLE 1 

A sequence can be viewed a., a function k I-* x(k) with the. set f\i == {l, 2. 3, ... I of all 
positive inregers a.< iLs domain. The terms x(l). x(2). x(3), .... x(k) •... of th~ sequence 

are usually denoted by ui:;ing subscripts: x1• x2, x3 .... , Xb .••. We shall u.sc the no1.ation 
{xk \f,'..

1
• or simply \xi h, OT evenju~l {.1:1. J, 10 .indicate an arhitrnry sequence of real nuruben;. 

A sequence tx.-} of real numher.. is ~a.id to be 

(a} increasing <or nondecrc:tsing) if Xk :o Xki-1 fork ;::. 1, 2, ... ; 

(b) strictly increasing if Xt < xk+I fork "' l. 2 .... : 

( c) decreasing ( or noninc~a.~ing) if x, :::_ Xk,· L fork = l, 2, ... ; 

(d) strictly decreasing if x* > x1+1 fork = 1. 2, .... 

A ~equence that is increa.,ing or decreasing i$ called monotone. 

Decide whether or 1101 the three .~equ.:nces of real numbers whose gcueral t.:rms arc given 

below are monotone: 

(a) x; = l - 1/ k {b) Yk = (-1)~ 

Solution: The seq\leuce l:r1] is (strictly) increasing, hecause fork "" 1. 2, ... , 

Xk-11>X, ~ l-l/(l+k)>l-1/k ~ 1/(k+l)<J/k 

and the last.inequality ck:arly bolds for all k ~ l. 
The sequence I y1.] ) is not monotone_ It is clearly ueither im .. ,:easing nor dec'Te.asing, 

because it~ !enns arc -1, 1, -1. 1. -I, .... 
1b.e firstthree ttTIJ1~ of tile sequence lzd are: z1 == .Ji--JI ,.,,, 0.4142, z2 = ,,/3-,/2 ~ 

0.3178, and ZJ ==. J4 -·- ..fj ~ 0.2679. Note that z: > z2 > z3 . In fact, a standard trick 

shows that I a} is indeed strictly decreasing: 

~ r.- (.Jk+T - ./k )( .Jli+T..:,. ,,ft,) 1 
<k "" ..; k + l - "k = ---- -·-- .. -.,---- = _ri-7. ____ r,· 

./k+l1../k v-k+l+-vk 

From the last fraction wt· sec that z, decreases when k increase~. 

A scq\leuce fxd is said tn co11w:rge 10 a nw11ber x ir Xt becorn~s athitrarily close to .t for 

all ,ufficicmly larg,•. k. We write 

lim Xt =x 
l··•OC' 

or 

The pre.:i ,e tldin.ition of convergence i~ as follnw~: 
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The sequence {xx} con~erges to x, and we wrirc 

if- for evo::ry e > 0 there exists a narnml number N such that [x1 - x J < €: foe 

all k > .t•l. 111e number xis called the limit of the sequence {xt 1- A convergent 
sequence is one 1hat eo11verges to some number. 

(1) 

Note that the limit of a C()nvergent sequence is unique. (S"e Problem 7.} A .sequence that 
d(>es not converge to any real number is said to dh,erge. 

In some cases we use I.he notation limk-~"' Xt even if rhc sequen.:e {xl} is divergent: 
if for each number M there exists a number N such that Xt ~ M for all natural num~r 
k ~ N, then we say thar xi- 1cnds to oo, and write limk-,oc Xk == oo. In lhe same way we 
write Ii.mi-"' Xk = -.x, if for every number M there exists a number N such thatxk ~ -M 
for all k e: N. 

In .Example l, tile sequence> {xk} converges to 1 because I/ k rends to O a~ k tends to 
oo. (Using (1): Given F > 0, we must find a number N su.:h that fork > N we have 
1(1 -· 1/k) -1! < t, i.e. 1/k < F:, or k > 1/P.. Clearly, this is accomplished by choosing 
n:ri N ::::. 1/t.) 

The sequence f Yk J is divergent. ff k is even, y~ = I and if k is odd, Yk == -1. So there 
is dearly no nW11bcr y such that Yt lends to y as k teuds to oc. 

'The .sequence lz~I is convergent, with lim1~oo Zk = lirn1·-+o-, 1/(,Jk + 1 + .Jk) = 0. 

A sequence (xk) is bounded if rhere exists a munbcr M such thar lx.d :'.o M for all k = l, 
2, .... It is ea,y to see that l'very c1.mverge11t seq11enr.e is bound.:d: If x~ --* x, rhtn by 
the definition of convcrgt,nce, only tinitely many tenns of the sequence can lie outside the 
inrerval J = (x - I. x + l). The set I is bounded and the finite set of points from lhc 
sequence that are not in J is bounded, so {xJ:l must be bounded. On the other hand, is every 
bounded scqucnccconv~rgen1? No. fot example, the sequence (Ytl = ((·-l/J in Example 
1 is bounded hut nor co1ivergent. Suppose, however, that the ~equence is monotone as well 
as bounded. Then it is convergcnc. 

....... --·--··· ··--··· -···-"···--·-···---.--.......... ---·····-·-···---·-----·1 
Eve.cy bound<·d monotone. sequence is convergent. I 

Proof Suppos,~ !hat (xA Ii.~ increasing and bo1111deci. Let b• be the J.,a~t upper bo11nd of th,: 
set X ""(.q : k ·:.:: 1, 2, ... }, and let t be an arbitrary p<>~itive number. Tucci b·' - ti, not 
an upper bound of X. so there must be :i. tenn x:,: of the sequence for which XN > b* - c. 

Because the. seyuence is increasing, b·· - c <: XN :::: .(* f,•r all k > N. But the xt arc all 
le.ss than (•r eqna\ to b··. sob'··· s .,: Xt ;::: 1,•. ·Tu11~. for any f. > 0 there exist, a numbe.r N 
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such that )xk - b*I < f: for all k. > N. Hrn.:". fxd converges ro h*. If {.td is dc-.crcas.ing 
and bounded. ttle argument. i~ analogous. • 

;:] ~~P-t~ff~: Cousider the &equcnce /.r.;J defined by 

;,~:::.-/2, X.til""v'..tk+2, k=l. 2,.,. 

U~e TheoremA.3.1 ro prove that the sequence is convergent and find its limit. (Hinr: Prove 
hy induction that xk < 2 for all k. Th~.n prove that the sc..1ucncc is (xtrictly) increasing.) 

Solution: Note that x1 "" ,,/2 < 2, and if Xk < 2, then Xk+I = ,,/x;+-z < .J2-}2 ~ 2, 
so by induction, .t~ < 2 for all k. Moreovl".r. because Xk < 2, one bas 

,--:-;:. --- ~ '2 
Xk+l = ,/Xk +2 > ,,/xi +..tt = ,,2'tk > .,jx1, ==Xt 

~o {xk I is (strictly) incrcasi.ag. By 'Theorem A.3.1 the sequenet is convergent. U :t is its 
limit, then leuing k --.. oo in ( *) yields x "" -Jx + 2. by the continuity of ,,/x. This equation 
iruplic::.~ !hat .x2 = x + 2, which ha~ the two solutions - I and x = 2. Bccau8e ··• I i8 obviously 
nor a solution of x"" Jx + 2, the only solution is .x = 2, and thus limk-+oo x, = 2. I 

Rules for Handling Convergent Sequences 

Suppose that {xk} converges to x and ()'ti converges toy ask -• oo. Fork su.ffieienrly 
large, x; i~ close to x and Yk is clo~e to y. Then Xk + Yk must be close to x + y, and it is 
rherefore reasonable to believe that x.1: + Yk --> x + y as k --* ·X. Corre.~ponding results 
hold for suhtraction, multiplication, and division. ln fact, we ha\'e the following resulr: 

TH~OREM A.3 2 (RULES. FOR ~EQUENCESJ ' --·----.. -- · ·-----· -- ··--·--·-·-·--·-· 

Suppose that the s~uonccs (xk l a11d {Yi} converge to x and y, tespectivcly. Then: 

(a) limk-;.o.:(Xk + .Yk) = x + Y 

(b) limk-cc(Xt - Yt) = X - Y 

(c) limk.,ou(:tk · Yk) ""x · Y 

(b) lim1; .. , 00 (xk/Y.) = x/y, assuming that y;; ,fo O for all k and y t- 0. 

••• .. ,. • .-..,, .•. ,,. ____ .,. .......... _.. -· • •v• ., .. ~ .. • ,_._.., ..... ,._ •.••.. -·····•-·-·'-.... ,., . ._ ..•. •v•·~•·,.~• ... ,.,, .. _ .• .,,~ 

Proof: (a) Here is a formal proof: Let e be an arbitrary positive number. Since {.x.;1 is 
convergent., there exists a number Ni such that lx1c -- .x I < f /2 for all k > N1• In the same 
way there exist~ a number N2 &ucb thar •Yt - yl < t:/2for all k > N,. Let N be the greater 
of rbe. two numbers N; and N2. Then fork> N, 

l(x1 + Yk) - (x + y)l"" l(:ct - x) + (Ji - y)I :f. ixk -xi+ !Yt - Y! < >:/2 + e/2 = e 

Huf. this means that limk(Xk + y,) = x + _v "'"lim.t x~ + lim; y;. 
The statement in (h) is proved in the same way. Proving (c} and (d) requires more 

compli~'.at(·d arguments to ~how that 1-~~ Yf. --- x y ! and fxk / Yk - .~/_vi are less than an :irbi.trary 
positive f. (1:or a precis<: proof we rcfrr tv e.g. Mru~<lcn and HoffmM (1993).) • 
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Subsequences 
Let /x.d he a .sequence. Co11sidcr a suictly increa.s.ing sequence of natural numbers k1 < 

k.2 < k~ < · · ·, and form a ac·w scqllence {Y; }j.,.1. where Y; = Xk; for j "' 1, 2, .... 
The sequence {y;}; ::., ixk;)j is called a subsequence of {x;}. Because the ~equence [k;J 

is ~trictly increasing, k1 ~ j fot all j. The terms of the subsequence ar~ all pre1,c11t in the 

original ooe. 1n fact. a subsequence can be viewed a., the result of cenll)ving soruc (.possibly 
none) of the terms of the oripnal scqucnc,~. For ei.:nrople, x~. x.,, x1, ... is the ~ubsequence 

obtained by ~triking out the first four 1crms of the eoiiginal sequence, and xi, .:q, x0 , .•. 

is the sub.sequence ot-tained by removing all tenn~ with au odd index. If Xk = (-ll is 
the divergent sequence mentioned above. we may for example dctine the two subsequences 

{r2k} and {x2.1:_ i). Here Xzt = (-Ifk = I, and X2.t-1 ""' (-1)21- 1 = -1 for all k. Note 
that these two particular subsequence, happen 10 be both convergent. 

NOTE 1 Some proofs involve pairs of sequence~ {.xk}E1 and {xk
1 
)f.,.1 where k; ~ j for 

all j, but where lhc sequence ki, k2, ... is not ne.::cssarily strictly increasing. Tims {xi-J; 
is '·not quite·· a suhsequencc of {Xk/k- Howev«, it is always po&sible to ~elect tenn~ fr~m 

{.xJ) in such a way that we get a subsequence {x,, )i of {x~ It: Let k1 = k1, and generally 

k1.~1 = i:k,H· Thenk;+1 :C: ki +I> k,. 

The follow.ing important fact follows immediately from the definition of convergence: 

Tl-lEORfM,A.3 3 --·-··-···· .. ···-···"··-- ·-·-··-------···"·-·····""""······--··-·-----···--·-------. 
! 

Every subsequence of a convergent scqucnet. is itself convergent, and has tlle 

same limit as the original sequence. 

, .... , ............. ~······ ···~ ---·-·-· ......... -·-·····--·--- ,~ ... · 

The following result is le.ss ohvious but very uschd: 

If the. sequen.x {x,} is bounded. then ii cumains a convergent subsequen~. 

l 
j 
i 

·----··--.. -----...... --·· ·····-· ....... ._... .. . .. ..... ...... .... . .. . .. . ... ........ . ... ········-··--. --.. -... ----··-----···---·--·--.! 

Proof: Suppose that Ix,! ::: M forall k = I, 2, .... Let .l'n ""'sup/XA : k ~ 11 J for n = L 2, 

. . . . TI1en /y.} is a decreasing -m1ucnce because the stlt {xk : k ?: n) shrinks as n im:rea.se~. 

Th.: sequence is also b<.lunded he<:ause y. c: f-M, M]. According 10 Theorem A.3.1, the 
~equence !y.,J has a limitx = lim •... ,:,:, y., E [-·.-1-1, Ai J. Byl11eoremA.2. l, 1he.definitio11 of 

y. implies thai there is a krm xi, from the origin~] 5cqucnc.e \xk J (with k. ::: 11) sati~fying 

IY. -- x.() < l/n. But then 

111is shows tha.t .rf, _. x a~ n -·> x. By usi11g t.lJe .:onstruction in. Note I, we can extract 

from {x.t,I a subsequence of (xd that converges to x. • 

; ,. 
i 
l 
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Cauchy Sequences 
The definitiou (I) of a conver~ent s.:quencc involve~ the specific value of the limil .. If this 

lilllit is unknown, or inconvenient tn calculace, tlJ{'. definition is !lot very u~"flll bc,;1111se one 

caunot test all uumbers to se..: if they meel. the critcrion. An important altemati vc necessary 

and sufiicicnr conditiori"for convergence is based on the following concept: 

ITION Of A GAUCH HOU NCf. ----·---·---···----------·--·-! 
A sequenc.,. {:q} of real null'.lhers is called a Cauchy sequence if for every t > 0. 

there exist~ a natural number N such that 

lxn -Xmi < f. for all n > N and all m > N 

t 

i 
r 

I 
I ----------·------------· ·---- -----~ 

(2) 

Note that the tem1s of a Cauchy sequence will eventually be dos.: toge.thcr, which need 

nor be the case for an arbitrary sequence. In p:irticular, the ,sequence. (:q} = {(-1/}, 
whose terms are alterou.tively -1 and l, is clearly nol a Cauchy sequence. But the sequence 

{y;.} = {(-!ll is. 
All the tenns c>f a convergent sequence eve.nmally cluster around me limit, so the se­

quence is a Cauchy seque11ce. The converse •~ also true----that i&, every Cauchy sequence is 

convergent: 

A sequence is convergcm if and only if it is a Cauchy sequence. 

·---------·------------· 

------i 
i : 
I 

Proof: To prove the "ouly if" part, suppose that { xk} converges ro x. Given ,. "> 0, choose 

a namral number N such that lxt. - xi < si2 for all k > N. Then fork > N and m > N, 

Therefore lxt J is a Cauchy ~equence. 
To prove the "if' part, suppose lxt J is a Cauchy sequence. We first show that the stqucnce 

is bounded. BytheCau,·hy property, there is a number .'1-f such that lx;-xMI < J fork > M. 
This means that all point.~ x, with k > _/11 have a distance from xM 1har is less than 1 . 
Mon:ovcr, th~ finite set {.t1, xz, ... , X,t,t-J J is s,rrely boumled. Hence, {x.} i~ hounded. 

By Theorem .4.. 3 .4, Lht:refore. the sequence {.-ct} has a convergent s11bsc..1m~nce { xk,). Let 

x = Jim; xt,. Bccau&e f:rkl i~ a Cauchy sequence, for every i; > 0 there i, a namral 11un1ber 

N such that lx, - -'"m I <. r /2 for n > N and m > N. Moreover, if J is sufficiently large, 

lx~
1 

- xi < c-,/2 for all j > J. Then fork > N and j > 1nax(N. JJ, 

Hc:nc:e., Xk ···• x a~ k ·-> e<.~. • 
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;XAMPLE 3 
I I l I. 

Prove chat the sequ~nce \-t~} wid1 th~. general tenn Xt ::c. --:, + --,, + -~ + · · · + --. is a 
)- 2• 3• k' 

Cauchy sequence. 

Solution: Lctn and m. be oactiral numbers with m > n, and deline p = m - n. 111cn 

. . 1 1 l 
l.x., -x.[ = ,.x.,.,,,. - x.,, = (n + 1)2 + (n + 2)2 + · · · + (n + Pi 

I I 1 
~ ---+ -·-----··-- + ... + -------·-

n(11 + I) (11 + 1)(11 + 2) (n + p - l)(n + p) 

= G -;; : i) + C ~- 1 - n ! 2) + · .. + C + : ·- I - n 1 p) 
l I l 

=----<-
n n+p 11 

·nms, for any e > 0, if we choose n > 1/e. then Jx,. - .x,. I < .s for all m > n. This proves 
that {xt I is a Cauchy sequence. I 

NOTE 2 Toe infinite series r:;:1 Xn is said to converge if the sequence fsk} of partial sums 
st = x1 + x1 + · · · + Xk is convergent. lt follows from the previous example and Theorem 
A.3 .5 that the infinite ~cries 

oo I 

I::,1= 
n.=.1 

is convergent. In fact, one can prov.: that this infinite ste.ries converges to rc1 /6. 

Upper and Lower Limits 

Let {.xI} be a st:quence that is bounded above, and define Yn = ~up{xk : k::: n} forn = 1, 2, 
. . . • Each Yn is a finite numb0r and {y,.J. i~ a decreasing st:tJUence. Then lim ...... oc y. is 
either finite or is -oo. We call thi~ limit the upper limit (or lim sup) of the sequence {xi}, 

and we in!roduce the following notation: 

limsupxt = lim (,up{XA : k,:: 11)) 
l~t'.'IC> ,r-:i,:) 

(3) 

lf lxk} is not bounded above, we write Jim sup~-"" xk :.:= oo. 

Similarly, if fxA I is t>oundcd below. iL~ lower limit (or lim inf), is ddined as 

liminh. = lim (inff..i:A : k;:: n}) 
/c--ev r.-cx: 

(4) 

If {xk} i.s not hounJl'd hd,lw, we write Jim uu, . ..,00 Xi: = --,Jo. The ~ymbols lint sup and 

lim inf are ofr.eu written as li.m and lim. 
The fnlk,wing characteriialion of Jim i.s often u~cful: 

F 
I
,·.: 

·.· 

' 
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Let [xA:] he a sequent·e ,lf real numbers and h* a (fi11itc) real number. Then 
limk ,,00 X.t ""b* if and only if the follov.ing two conditions :u:e satisfir:d: 

(a) For every P- > 0 there. exists an integer N such that .t; < b• + r. for all 
k > N. .• 

(b) For every t > 0 and every integer ,',,f. there exists an integer k > M such 
thatxt > b* - t. 
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(5) 

-··-··---·····-·-.. -----··---------· ..... ·-----·-·---~-,.-.. - ...... -............................ --..-......... --~-.-·-··- ... ~ ..... -........ ~,, 

E AMPtE 4 

NOT£ 3 A 8imilar chara.:teri1_ation holds for lim. Noie that condition (a) means that ul­

timately all !<!rms of the sequence lie to the left of b* + e on the real line. Condition (b) 
means that for any. > 0, however small, infinitely many terms lie to the right of b* - £. 

Determine the lim and liru of the follovting sequences: 

1 
(b) {xd=f(-1/(2+ 1)+1\ 

Solution: la) For every n there exists a numh<--r k c: n with ( - I )k == I. Hence Yn = 
sup[(-tl: k ~ 11} = l,andsolim0 _.00 y,."" I. Ttiuslimk-,oeXk = L Inthe~ameway 
we see that .l!!lli ..... 00 x* = -J. 

(b) Arguments similar to th(lse in (a) yield: lim;. ..... x.Xi. = 3, li!fu:_
00

xt = -1. 

lt is not difficult 10 sec thal.lim.;~"" Xk ::: lim.1;_.00 1-. for every sequence {xt }. The following 
result is also rather easy and we leave the proof to the reader: 

If the sequence {:q) is 0onvergcnt, then 

lim Xk = lim Xk = lim Xk 
ic-.,.. .• 'C k-+r.x.: k-~·X· 

Conversely, if li.m Xk = Jim xk and both are finite, then {xk} is convcrgmt. 
A: .. ~00 k->00 

i . ·---··--····--.......... -·- ....... -·--~--~---... ----.... ~ ......... , __________ ...._ ..... _ ................................ ,. .. -.............. ~-

1. Prt•vi, lhal the sequence (xd deti11ed hy 

.x, ,~, I, -'• •·L = 2../:ti, k '"· I, 2, ... 

converge~. ~nd lind its limit. (llim: Prov~ fir~t by induction that XA < 4 for all k :, 

2. P.-ove that for the sequence \x,J irt fa~mple 2, 111.,., - 21 < 4!.r, - ?.I, lL~d use this to 1n·ove 
th"I x, ~ 2 ask ~ :xi. (llin1: ..r,.;., - 2 = (xf,1 - 4)i(x, ,1 ·t· 2).) 
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3: Let S Ix, a no1wmpty sc,t of real numbers b<>unded above. ~n,l ](lt b" = s,1p S. Show that then: 
eidsts a se<1u~,r.ce {.t.}, x0 E .S, such Iba!. x0 --+ b·. (Hiiu: Set '1nm. A.2. l .) 

@ 4. l'i nd all possible li.mit~ of subsc1111<:occ.s of the two sequenc~s define(! by 

Xl ·.,. I - 1/k + (-!)'. v., = (1 + \/k)s:n(kn/3) 

~ 5. (a) Consider the two .se.:iuences with general tcm1~ x, = iO + (-l)'). Yl " ~ (l - ( -Ilk). 

Compote lim, ··0<• and !l!!!.-x of {xk}, (.<.I, Ix, + Y• I· .md f.rly_d. 

(b) Pmvethatiftwo sequences f.rtl on,! {Ytl are h,Junded, then 

(i) Jim (xi+ Yt) :5 lion X• .._ lim _v, 
!~,x, ,: ..... :o A-•O(.' 

(ii} lim (:t,}'t) :5 Jim .Xt • ifm Yt ifxt :;:_ 0 and .Vk 2:. 0 foe all k 
!-<.¥.I i-+OO t-x 

Note that the examples in (a) show that the inequality sign~ :S in (i) a11d (ii) cmu1ot be 
replacc<l by equals signs. 

@6. Let lx,J be a sc,1ucncc such chat 1-<l+t - x•I < 1/?.I for allk == I, 2, .... Pcose that {x1J is a 
Cauchy sequence. 

7. Prove tbatlf jx,J conve~<e• to both randy. then x :.. y. 

HARDER PROBLEMS 

8. Considerrhe lwo seque.nces (a.} "nd /b0 ) defined by 

a.=ll+lin)", 

{a) Show that a1 < ,12 < a3 < ,...., and 1hat 1,1 > b2 ~- b~ > i>J. 

(b) Use induction to prove Bemo1'11i ·s inequ.,1/iry. 

n "" 1,2, ... 

!_I + x)" :.~ 1 + nx for x 2: -I and n :..:, I. 2. 3, ... 

Show ab,i that for " > I e.:iuality holds only for x = 0. 

(c) Letx ,.,·. ···1/n2 intheine<\Uali1.yin(b)aodm01ltiplyby(11/(n-l))". Deducethata0 > a •.. 1• 

so {a. J is strictly increa~ing. 

(d) u;!x = li(n2-1)intheine.qualityi11(b),aodshow1h:.t(l+l/(n1-l))" > l+ni(n=-t) > 
I+ 1/n. Thc11 multiplyhy (I+ If n)"° and showthm bn < b,, .. 1• gl) (b. \ is strictly decrea~ing. 

(e) Of course. a ..• < b. for all n. E.\pl:,iu why the results in (c) and (d) show Ihm {a.,) and (b,, \ 
horh conve.-ge. Because b,, = <1,(! + 1/n), the cwo ~equences have the same limit The 
commm11.imi1 is e, and st• (I + l/11)'- -.: " -.: (I+ l./n)"H for all n. For 11 ,.,, 100, we. get 
2.704& -c. e < 2.7-il9. As you surely kllow, the irratiMal numbere "'" 2.71&281R28 is one 
of 1:hc m(JS[ i1111ionam numbe-rs in ru>11hemari..:s. 

9. Pnwe \ru,\ cv;,cy s•"J"<'a.:c , ,f real uurnher~ has a cnon,,r.(,nc subscquenC<'-

I 
r 
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A.4 lnfimum and Supremum of Functions 
Suppose that f(ir.) is defined for all i.: in B, where 8 <;::IR". Using (A.2.2) a11d (A.2 . .l). we 

defin~. the infimum and supremum of the function j over H a, 

inf /(x) -- iti!lf (x): x E IJ }, 
'1.f:8 

sup f(x) ""supj /(x): x EB l 
,.;B 

(l) 

Lcr. ftx) = e·• bcdefin~dovec B = (-·oc,oo). hndinfx .. B f(x) and sup,,c8 J(x). 

Solution: The range of f(x) i, the interval (0, oc). Therefore inf,;;b' /Ct) :::. 0, while: 

sup~d, /(.~) = oo. I 

Example l illustrates an impor[ant point: inCc.s /(x) = 0, bui for no number xis /(x.) ~ 

e-x = 0. 
If a function f is deti.Jled over a set B, if in.fx,e /(x) :o- y, and if lhere exists a c in 8 

such that j(c) == y, then wt, say that tbe infirnum is attained (at lhe point c) in ff. ln this 
case the inlinmm y is called the minimum off o~er B, and we often write min in~tead 

of illf. In the sum<'· way we \\'lite max instead of sup when the supremum off over 8 is 

attained in 8, and ~n becomes the maximum. 
The following properties are sometime-~ useful. If the infimum and/or supremum value 

is attained. inf and sup can be replac!!d by min and max, respectively. 

('1) sup(-f(x)) = -inf f(x) (b) inf(-f(x)) = -supf(x) (2) 
xE:l? r.~B xr:H xe:.E 

inf {I(x) + g(ri:)) ~- inf J(x) + inf x(x) 
Yl:.B xr_B 1'.~R 

sup(f(x) + g(x)) ~ sup /(x) + sup g(x) 
:s.~l:I xf:JI 1,:B 

inf(.1.f(x)) = .i.. inf f(x) (i.. is apo~ilivcreal number) 
xi::B X'C:D 

sup(i.j(i,:)) ""J...sup f(x) 0 is a positive real nun1bcr) 
xe!J JCt:R 

Property (2)(a) is illustrated in Fig. l. 

(3) 

(4) 

(5) 

(6) 

Consider the inequality signs in (3) and ( 4 ). If f (x) = x and g (x) = - x in (0. l ]. then 

inff(x) = 0 and inf g(x) = -I, whereas inf(f(x) + g(x)) = infO '"' 0. In this ca.se 

i.nfif(x) + K(x)) ""0 > inf f(.t) + inf g(x) = -1. Tiu~ i~ illustrated in Fig. 2. 

y 

l-.........._!_l•) 
a~------- ---.... , ___ _ 

-t;a, ............... ·:..-..,~·.·=~, --::f{,t) 
; 

Figure 1 ~up(·-f(x)) ·,=····inf f(;,) = -fl. Figure 2 inf fC.,)"" 0, inf gix) = -1. 
inf(.f(x) ... g(x)) •~· U. 
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Wt: prove only (4): If sup f (x) or sup K(X) is oo, then the inequality is surely satisfied. 
Suppose then that sup f(x) = p and sup g(1') "" q. where p and q arc both finite numbers. 
Iu particular, /(x) ~ pandg(x) :=: q forallxinB,so /(x) +g(x) ~ p+q foraJh:in B. 

Bur lhcn sup(f(x) + g(x)) .5 p + 11 = sup f (x) + sup g(x). which proves (4). 
If f (X. y) is s function defined on a Carte.,sian product A x B, then 

sup /(x, y) = sup(sup /(x. y)) 
(.ll.Y)<'A> ll <€A yE/J 

(7) 

Thi~ equality expresses a. very important fact: One way to find the supremum of /(x, y) 
over the ~ct A x Bis as follows: Fin.I find the supremum SUPy /(x, y) off (x, y) for each 
givc:::n x as y varies over B. This supremum is a function ofx, and we take the supremurn of 
this function as x runs through A. 

The equality in (7) is also valid if sup is replaced by max, provided that the relevant 
suprema ~ attained, so that the maxim.um values exist. 

Proof of (7}: Let p = sup{x,rJ<-..t:xo f(x,y) and q = SUPxeA(supy,D /(x,y)). Then 
f (x. y) ~ p for all x in A and yin B, so sup1~8 /(x, y) ~ p for all x in A. It follows that 
q = sup,.EA(sup~EB /(x, y)) ~ p. Similarly, note Iha! 

f (x, y) .:,: sup f (x, y) ~ sup(&up f (x, y)) ;; q 
y-o.B •EA JEB 

for all x in A and ally in B, sop= sup(3 ,y)axB f(x. Y) :0: q. • 
For infima, the vhviou.~ aoalogue of (7) is 

inf /(x, y) = inf { inf /(x. y) I 
(l,y)EA>d1 ,ell yeB 

(8) 

The result in (7) can be gcnera:lizc::d. Let f(;r;, y) be a real-valued function defined for all x 
in A.yin B (nol nece~~arily .sub&ets of Euclidean spaces), where A and Bare give.n sets, 
aad let C be a subset of A x B. Then 

sup f(x.y) = sup(sup f(x,y)) 
(•.y)EC xtc.:0 y,c, 

(9) 

where Co= (x EA: (x. y) E: C foratleastoneyinB) and C, = {y EB; (x, y) EC). 
TI1c proof is an easy modification of the proof of (7). The result is important for the theory 
1)f dynamic programming, discussed in Chapter 12. 

On lim inf and lim sup of Functions 
This s,.-ctio11 con~:lu<lc,; by defining some limit concept.< tb;tt are needed in co1U1ection with infinicc 
hori:r,m dynamic economic mode ls. TI,cy also help to understand the deft11itions of upper and low.;r 
h-,micontim,ous corre.spondencc., lr1 Section J 4. l. 

Recall first the standard dcfioili.oo of" limit of a function of several vari..blcs: Let f be a function 
defined on a set M ill R". an<i suppose that x0 <i d(M), the o.:losure of M. We say that f('/C) 
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converges w !he number A as x r.:nds to x0• if for c,ach i: > 0, chere exisL~ a number~ > 0 ~t1ch that 
llf(x)- f(x0)tl < .dor all ,rin M wirh x t, ti ar,d lix - x0 !1 < &. 

!>iext we ilefine the. upp;,r ,mJ lower limits nf f •t xo as 

lim inf /(x) = lim(inf{f(x): x E. B(x0; r} n M. x,;,. x0 I) 
, ..... :.0 ... ,~o , 

lim sup f(x);; lim(sup{f(x):" .;; B(x0; r) n M. "~ x0 }} -"" ~~ . 

tlO) 

Ul) 

Just as for ~equcnC(.>s, we often w-rire Ml!! and lim for Jim inf and lim sup. Wilh these definitions we 
obtain the fo(lowing rule.~. which are based ou die corrcsJJOnding rules for inf and sup: 

lim (f(x.) + g(x)),:: !im /(x) + lim g(x) (iHhc right-hand side is defined) (12) 
.. _..0 ,. . .,.SU r_.,'I 

Jim (f(x) +g(x)) ~ iim /(x)+ liru g(x) (ifrheright-handsideisdefincd) (13) 
s--,.aO 1:-,.~ 1:~.0 

Jim /(x) ::": lim /(x). Jim. /(x) = - lim (-/)(x). limJ(x) = - Jim (-/)(x) (14) 
,.....,1 o'J r-'J!J 1 •• 10 l'-rD i:~1 ~-"o 

Note rhac if lim,_._o f (x) exists al a poinn°, then Jim.,_,. f (1'} ""lim_._,.o /(x)"" lim.,..,.o f(x). 
Conversely. if lY!k.,o f(x) = ~-," f (x), then lim, ... r> /(x) exiscs and is equal ro bo1b. 

A function"/ is called upper semicootinnous al a point x0 in M if lim.-,.G f(x):;; /(xo). The 
function f is called lower semkontinuotLs at x0 if lY!k-~z" /(x) ?.: /(x0). This defi11i1ion allows a 
gcncralizalion of the eJtlfemc value theorem wbich says chal, if K. S R" is a none111p1y compact set. 
and if the function f is upper semicontinuous, tbe f bas a maximum poioc in the se1 K. ff f i~ lower 
seroicontinuous, the f bas a mlnimum point in K. 
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God Cff111r~d the integP.rs, <1// eise is the work of man. 

--t. Kror,ecke: 

M any phenomen;i appear tc repeat themselves with predictable regularity. Examples are 
alternat,ng electric currents in physics, heartbeat and respiration in physiology, and sea­

sonal variations in economics such as increased dem,md for heating fuel and warm clothing 
in winter. as opposed to air-conditioning and cool clothing in summer. Many econornisb ha~e 
also looked for regular periodic patterns in macroeconomic variables like national output or in­

terest rates. To de$c:.ribe such phenomena mathematically. one possibility is to use ttigonometric 

function~, which are briefly reviewed in Sections B.1 and B.2. The final Section B.3 gives a brief 

introduction to complex numbers. 

8.1 Basic Definitions and Results 
Consider tl:le circle in fig. 1 with radius l and centre ai the origin in the uv-planc. 

'-: .. l', = (u. 1•) 
1J ----~-

/ /i '\x 
f i i \ +-- ---:-/ : ¥-
\ o! " f A=(J,O) 

~- 1 / __ -t-__.,/ 

Figure 1 sin x = ,; a11d cos x = u 

Let A bt! the. poinl Oil the circlt: with coordinates (1, 0), and lei P., b,; the pninl Oil the circle 

for which the arc length h<-tween A and T'.. i.s x. The: point A i~ l'o, of course. 
The arc x i~ measi1ml with the same unit of length as the radius. Because tbt~ radiu, of 

tile circle. is r:::: I, the circuatf<,,:cll(·c equals 271'r ""2:r. Jf :x = rr/2, we go one-quarter 
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of the way rounJ the circle in an a.t1tidockwise directi<.>n tQ arrive at the. point P,,p., which 
has coordinate~ (14, t!) = (0. 1). For P.~. we go halfway round t.o the point with coordinates 
(u, u) ::-..: (-1, O); for P3,.-12, we get (11, v) = (0, -1 ); for Po= P2., we have (u, 1,)'"" (l. O}; 
and soon. f<)r!hepoiat P., shown in Fig. J., wberex ~" I .1, we have u ~ 0.45 and v ""0.9. 
If x is negative, we go a distance - x cloclcwi.se around the circle. 

In general, as x increases, P., moves round the wtit circle, and the values of u and v 
o~cillatc tip and down. They repeat themselves as P, passes through points where ii has 
been before. In particular. x, x ± 2ir, x ± 4.rr. and so on, all. define the same point Oil the 
circle. Thus, P,. "' l'x.~z.r. for n =±I, :!~2, .... lbis procedure maps each real number x 
to a point P, with coordinates (1,. v). 

The sine function is the rule that maps x to the number v. 

The cosine function is the rule that maps .r to the number u. 

It is $tandard to abbreviate sine to ~n and cnsine to cos. So, referring to Fig. l, we have 

Sin.X = V and cosx a;; u (1) 

The circle in Fig. l has the equation 112 + vZ = I. This implies the important relationship: 

(sinx)2 + (cosx)2 = l (2) 

The domaitis of the functions sin and cos arc che set of all real numbers. The range of each 
is the closed interval [ - 1, I]. Nore also that a small change in x will change the point P, 
only slightly, so the coordinates u and v will also change only slightly, and v = sin x and 
u = cos x are bot11 continuous functions vf x, (In fact, from Fig. 1, we sec that a given 
change in x causes changes in u and v that arc smaller in absolute value.) 

If xis any number such that cos .r '/, 0, we define the tangent fum:tion by simply dividing 
sin x by cosx. ll is standard to abbreviate tangem to tan. so that 

sinx 
uw.x;; -­

CO~l'. 
(provided that cos x ,fa 0) (3) 

The cotangent function. abbreviated cot. is defined by cot-~ "" cos x / sin x, for all x with 
sin x ,/ 0. It is clear that col x = l / tan x when tan x and cot x are both defitied. 

Note that it is common pta~1ice to write sin1 x for (sin x)2, co,2 x for (cosx)2, and tan2 x 
for ( tan x J2. Similar notation is also useJ for higher powers of the trigonometric functions. 
For example, cos~ x = (cos x )3. 

Measuring Angles in Radians 

In trigonometry. it is conunon lo define the siue, cosine, and ta.ugl,111 a< function& of the 
angle, wh.ichis often measured in degrees. Figure l snows how tfie arc length x can he used 
instead to me,tsure the angle AO P.,. Then it is said that the angle: is m.:asured in radians. 

In elementary geometry it is common practice to operac~ with cle.grees, so one lllllSl know 
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how to convert degrees into radians and vice versa. fn fad. 360° :::.: 2ir radiaus because 
when x ,,,. 2ir, the line. O P:x has rmated through 360°. So we have the following: 

IO = (.!!._)radians"" 0.017 radian.<, 
180 .• (

180)" 1 rndian = -;- ~ 57 .3° (4) 

Figure 2 illustrates some panicularly important angles mea~ured in both degrees aud radians. 

90'' 

,. /--;/2 ~", n -t 
135/.i_. .or/3 .5 ,,. - Ii\ 

I 3!/'/4 / :t/4 30c ( t...;.\ 
I ~ ~/ _,.T/6 ! f<u, 11) ~O"fJo<\ I I ,.-- I ; I ,, /·' ' 

i £./"' 'I ,.. F x=,r/6 I/ : \I 
!80''L,t-·----- '---····0-10" J , -<30" : ) I ::: \, 

\ ) i\--···t ·~!~__;j I : , 
\_ / \ : / 160• ch 6006 ~ 3;t/2 .,,,. ~ :~ .,. t/2 1/l 
~ ·--·--

figure 2 Figure 3 Figure 4 

The degree scale for measuring angles is built on an arbitrary choice of unit in that the 
complete circle is divided into 360°. This corresponds to the ancicllt Babylonian calenc:la. 
that divided the year into 360 days. From a mathematical point of view, the r.idian scale is 
the most natutal one for measuring angles. The reason is that calculus formulas are simpler 
when angles are measured in radians rather than in degrees. 

Th~.re is no method for finding exact numerical values of the trigonometlic functions 
in the general case. Programs to calculate numerical approximations arc available on most 
calculators. 

For certain special values of x, however, we can compute sin x and cos .r exactly by 
using elementary geometry. Consider Fig. 3. Here we have cho.scn .r = Jr /6. Then angle 
BOP is 30°, and triangle 'ti OP is half an equilateral triangle, as Fig. 4 ~hows moTe clear.ly. 

So in Fio. 3 the length of PB is ,L Bv Pylhagoras theorem, ( 0 B)2 = ( 0 Pi2 - (B P)2 =< 
e, , 4. "' 1 M l 

I - ! = i, and so OB = ! ./3. Tbe coordinates of P arc therefore " = 2 v 3 and v = 2 · 
Hence. 

]( I ~ 
tan - ""-,/3 

6 3 
Similar geometric considerations establish the other entries in Table 1. 

r-··1 ' i i I -,----·-~~ f---1 
l X ·, 0 ;%~3cl''fi=45" j=(«[;=90''j~fuJ35'' ""-ISO'• T~270"'2:r=360"] 
L.sc., • .... _.,_; ...... ,. =, .. .' .. , ..... .. I - .. , . .... , ~"'"'"·'··" .. ·••• =·~"'==~~,j 

~htx O ! 1 !~~~ ~--/~,' 1 ~ !.J~ 0 ,..,i O ; ·~:;; ·-;· lT;:;· . ·1-;r · . ..:? __ : .... J!~. .::1- l ......... ~--· .... ·-··i---.. -1 
.... ~.=- -·~ L_ }./3 ./3 -1 o _L ..... ~.. . 
• N"t defmeJ. 

Table 1 Spcd<1l va·Jucs ot th" i:rigor.orncrric nmctimis 
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Graphs of the Trigonometric Functions 

By d.etinition of the point /\ in Fig. I. one h:i.< /'JC·F2,r "" P., for all x, and 1.h.:rcforc 

sin(x-!-211') = siu.x, cos(x + 2;r) = cos x (5) 

We say that the functions sin and t·os are periodic with pc.-iod 21r. Also (sc-, Problem 5), 

tan(x + .rr) "·' tan.x (6) 

so the tangent function is peric>dic wiEh period 11'. 

We noEed b.!forc chat the range& of ~in and cos an: the interval 1-1, 1 J. so 

--1 ~ sinx ~ 1, -1 ~ cosx :::'. I 

The graph~ of sin and cos are showo in Fig. 5. The cosine curve can be obtained by translating 
the ~i.ne curve ,r /2 units to the left. lbis follows from the fint of the following formufa5: 

sin(x + :,r /2) = cos x. cos(x + 11'/2) = - sinx (7) 

(To prove thes~ formulas, us<!- Problem 4 and formula (8).) 
y 

Figure S 

The graph of the tangent function is shov.11 in Fig. 6. Noreth3t its value is positive iffthe &ine 
andcosincfunctionshavethesanu:sign. Also, by (3), taux is uudetined whcnx = !Jl' +n:r 
for an integer n, hccau&e then cos x "" 0. 

/: I . 

( 
Figure 6 

' ' ' 
' 
' ' 
' 

l;r~ .< 
/; 
/• 

i ~ 
I : 
I . 

I 
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Trigonometric Formulas 
Thc:rc is a plerhora of oigonomctri.c formulas that have pestered high school ~tudents (am.J 
their parcn(s) for gencratiQns. Ncv<:rlltckss, the following formula is particularly t1seful.: 

.- cos(.r + y} = cos x co~ y - sin x sin y (8) 

(For a proof. see Problclll 13.) By u~illg this basic equation, similar fommlas for cos(~ ·•· y), 
simx + y), and sin(:t - y) are 4uite ea.,y Lo prove (sc:e Problems 3 anJ 4). 

Transformed Trigonometric Functions 
We have discussed soine important propertie~ of the three basic trigonometric functions: sin, 
cos, and tan. In economics, !.hey arc ma.inly used in connection with periodic phenomena. 
LI sually transformations of the functions must be used. 

So far we have seen th.1.E y "" sin x is periodic with period 2;r. The graph of the function 
shows a wavelike curv<? that is said to have period (or wavelength) 2.lf. Tf. instead, we 
represent graphically the function !,<iven by y = sin(.x/2), we still get a wavelike Cllf\'"• but 
the period is now cwice :is long. nar.nely 4rr. The reason is thal when x i.ncrea~es from xo to 
x,:, + 4n, then x /2 increases from x,1/2 to xo/2 + 2:r, so sin(x /2) is periodic with period 4;r. 
More generally, y = sin(ax) is periodic witb period 2;r /a, b<'.causc as x increases hy 2.,,: /a.. 
so ax increases by 2:r. The valuo, of y = sin(a.x) will still oscilla1e between-1 and!, and 
we: say that the amplitude is equal to l. To get a periodic function with amplitude .4., jusE 

put y = A sin ax, which varies between -A and A. Hence, 

y = Asin(ax) has period 2rr/a and amplitude A 

The re.:iprocal, a/2n. of the period is called the frequency. It i5 the number of oscillation,~ 
per radial'. 

Figure 7 

The graph of y = ,1 sin(ax) i11tcrsec15 th.: x-axis at .t ,.,_ 0. 'fo get a curve, Lrnnslat,·d in the: 
x·<lirectinn, let y ,,.- A sin(a.r +b). To get a curve thar is also translated in rhe .Y·direction, lo,t 

y = .. ~sin(tu +b) + B (9) 

Th,~ graph c>fthis function is a si11c curve with amplirudc 1\ imd period 2;r/a. JI is obtained 
by 1I,u1slati11g the graph nf y ,,- A sin(ax) a di.<;ta.oce -/,fa in the x-dinxtion and a distance. 
ti in the y·<lircction. See Fig. 7 (in whicb a > 0 and b < 0). 



;so AP PFN D!X B I TRIGO NOM t 1"R IC F lJ NC TiONS 
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1 . Use a diagram like Hg. 3 to verify the values in Tobie I for x = ,r /4. 

2. Vctifythatfor:illx: {a) ~in(-x) = -sin.x (b) .:os(-x) =Cos., (c) tan(-x)" ·--tanx 

3. Write cos(x - y) =cos[.,+ (--yJ], then 1Lse the results in (8J and Pn)l,lcm 2 to verify that 

COS(X - y) = cos X C(}S y + sill X siny (to) 

@ 4. Show thare<:,s(y-n/2) ,,,. sin y. t'rom tlri,. itfoJJ.ow&tharsin(y-;r/2) = co-s!y-,r) = - cosy. 
Then let sin(x + y) = cos(x + (y - ;r /2)] and so prove that 

siu(x + y) = sinx cosy+ cosx siny. sin(.t - ;v) = sin x cosy - cos x siny 

5. Use !he resuUs in Problems 3 and 4 to prove (6) and (7). 

@ 6. Find the following values: 

(a} sin(;T - ,r /6) 

(d) .:os(5,r /4) 

(h) cos(.rr + ,r i6) 

(e) tan(i,1'i6) 

@ 7. Simplify the following expn:ssions: 

(a) .JI sin(x +- ~;r) - cos x 
si11[,r - (a+ Pl] 

(b) ;;;~u;,-=-ca + 11) 1 

(c) ~in(-3,r/4) 

(f) sin(;r i 12) 

sin(a + x)- sin(a - x) 
(C) cos(a + x) -·°c(,s(u - .r) 

@ 8. Prove that sin A - sin B = 2 cos ~ sin A 2 B . (Him: Puc ., + y = A and x - y = B in 

the cwu fonnulas in Problem 4, then 8ub1rnct.) 

9. Prove trnil for all real numhe.-s x and y, sin(x + y) sin(x - y) = sin2 x - sin2 y. 

1 O. Draw die i;raphs of the following functions. Then give thdr periods and amplirnde~. 

(a) f(x} = sin(::?x) (h) f?(X)"' 3 sin(.ti2) {C} h(x) = '.! sin(Jx + 4) + 2 

11 . Explain why the following, functions represent an oscillation tha! dies out and an oscillation lhat 
explodes, respective!). in) f(x) = (1/2)¥ sinx (b)g(x) = 2' co~2., 

@,!) 1 2. Find the functions whose graphs are shown in Figs. a to c. In fig. c th<, dashed curves have the 
C\iuatfons y :::. ±2e .. •/'! ... 
y 

Figure a 

y 

3t t (\ zt\---1 .\. ·-r···\ . I I I \ 
:l \J \) \_ 

figure b Figure t 
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@ 13. In the ligurc t>dow, the coordinates of the im:licalcd points lying uu we u11it circle. are A =•· 
(ms y. - sin y), B =• (1. 0), C "· (co~x, sir1 x). and))= (cos(x + y), sin(x + y)). Since the 
line. :,egmt:nr~ .1C and B D both suh1.end rhc ungk x + y :11 the origin, they mu~t have the ,ame 
lengcli. Use this foci 1ogether with l 2) L<J J)l'Ove the. formula for co~(x + y) in (8). 

~ 

_.,..----t--- D 

// 
I 

B.2 Differer:itiating Trigonometric Functions 

EX MPLE 1 

Consider the graph of the sine function in Fig B.l.5. Th~ slope of the gJaph of f(x) = sin x 

at x == 0 seems Lo be 1, as is the value of cos .l' at x = 0. Al&o the slope at x = ,r /2 is 0, 
as is cos rr /2. It is periodic, so its derivative must also be periuilic. Thi~ helps e.xplain the 
following, which can be demonstrated along thi, lines suggesied in Problem 12: 

y ==-sinx => y' =cn~x (1) 

1f u is a function of x, the chain nilc for difforentiatiou gives 

y = siu u, u = u(.x) => y' = 1/ cosu (2) 

Let g(x) == cosx. AccordiDg 10 (B.1.7), we have g(x) = sin(x + ni2), so (2) yields 

g'(x) = cos(x + rr/2). Butco&(r + ;r /2) = -sin.x. Hence. 

y == cosx => y' = •· sinx 

Tue quo1icn1 rule for differi:ntiating '!< = tanx ""sin x/ co~x gives (see Pl'oblem 2) 

, I • y=tanx => y =--------- =l+tan·x 
cos2 x 

(providtd that cosx I 0) 

(3) 

(4) 

Combining these ntlcs of differentiation with those dc,vcloped ~arlier allows u~ to differen­

tiate many cxpre.,sion~ involving trigonometric fun.:tions. 

Differentiate the following functions: 

(a) y "" sin 2x (b) y = SirJ
2 

X + C()s2 X 

Solution: 

slnx 
(c) ,•= ---· 

' cosx+x 

(a) T:se (2) with u ,.-,. h Lo o"tain y' = 2 co~ u :.:c 2 cos 2x. 

(d) _y = e"' si11 bx 
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(b) y "' (sinxf ·r tcosx)2 -,-;. y' = 2(sillx) cos.t + 2(cosx)(-sinx)"' U. (Note th.at. 

y' =" 0, so that y must be constant. Since y ,., l when x "" 0, this consmnt IllllSt bce L 
H cncc, w,· !\:discover the relation sin 2 x + cosZ x "" J.) 

(c) U,:;e the quot.ient rule for differentiation to obtain 

(<·.osx + x) cosx -sinx(-sinx-;- l) y'"" ..:.._ ___ .:_ ____ ....,..:. ___ _ 
(cosx+x)1 

cos' X + .t cos X + sit? X - sin .r I + X C()S X - sin X 

••· (co.sx + x)2 -· · -(~osx + x)2 

(d) The product mle )ielcis y' ""a~a.x sin bx + e"'b cos bx= e"' (a sin bx+ b co& bx). 

Inverse Trigonometric Functions 
Fiiurc I illustntl<'s th<, prublcrn of &olving 1hc equation 

~in.c = :v (5) 

to, x. Uy> 1 or y <. -1. the equation sin., = y ha~ no ~olution, whereas it bas infinitely m.wy 
&olucion& if y E [-1. lJ. 

However, suppose we r,;quirc llia.t x E [-,r/2, ir/2]. In 1his interval, .~inx is &trictly incre.\sing 
(because (sinxY =OOSx > Oin (-;ri2,rr/2)J. 

y 

((x) ~ oinx 

..... ..,.,- - - - - ·- - ...... y /.-~<~,. ---/-·· 
~;,'.'-. -~ -/ ... • -4~ . \,"' ·_-·_·~-· ___ ;;;=~ X 

'·--·· _ •• ,,,/ "' r 

Figure 1 

So equatfou (5) h.ts a uni<JU" solution .t i11 Ibis int.:rval for e,1cb yin [- J, l). We tknote this solutioll 
by x ~, t\rcsin y. According lo stand~rd t~,nninology we have sht)wn !hat 1.hc func.cion f (.t) ,. , sin x, 
with domain I-· J'l" /2. !l /2J anJ rJJ1gc L -1, l ], has an inven;c function g. We call this inverse the. 
arcsine function. lf we use x as !he free variable. 

g(x) = an;sin.t, X C [-), l] (6) 

By definition, arcsinx is that numbe, in [-;r /2. lf/2] whose si,:e is equal to x (arc&in xis "the angle 
(arc) whose ~ine isx"J. For iru.tance., we have arcsin li2 = Ri6. The graph of y = arcsin xis shown 
in Fig. 2. Since the functions sin and arc~in ate inverse.s of i:;tch olhcr, the !,'T.tph~ of y = sin.>: and 
y '°' a.-cs.in x are s}inmeo-ic ahout me line y =" x. 

The dcriva£i\'e of g!x) .-,. arcsin x is mos! easily found by implicit t.lifterentiation. from the 
,tctini1io11 <•f g(x ), i: follows tliat &in g(.() ,., .. x for all x <=. (···I, l), lf we. assume £ha I g (x) is dilfor­
cn1.iablc, <1if(ercn1i~Cit1g 11sing 1he chain ntle gives [.:os g(x)] · g'U) ". 1. So g'(x) = 1/ cosg(x) = 
1/,il - sin' g(x.l = I/-,il.--x1 . Thus, 

y '" arrsinx =:, • 
1 

y = JI:_ xi (-1 < X < \) C7) 
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Ti. can bt: shown in the same way that. y 
y = arccos x defined or. [ -1, l \. ruid tl\at. 

c,os X defincJ on ro. ;r I ha.< an im-o:rse function 

. r 
y ... : aicc,,sx ::-.,. }'' = -·:}T:_:~·i (-l<x<I} (8) 

Consider, finally. y = ta11./defin.;d in the i11tcf'al (-;r /2, ,r /2). B,:,:ause y' = l / cos
2 

.1: ~- 0, the 
functi11n is strictly incrc:lSing, am! the rnr,gc is t-oc. co). The function, therefore, has an ioverse 
fwlcticm v -~ arc.tanx tha: is defined in (-exl, oc) :mJ has range (-,r/2. ,r(2.). Using im1llicit 
ditkrcnt.i~tio11 ~gain, this 1.ime in the cqu~tic>n tan y =• .1: (so tha, y ,.= arc1a11x), one ob1ai.11s 

y = arcwnx s.~ y = 
1

...._x~ 

The graph of y = arcw1 x is &hown in Fig. 3. 

·'' }J v ~ arc~inx 
-1 ;· 

,/ ~..,- - y ...;. ~in.'( 
// 

'/' ~--,_J ___ ,,i-x 
.. /1 

.--; ! 
--·-· 1 I 

! ~-i 
Figure 2 

(-x <. x < oo) (9) 

Figure 3 

Calculator~ that have lrigooomc1ric functions usually also have their inv~rses. They 
arc denoted bv sin-l, cos···!, and 1.an···t. If one enters 0.5 and presses the. Wrl key, 
the! answer is -30. because the calcu):uor often uses degrees. If radian.~ are used, th~ 

calculator will givce the- an~wcr rr /6. or rather 0.523598776. 

An Important Limit 
TI1c derivative off (:x:) = sinx is the limit of the quotient lsin(x + h) - ~inx Ii has Ii -+ 0. 
According to (1), at x = 0 we have f'(()) ""cosU =., l., so that limh-o(sinhih) = I. 
Changing lh~ \'ari::ihlc, we have the. following useful limit rcsolt: 

siox 
lim-- = I 
x~O X 

@ 1. find the t!crivarj\!c.s of the following func•.ions: 

(:r.) y = sinf.r. (b) :i,: ~ xcosx (di y "· e!.r cosx 

2. J.>rc,ve the difierenfotlion 111k in (4.J. (Hint: Remembt~r thai sin~· .t +cos~., · I.) 

{10) 

' 
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3. Find ,he dei-ivative, of the following fo.c.ction~: 

(a) y = sinx +cosx {b) }' · ~ x 5 sin):+ v'r; co.s.t + 1 
,/"ic0$){. 

(d y "'· -x-~-+-1-

® 4. Compute. !he foll.owing: 

d 
(a) d:r (} - <:US a.T) 

d d 
(I:>) ~i1(al si11 h1) (c) dr(•in/cos(sin(al + bl]}) 

@ 5. U.se l'Hopi1:1.l's tule (.sec e.g. E.tvlEA ), if n.::cc~sm:y, to compure 

(a) lint sin 2x 
:c-•IJ ."C' 

(h) Jim ~i.'1 ".'.~ 
r-+f) Snlnt 

(n ,ftO) 

@) 6. Find the extreme points off (A) = (sin x .. _ x •• 1)3 in the interval I ,,, [O, 3n: (?). 

7. Studies of economic cycles often use functions of 1hc for.m p(r) = C~ + C1 cosi.1 + Cz sin ;,1. 

Show that p"(t)-;. ),i p(1) is aCl1J1Stant K, and find K.. 

@ 8. Determine the followiug values: 

(a) arcsin ~ ../2 (b) :irccos 0 (c) arccosf./3 ( d) arc tan J3 

@9. Find the, derivative.s of: (a) :i.tcsin 2x !b) arctan(x2 + I) (c) arccos ..fi 

@10. Evaluate the following inleb'T'Jls (for the last two integrals, use integration by parts (4. 1.1)): 

(a) f sin .t dx (b} fo";z ens.x. dx (c) J sin~ :r. dx (d) J," x cosx dx 

@11. Evaluaie the following integrals by introducing a ~uitablc n~w variable (see (4.1.2)): 

(. j j sinx a) tan.td.t "' --dx 
COS.t 

(h) f cos x e""' d., (c) f cos5 x sin.,: dx 

12. Thederivativ~ of f(x) =sin.tis the limit ()ftlie qun1icnl [sin(x + h) - $inxJ/h ash~ O. 
From the figure klow we soe tha1 lllis quotient is equal 10 BC fare BA. If h is ,;mall, AC B is 
almosi a right .. angled n:ianglc, bcc;1.ise tbe ar~ BA is 3lmost a &traight Jinr:. Take- the cos in,; of 
the angle C 8.4., which is approJ\imately x. V.'hat do you see'! 
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B.3 Complex Numbers 
The c.oncept of number can be extended from uantral numbers l, 2 .... viii iotegen; I 0, ±I, 
±2, ... ), and then rntionals (,uch as 1.414 or 22/7) to real numbers (including .J2, e, 
and 11 ). Ea.ch of the.sc ext~nsions eli.pands the ~.:t or' equation~ that have solutions. Now, 

simple quadratic equations like x 2 + l = O and x2 + 4.x + 8 = 0 have no solutiou within 
the real numb.et· system. By introducing complex numben>, however. all quadratic equations 
become ~oluhk. 1n face, within the complex number system, anv polynomial equation 
x• + a.-Lx•-1 + · · · + a1x +ti()= 0 ha~ solutions. 

The standard formula for solving the equation x 2 + 4r + R = 0 yiel,i~ the expressions 
-2 + R and - 2 - .J=t. So far, we have not given any meaning to these expressions. 
But if we take the libeny of writing R =-AA=: 2../=f, we obtain the "solutions'' 

and -· 2- 2-..r.:t 

Ht:ro -2 and 2 arc well-known numbers, but J=1 is not. By pretending that .J=I is a 
number i whose square is -1, however, we make i a solution of the equation i 2 = -1. 

By treating these expressions a.~ if they satisfy the u&ual algebraic rules, with the addi­
tional provision'that A ..j-1 means -1, cxpres~ions of the type a+ bJ=l can be used 
to solve al I quadratic equations, even those:. without real roots. 

Toe symbol J'.::.-1 can only be given a meaning in an extended system of "numbers", 
which we call complex nnmbers. Mathematical formalism regards them as 2 -vectors (a. b) 

equipped with the standard addition rule, but witb a new multiplication rule. 
Informally, instead of writing (a, b), we usually write thi~ eomple.x numbe.r as a+ bi, 

where a and bare real numbers and i represents the (so far undefined) symbol ,;=T. Think 
of i as a symbol that &imply identifies whic:h is the second cmnpommtin the complex number. 
The real number a is called the real pllrt, and the real number bi~ called the imaginary part 

of the complex number (a, b). The operations of addition, subtraction and multiplication 
are defined by 

(a +bi) +(c+di)"" (a +c) + (b +d)i 

(a-t·bi)-(c+di) = (a-c) + (b-d)i 

(a+ bi)(c: + di) "' (ac - bd) +(ad+ bc)i 

(I) 

(2) 

(3) 

m~pcctively. Formally, rule (1) should be written in the fonn (a, b) +(c, d) = (a+b, c+d), 
andrule(3)should be written as (a, b)(c. d) == (ac-bd, ad+bc). What makes the informal 
e.xpressions a +bi attractive is the fact that (3) is what results if we pe1fom1 the multiplication 
(a + bi)(c + di) according to the usual algebraic rules, thus obtainin~ the expression 
ac + (ad + br.)i + bdi~, and then finally replace ;z by - l. When multiplying complex 
numbers in practice, we usually perform the computation this way, rather than using rule 
(3) directly. The complex number (1. 0) is a "unit" in lhe sense !hat (I. 0)(12. b) = (a, b). 

The way in which we. divide two c,.,mplex numbr:.rs can be mocivat~d by th~ following 

c.ilculations: 

a+hi 

c+di 

(a -1 l>i){c -di) (ac + h,ij +(be···· ad)i 

(c: + di)(c -di) ··· c2 + ,j2 

r­
' 
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EXAMPLE 2 

The division is defined when c2 +· d1· j.; 0. The formal rule is this: 

(a,b) (<1c+bd bc-od)' 
(c, d) ·-·· c2 +di' c~ + d2 

In particular, tho inverse of r. -t-di i~ I /(c +di).-,,, (c -- di)j(r.2 + ,i2). Of courne, we have 

to che<·k that (c - di)/(c1 + J1.) deserves the name inverse-d1at is, we have to chc,;k that 

(r. + di)J(c -di)/(t:2 +d2)l = I+ Oi, which indeed is the. C3.~c. 

Considernc>w the problem of giving a meaning to the symboli = .J=T. We form.ally treat 

this as the problemoftindingacompkx number (a, b) with the property that (a. b)(a. b)"" 
(- J. 0). lt is easy to see that there are two such complex numbers, (0, l} and (0, -l), 
and we choose (0, 1) as our i. Then we can formally interpret the symbol a + bi as being 

(a, 0)(1, 0) + (b, 0)(0, l), where we sirnply omit (!, 0) and write a and b instead of (a, 0) 

and (b, 0). 

It is coaunon pmcticc to denote cornpkx number, by ~ingle letters near the end of die 

alphabet. such as z = x + yi or w "" 11 + 1!i. Two complex numbers, written in this manner, 

are equal iff botb their real and their imaginary parts are equal-that is, z = w iff x = u and 

y = v. If the inmginary part of a complex numbe.r is 0, we let x + Oi = x. In fact. complex 

numbers of the fonn x + Oi behave just like the corresponding real uumbers with respect 

to addition and multiplication. In particufar, the numbers U (= 0 + Oi) and 1 (= l + Oi) 

obey ~ same algebraic rules whether we regard them as complex or as real number~. 

Furthennore, (x. O)(u, 1:)"' (x + Oi)(u +vi)= (xu, x,:) == x(u, v), where, for once, we 

revert 10 01din<1ry vector algebra in the last expression, and write the product of a scalar and 

a vector. 

If~:: 3 + 4i and w = 2 -5i, calculate (a) i + w (b) zw (c) z/vJ 

Solution: 

(a) z + u, == (3 + 4i) + (2 - 5i) = 5 - i 

(b) zw = (3 + 4i)(2 - Si) ""6 -· I Si + Bi - 20i2 :::: 26 - 7i 

(,;) z 3+4i (3+4i)(2+5i) 6+15i+8i-20 -14+2Ji 
~=2-s1=,2-5iJ/2+5i)- 4+25 - 29 

Prove that if;: is a complex numocr where z2 is real and nom1egativc, then z is real. 

Solution: Tf: = .x + iy, then z.7 ::-a (x + iy)2 = x2 + 2xyi + (iy,2 == x2 - yz + 2xyi. 
Thus :::2 is real only if xy :: 0. Then either x = 0 or y = O (or both). Requiring z2 ~ O 

implies that x2 ~ y~, so Lhal y, al least, mu,t be 0. But 1.hen z :: x, so z is re<1l. I 

Trigonometric Form of Complex Numbers 

Each complex number: = x -•· yi = (..t, y) can be re.presented hy a point in the plm1e .. 

FigLtrc I shows how to represent the three particular coinp\e:i: numbers i, -i, and } + 2i. 
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.Not surprisingly, 1hc ~l.\am: representing complex numbers is called the complex plane. 

The hori1-0nral a.xis, representing numbers of the form x + Oi, is called the real axis, and 

the vertical axi~. ceprcscnting number~ of the form O + yi. is called the imaginary axis. 

Figure 1 The complt>x pla.nt. figure 2 Pol3I c,>or,linate.s. 

Instead of rcpresentiog a complex nuwber z ""x + yi by the pait (x, y ), we could use polar 

t'oordinares. As illustrated in Fig. 2, let fJ be the angle (measured in radians) between the 

positive real axis and the vector from the origin to the point (x, y), and let r be the di~t:1nce 

from the origin to the 8amc point. Then x = r cos (I and y = r sin/J. so 

z =x + yi == r(cos& +isin8) (4) 

The last expression is the trigonometric (or pohtr) fonn of the complex. number z. The 

angle fJ is called the argument of the complex number z. Note thal the di~tance from the 

origin to the poim (x, y) is r :: .; x2 + y2. This is called the mod11lus of the complex 

number, denoted by lzl. Hence, 

]~I = .j x 2 + y2 is the modulus of z = .x + yi (5) 

If;: "" x + iy, then the complex conjugate of z is defined as z = x - iy. We see that 

zz == x7. + / = lzl2 , where lzl is the modulus of z. 
Multiplication and division of complex 11urnbers have neat geometric im,:,rpretations if 

we represent tile numbers in trigonometric form. Jn<leed, applying (3) givc.s 

because (B.l.8) and Problem B.l.4 imply that cos(G1 + 82).,, cos01 cos€12 - sin01 sinli-i 

and sin(01 +·Bi) = sin O, .:<)s fJ,_ + co& €11 ~in 02. Thus, rhe product ojtw() mmple.t 11umbe.rs 

i~ thot complex nwnber whose mndulus L• the prodw:t ()j 1he moduli of the Mo factors, and 

whos,~ u1-_i,:unwn1 is the sum£!( the arguments. 

Similarly. we can show that 

(7) 
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Jf we Irr r1 s= r2 = l and £11 ,., 01 = 6 in (6), then we obtain (cos O + j sin 9)2 

cos 20 + i sinW. Sirnilady, one. has 

(c.os!l + i siui9)3 ""(cos8 + i sin0)2(cose + i sin(}) 

= (co;, 20 + i sin 28)(co&O + i sin {I) = t'o~ 30 + i sin 30 

By induction. we find a famous result, valid for all n :..:c l, 2, 3, ... : 

(cos tl + i sin 0)" = ,'ornfi + i sion8 ( de J\,loivre's fonnula) 

Vectors with Complex Components 

(8) 

Sometimes we m~ed to con&ider vectors (and matrice5) with complex elemenis. We add and 

multiply wi!h scalars (whkh can be complex numbers) in the obvious way, and the usual 

algebraic rules 5till hold. lf .z is a vector with comple~ component~ z1, z2, ... , Zn. we let z 
denote the vector with components z1, z2 .... , Zn, where. Zj is the complex conjugare o:f Zj­

Toen the inner product of z and z is 

z ·Z = Z1Z1 + · · · +z11ln = lzi12 +· · · + iZr.12 c: 0 (9) 

NOTE 1 This ha~ been a very brief introduction to complex numbers. The need to ex!end 

the real number system arose in the sixteenth ccorury when various Italian mathematicians 

de.rived analytic formulas for the solution to algebraic equations of degree 2, 3, and 4. For a 

long time, the complex nwnbers were regarded as "imaginary", mystical objects. Nor any 

more. Aclually, the t'JCtension of the. nwnber concept from the real numbers to the complex 
numbers is motivate-cl by the same concern as the extension from the rationals to the reals. 
In both cases, we want certain equations !o have solutions. 

Nowadays complex numbers are indispensable in mathematics. Modem science jusr 
could not do withou! them. However, !hey do not play a very large mle in economics. 

In this book, they allow a convenient description of the solULions to some higher-order 

difference and differential e.quations. That also makes them u$eful in stating resulis on the 
stability of solutions to differential equations. 

1. ff z = 2- 5i and w = 3 + 3i, comput.:: (a) z + u; lb) zu; (c) ziw (d) ltl 

2. }{cpresenl z ,,, 2 - 2i, w ,., .. I + 3i. and z +was points in the complex plal!e. 

@ 3. Write the following numbers in the form x + yi: 

3 ..;. 2i 
(a)~ 

(3 - 2i}(2 - i) 
(cl --

. (-1- i)(3+2i) 

4. Wrire the folh>wing numhers in trigonometri<: form: 

(a) .J:i ·I 3i (b) -1 (c) -2-2-/3i 

(
1-i' ~ 

(d) ------c) 
l +1 

!.d) 1-i 

Chapter 1 

1.2 

t. (:) = x (;) + y (-!) requires 8 =· 2.t •• y and 9 = 5x + 3y. with solution x = 3 and y "'-2. 

2. Only the vectors in (b) .re linearly indepeodeut. 

3. The dell::nninam of the matrix with the tilrcc vectors as columns is equal to 3, so the vectors are linearly independent. 

4. x( l. l, l)+y(2, l. 0)+~(3, 1, 4)+w(l, 2, -2) = (0. 0. O)if x, y. ;:, and w.~atisfytheequationsx+2y+3z+u: = 0, 
x + y + z + 2w = O. and .t + 4z - 2u; = 0. One soh:nion is x = -2, y = -1, i. "' I. w " I, so the vectors are 
linearly dependcnt-

5. Suppose a(a + b) + tHb + c) + y(a+ c) "" 0. Then (a+ y)a-<- (a+ ,11}b + (/J + y)c = 0. Becau~ a, h, and 
c are linearly i'1depentlent, a + y = 0. u T fl =< O. and f3 + y = 0. lt follows that a = f, = y "." 0. wluch means 
that a+ b, b-'- c, and a t- c = line:1rly independent. The. vet:lors a ··· b, b + c., mid a + c = lini;arly dependmt 
bet:;iuse :i + c =• (a - b) + 1b + c). 

6. (a) Suppose aa + tlb+ ye"'' 0. Taking the.innerprodu.::t of each side with a yields a· (aa+_.8b+ ye)= a -0 = 0. 
But a . b = 9 . c. = O, so a(a . a) ,.. O. Becau8e a "'F 0. we ,oncludc that a = O. rn a sumlar way we prove that 
fJ =- y = 0, so a, b, and c arc liocarly independent. (b) See SM. 

7. )kc,nise .-3 = o. v1 + 2v2, ar least one of the vecio,-s can be written as a linear combination of ~c orhers, so the 
veccon; arc li,iearly depe'1dent. Bui thac is no way that l I, 0) can be writte.n as a linear combmauon of ll1e <)ther 
t'w'o vector~. 

8. B0ll1 slatement~ foUow immediately from 1be definition,. 

1.3 
t. (a) J. (The determinant of the mmri:1. is 0, so rbc rank. i~ lc,s than 2. Becau~e '10t all entries are 0. 1!1c rank is l .) 

(b)2 (c)2 (<1)3 (e)2 (f)3 

2. (a) The detennin:mr is (x + I )(.r - 2). Ille rank i.s 3 ii x ,fa - l ,md x "'F 2. Tbc r,u1k i!; 2 if x :-:· -1 orx = 2. 
(b) The rank L< 3 if t ,f. -4, t -I -2. and If, 2. The rank is 2 if r = -4, r = -2. Ori= 2. 
(cl The rank i~ '.!for.ill values of_,, y, i .• a.id w. 

J. A=(! !),m<lB= (_; -~).Hercr(A~)=Oandrtl!A)=I. 

1.4 
1. la) ,(A)~-- J, ,(Ab), 2. N•, SC\lutions. (b) x, =·· l + J1, .ti= I+., - ;,, -<J '".<,and x, .·: 1, withs, r arhilf'Jry. 

'J\,.,,:, ck:grees of frr:cd<>tn. ((:) x1 "' -(.t, x2 .-·.·. ;., •• TJ = s. ~n(I x4 = l. wiU1 ,< arhill"MY. One de.gree of fr,x-.dom. 
(d) r(A) = 2, ,(A.)='.,. No st•lu1io11s. 
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2. (a) .t1 = .t2 = .x3 = 0 is th(l only soh.stion. The..--, are zero degrees of frecdon,. 
(b) .x 1 = 1. x:2 = -t, .XJ = --1, .:nd x • ..... , 1. wir.h t arbitrary. There is one degree (ff tT1X1lo1n. 

3. If a ;,e O and a i= 7, the ;ystem has a un.iquc solution. If a = 0 and I, = 9 /2, or if a = 7 and I:, · •. , I Oi3, tilC 
.sysrcm has infinitely many solutions, wirb one degree of freedom. f'o( other va)o.::s of the parameters, mere arc no 
~olutioos. 

4. A(J.x1 + [I - A):i.2) ·,.,,, ).All:1 + (1 - .i.)Ax2 = ,.b + (.I - J..)b = h. This shows that if x, i x2 are solutions, 1hcn 
so are all points OD the. suaight line througll x1 ~nd x2. 

5. Let the n vectorI he a, = (a;i ....• a,,,). i , .. , I, ... , n. H b = (b1 , .•• , b.) is orthogonal to cai.;h of ll1csc:. 11 vectors, 
!hen ll; • b '" a11 i,1 + · · · +11;.bn = 0. i ~. 1, ... ,11. Because a,, ... , u. are linea.dy i11dependcrt1.1bis homogeneous 
system of equations has only 1hc !rivial solution I), '" · · · = b. = 0, sob== 0. 

6. (a) IA,l = (t - 2)(1 + 3). sor(A,) = 3 ifr # 2 and I-;£ -3. Be.:all$c I~ ~Ii 0, r(A2) "'" 2,r(,\_!) = 2. 

(b)x: = -46+ 19s. x2 = 19-1s,x, =s,s •c R 

7. If bis changed to b + l•b. thc oew solution .is x + l!.x"" A-1(b + ,,b) = A-1b..;. A - 1 l!.b, and bO .'.\x = A-1 Li.b. 
The cODclusion follows. 

.5 

). (a) -1. -5; G), (:) (b) 4 ± 2i. (c}5, -5; (:). c-;) (d) 2, 3, 4: G). G} G) 
(e) -1.0.2; (-D· CD· G) (~ o. 1.3; (:). CD· (-D 

(

2a: 2,,: I) ) (4al 4a3 0. 
2. (•.) X' AX= (ax

2 + a)·
2 + bz

1 + 2a.xy), A
2

.,. 2,~ 2,~ ~ , Al= 4~J ~; 3 
:, ) 

(b) .I.= 0, ). = 2a, J,. ~~ b (c} p(;.J = -i..3 + (2<2 + b}.l.l - 2al)i.. Sfld -A3 + (2a + b)A2 - 2ahl\ = 0. 

3. Av,"" 3v1 yields a- c "' 3,b- e = 0. ,md c ·- f = -3. Av2 = v2 yi"ldsa + 2b + c ,,, I, I, +U +e = 2, and 
c + 2e + f = 1. Finally, i\v3 = 4VJ yidds a ··· b + c ,,, 4, I, - d + e. = .. 4, and ,: - e + f = 4. Solving these 

( 3 -I 0) 
equations yields A = - I 2 -· I . 

0 -1 3 

( l' ( I ( I) 4.(a)).=,3a.ndJ..,···7.(IA-;.It=(3-.l.)!(7-},).) ~b} -~), -~}and ~ foi-;.sd, 

0 0. -1, 

5. {It) Ax1 = (~) = 2xr, Ax,.,,, c:) = -·~2. AxF" (:) ,." ll~. sn all tbre.e vectors are eigenvectors for A, 
2 , 0, . I 

with eigcnv:!/ncs ). , = 2. , .. 2 = -.. 1, ,utd ;, _ _, :,· I , n:sp,·c1iv,oly. (b) If .x is au eigenw.c1or for A with eigenvalue ;., 
then Rx = ,\(Ax) = A (;.x) = ;..Ax "" ),lx, so ll: is an eigenvector for H with eigcmvaluc !.. 2. Because~ ,., ;,,~ ·., I. 
n~-i = :<2 and Jh3 ="'.'·but Bxr · ... :1.fx1 = 4ll1 ;611:,. (c) Se.e SM. 

5. l:ly ( 1.1.23) and ( 1.1.14), IA - ),11 = 0 = l!.A, · U)'I '" 0 ~. '-} 1A' - J..lt = 0. The conclusion folfow5. 

7. Clearly,~- ,,. 0 is •n df\euvahr,, iff ,A! ,. · 0. If;.., / 0 is an eigenval1><' of A. then A ha.< an iu,c1se ,md A.~ = .l.x 
impli,~s x ,,, !..A ··•x. or. A-1x = (li,.}x. which show$ that 1/.!. is an eigenvalue of 1\-°1. 
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8. IA - II "" 'I a1 ~1~ l .,..,~~'~ I . /\<Id all the las!. n - I row~ to the first row. Bec.ause all !he ,·oluum 

a .. ~\ a~2 (lnr,, - 1 
sum~ in A arc I, all entrie.s in the. fin,1. ni""-wi\t he 0. Henc.e, IA ·- l' "= 0, sol is an dgcn\-aluc for A. 

1.6 

t. (al Eigenvalui,s arc \ aod 3, with corre~l)Onding cigcn~<:c:-1ors (-:.) and ( :·). Nornrnlizing the ~ig¢nv,x1ors, we 

ct:ooscP ·"' 1.~- ' - , aodth.:nP- AP<< diag~l.3). 
(

' 11 q 1/..n') l . . 
-1/.,[I 'l./'5., 

( 
1/.,Jz Li-,2 O)· ( 0 ,/'ifi -.!i/1) 

(b) p"" --l/./'i. '/Ji o (c} p"' -4fs J,ii/10 3./2/1~ 

0 0 1 . 3jj ;./'ih 2./'i;~ . 

z. (a) The characteristic equation: (1 - :1.)(J.2 +A·· 3(1 + k)) = 0. All root~ are real ~ca,,, k::: .,, 13/1::!. . (1 0 0) 
If k = 3, die eigenvalues axe -4. l. and 3. (b) P'A~l· = 0 -4 0 • a.< promised by Theorem 1.6.2. 

0 0 3 

3. (a) A2 = (PDP ')(PDP-1) = POfl'-1P)DP'1 ,,, PDIDP-1 = PD2P-1• l 

(b) Tbe fornmla is valid form= 1. Suppose it is valid form= k. Thl>n Ak+1 = AAk = PDP-1(PD'l'- ) 
= PD(J>·-tp)okp··• = 1•ofD'p-1 = POD'P· .. J ""· Pol H l'-J, so it hold~ form = k + I as well. By induction. the 
fomula hold~ for all positive inl·eger. m. 

4. According to (1), AB and A···l (AH)A == BA have the same eigenvalues. 

· 1 ( 50 75 ) 5. k=5A-5I.A =75A-IOOI,=\?S !25 

1.7 

1. (a) a 11 "" -I, a 11 ,.,. I tnol. 2!J, and CJ/;) "' -6. Thus <211 <: 0 al\d a 11<12~ - c1f2 = ti-· 1 = 5 > 0, so 
according to (5)(b). Q(x;, x2 ) is negative ddinite. (b) ail = 4, a12 = 1, and an a.,·. 25. Thus /JH > 0 and 
a 11a 22 - a;,. = 100 - 1 = 9'1 > 0, so ~ccording to (5)la), Q(x;, x2) is 1•:>sitive definite. 

3. (a) c \ , · ( 3 -1 3i2) 1
} (b} ( ~ ii>) (c) -1 l O 

l . 21, C 3/2 0 3 (·-~ 
4. A= ! 

·-1 

3/2 
0 

5. (aj Positive definit,: (h) Positive definite (C) .Ne.gati,t: semidefinite (d) Negativt: definite. 

6. Since.~ is symmetric, by Thcot.on, l .6.2 :tll the eigenvalue~ are mt!. By Theorem I .7.2(b), !hey 3re ijJI nonnegative 
itr A is positive se.midefinil<'. Since: /1! is O ilfO is a11 cigenv;;lue. the "ondusi()n follows from Thcor,:.m l.7.2 (al. 

7. (a) The determinant o( the a.ssodatcd symm<:lric mar.ri~ A is ]Al ,,. .. 6~ ··· }(5 + c\2 = -{(.:1 - 14c + 25l = 
-}(c .... c 1)<.c ... ,:::) , where. c1 = 7 - 2-/6 "' 2.1 and r:~ =· 7 + 2,ii,"' 11.9. Q is p<><irive de.linit.e ifr1 < c < r:7., 

poi:.jtive semide.tinitt.~ if Ct :;: c~ ~ c2, and indctinire if,: ~.: c1 or,:> c,. ~ . . . . .. 
(h) l.e1 X be an n. x 11 mairix. Then X' AX= X'(R'R)X = !JlX)'(RX) · · \IBX!i' ::: 0. S<J A ,s posmve seID1ddrnH~. 
A is positive de.linioc iffBX f U for~,= 0. au,! chis i~ the case it'r IRI f O. (See. (l.1.34}.) 
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Ii. (11) Q(O, ...• 1., ..• , 0) ~, a1,xf is !'(>Sitive for.c, -fa 0, so a,. > 0. (b)l..et Rtx1 .. ti)"' Q(O •.... x;, ... , x,. ... , 0). 

Then R(x;, xi) is 11. qu:,dratic form in rhe two variables .r; :tr1d Xj with associ.rc.d synuuetric matrh 13 = (' a;; a,; .) . 
aii Oji 

Sin~-.: Q is positive definite, ~o is R. and then IHI> 0, hyThc(ltcm l.7.l(a). 

?. By Theorem 1.6.2 all eigenvalues are real. lT A isnegatrvedeflnitc, then by Theorem l.7.2(c) all the cib.-envalues ).1 , 

... , A• are11egativc. But then ,p-(A) = (-l)",i,().) ,·.-, (A-A1)(A - J..2 ) · • • (j,, -J...) "' (J.. + r1W. + r2 ) • · • (J.. + ,.). 
where r, are all positive. Expa11ding Ibis product ohvio1Lsly produces a polynomial wirh positive coefliciem., only. 
If, on the nth.er hand, all the coef/icicnls a; in ,;,p,.} are po~i1i,c, lben ,t,(J..) :::. a0 > 0 for ~u A .c: 0. So no pu,itivc 
number can he an ei!,'.e11value. 

lO. (a) With J; = 2.rf + 14x1x2 + 2;,;i - J..(xf + xJ - l), the first-order conditions arc Li = 4x1 + 14x-1. - 2i.x1 = 0, 
.1:2 == l 4x1 + 4x2 - 2).x1 = 0. Dividing each equation by 2, we see that these two equations can be written as 
A." = h. So a vector Slitisfying the first-order cc,ndi1ions is an eigenvector for A, and the Lagrange o,u\tiplicr is an 
eigenvalue. (b) 'Ilic two eigenvalues are 9 and -5. See SM. 

1.8 

1. :~:i:~ :::t:::~::: t~::~ Ci'f Strait :rr,:2~ =.r~~ xr - 2xix2 ~- xf '" 4x/, which is positive except when 

I -I l; 

2. (a) Po~itive definite since I ~
4 

_
2
; -~ ! = -S9 < 0. 

1 f 
(b) Negative definiie since I ~ 

-2 

5 _.,[ 
-I t = 19:>- 0. 

-1 

3. Negative ddioifC subject to tbe constraint~. 4. Positive de.tinite suhject to the consttaint~. 

S. Toe condition is: [ g1 (xf, r2) 
g~(xi,xD 

. 9 

(

aub;1 +a12b.?.1 +a1,b.n 
1. ai,1b11 + a22bi1 + ai1b:,1 

anbn + a32b21 + a!,l-':11 

gj(xj, x;) 
,.C'{1(xi,xi) 
£·'{~(xi• l.·2) 

2. (-! ~)G I) ( I' -1, + -,)(I [) '' ( _; 

C'" 
2/L 1 0 

j) (b) CI 
0 ,, , _21,, 0 0 

3. (a) y 0 -2 0 
0 3 I 

o' ( 1 i) + .. ,J 
I) ' 3 -I "'(-3 ~) 

( •;, -'/2 -ti. () 
0 

D 
, . 

0 - 1i2 '/;-. -·lh 0 

I (c) -i:/ -v,. 112 0 

() 0 0 1 
'Ii 'h l/1 0 

4. Apply lirst (6) and theo (7) to the rnauix whose ,1ctcrminruit is shown in tile nliddlc of(-•). 

(
l' .R) (p--, 5. Show th.at 
O 

Q 
0 

·1 1/2 
1,'2 

- i~7 

6. (it} Use the hint. How 111 get a 1erm different irom fl? (b) Show_rh,· e<:111ality by direcr multiplication. Then U$c (a). 

7. (~) Use tbe him, th<: ronnufa for the product ot partitit•ne.d mattices, .ind (6) and (7). 
(b) 'I11e determin,inl is (a1 -· l)fo1. - J). ··(a-.·· l)l'lif. By using the result~ in (a'1, we get IF\= j:11 + 8Aj ., .. 
l + 227. , l i (ll; ··· I). and the condn~i,m folk•ws. 

I .·, ,. 
! 

j 
I 
I 

Chapter 2 
2.1 

CHAi'HR l 

1. (a) VJ,: (y, 2y + x) = (l. 4) at. (2. I) (I:>) Vg = (e'Y + xye.-'Y, x2c''. -2z) = (1. 0. -'.l) at (0. 0. I) 
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(c) Vh ,., (e.', 2e2), 3el') = (I. 2, 3) at (0. e, O) (d) Vk={e•+1H 3,. 2e-<+2)-t-3,, 3e'+2)+3')=(l, 2, 3) a: (0, 0, 0) 

2. \a) 'v F(x. y) = (2xf'(:x2 + _v2 ). 2yf'(x2 + y 2)) = 2f'(.c1 + y 2)(x, y), ~o v F(x. y) i, parallel to (.r, y). 
(b) VG(x, y) = x-2 J'(y/.t)(-y, r) ~nu VG(.,, y) · (x, y) = 0. so it follows that °"G(x. y) J. (., .. v). 

3. (a) 3./ip. (b) -2-./3/3 

4. l:sing (6). J;(x) , ... lim[f(x + ha} - f(x)]/h ··" _lim[(x1 + harf + · · · + (x. + ha.}1 
•• xf .. · · · - .t~]/h 

h·•O •··•O 
lim[2.x1ar+·. +2.x.a.+h(u~+- ·+a;.}]= 2ti1x1+ · -+2u.x •. Ontbeotherhand, v f(x) ,." (2x1, .... 2.r.) = 2x, 
A-O 
s.o ac<:ording to (8), J;(x) = ::?x ·a= 2a1x: + · · · + 2a0 x •. 

S. (a) -(5 In 3 + 8/3)/../i] (h) (In 3 + 2/3, In 3 + 2/3, 2/3) 6. V f(O, 0) = (2-Jloi5, 6,/w/5) 

7. f(x) ""b1x1 +. · +b.xr., so V f(x) ,.- (b1 •••• , b0 ) = b, and J;(x) = V j(x) ·a= b · a. 

ilv!I I ~ V; aJM ~ . 
8. El.,f(v) = ·-· -· Vj(V) -a= -V/(v) ·V = L---- = LEI; f(v) 

· /(v) J(v) 
1
,,

1 
/(v) av, ;,! 

9. (a) Sec SM. (b) From y"" S.t-;-2 we get y' ., -16x · l .and y" >< 48x ..... "'3 when x = 2. Using thel 

O 
fo~u!aj in (a). 

at (2, 2): F{ = 2xy = S. F2 = x" = 4, 1-';'1 = 2y = 4, F{2 = 2, = 4, aud f 22 = 0, soy"= 4-3 8

4 

4 4; = 3. 

4 o! 
2.2 

1. Only (a) and ( d) r.re convex. 

2. See Figures A2.2.2(a)-(f/. 

. .. 
'\ 

l '. . . 
- r.-·•' .. ..... :I: 
-41 -2 -~1 I lJ- 1 

.. 2t _,, .,.. / 
~c,r 

-4r-
Figure A2.2.2(a) Conve.x. figure A2.2.2{b) Convex. Figure A2.2.2(<) Not convex. 

y 

4 

If . 
_._......_ ...... - --~% 

I I ? J 4 

............ ., .. _..x 
l J 

-H 

Figure A2.2.2(d) Conve~. Figure A2.2.2(e} N<Jt convex. Figure A2.2.2(t) Nol . .:onvc, .. 
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:. ·sis the intersection of m + n crm•;c, :,ct,; (half space, cJetcnninc(l hy 1he ine.qualities), :md is th~refore couve.x 
ac-.corcling to (3). 

·, 1oprovethataS +l,T hconvcx, take x ~ oS+bT.y E ,,S+bT, :ind a number). E [O, IJ. Because x ~. aS +bT, 
there are poinr.s x, E S amh~ c T ~ucb than. = aX1 + bx2. Similarly, there are points y1 e S 311.d y2 E T such dtat 
y == ay, +by2. Then >.ll'. + (l -i.)y = A(iiXt +bx2)+ (1 -,l.)(ay: +by2) = a[},x1 +(I ·->.)yd +b(h1 + (I - /,.)y2 J. 
This belongs to aS .... b1· bt..::.use Sand 1' an• convex, so i.,c; + (I - >.)y1 .: S a11d >.Xc1 + ( l - ;.)y: .. T. 111erefore 
aS + bT is convex. 

• Suppose (s,, t,} and (Sz, t2) bo1b be\.JOl( 1<.> S >< J-. with s1• -S2 ES lnd 11• 12 E T. Now, ;..(s,, t,) + (1 -J..)(s1, t·i} ·~ 

(>.s1 + (I - J..)~1. i-11 + (I - .A.)11). For J.. E [0, \l. 1his tie.Jong, to S :< T because i-.s1 + {I - 1,.).,2 E Sand 
J..t1 + (I. -J..)t>.,;, T, by the convexi1y of Sandt. Hcnr..:, S x Tis convex. 

• (a) If ":1!1 .:or, IIYl1.:o r, •nd J.. C [0. J].1ben !l>.ll + {[ - ).)yli .:S. >.[ixl) + (l - ).)[;yll .:S. J..r + (1 -).)r =er. 
(b) Si i~ convex. Neither Si nor SJ is ~onvex. 

• (a) Toe set S"' Q of rational numbers bas the propeny, but is noc convex. (b) Ye.\. See SM. 

. SeeSM. 

3 
• (a) Strictly C(>O'iCl(. (b) Concave, bu1 not stricliy concave. (c) Su:iccly conc.1ve. 

• (a)(i) !{; = -2 So. J{:,_ "-' 0::: 0, and 1;; ff - u,;)2 = 0 2:: 0, $0 f is cunc,we. 
(ii) f (:x) = (.< - y) + (-x2) is a sum of concave func1ions. hence conc•w. 
(b) F(u) = -c-• is (strictly) increa.\ing and c,)ncave (because f''(u) = e-• ~- O and F"(u) ,~, -e·• < 0). By 
Theorem 1.3.5l~). z = -,,11•,.>l is ,x,ncavc. 

. (a) r;; = 2<1, 1;; = 21,, f2l = 2,:_ 3.lld 1;; ff - u;;>2 = 2a2c: - (2b)2 = 4(ac - b2). The result follows from 
The-0r= 2.3.1. (b) Using Thc,>rem 2.3.l again. f is concav1> iff a :::: 0, c :::: 0, and ,1r: - 1,2 ~ O: f is convex iff 

" 2: 0. 1: :::: 0, :,nd ac - b: ~ 0. 

. I[; = -12. f.;_ = -2, and /{;fr, - (/{; )2 = 24 - (2a + 4 )2 = -·4a2 - 16a + 8. BecatLsc f{; < 0, thdunction 
is never convex. It is ooncavc iff -4a1 - 16" + 8,::: 0. 1hm is, iff -2 -· ./6:::: a .::: -2 + ./6. 

. (a) z is slliclly con.:,ivc. (b) ~ is srrktly convex. (c) l's<: (3). 

. (a) By TI1corc,n 2.3.3 (b). all 1he principal minors ofonler I must he:::: 0, i.e. f(ft,) ::, 0 for all i. 
(b)S¢cSM. (c)T,tkc any x i11 the dmnain off. If /(-XJ = s, then /(2x) = 2sand /(}x + !2x) = [(*11.) = ;s. 
U11t tltis comraJicts f being smelly concav<'. ' 

, 1( •. Y ER" and).. E [U. l], then f(,-x + (I -,J..)y = IJ>.x + (I ·l\)yll .:: lli,xlf +rl(l - i,.)yll = i,.[!,(I + (l -J..)IIYII = 
;.J(-ic) + (I - J..)j(J'). Hence f is cor.vex. But when y :, ax, then JO,x + (I - ~.Jy) = IJ[,. ~ (I - >.)a]xll = 
.i-lixll + (1 - ).) IIYII, ~of is not sL;ctly oonvex. 

Sec SM. 

(a) first, note Iha! zri a,a;i.fx;x; for i ! j, and z{ ,·.c,, a,{fl; - l)l/.tf. l!y using 111k (1.1.20) rcpe11tedly, we 

obtaill the fonnula for D,. (h) Use tht hi1)I:. (c) If I::7~t "i <. I. !ht'n (bocausc each a, is positive)£~, .1 tJ; < l 
for al.I k, so the sign of D, is that of (-1 l. Thc111t$C Tbt:(>rcm ::.3.2(b). 

In.:qualir.y (I) re,iuces to I ·• x> • /···(I ··· .tJ ··· Y6) ~ -2.r.~(.r - xn) •·· 2yr,(y - Yo). Rc:,rr.1:igin1; the terms 
yields lbe ~.q1>ivlllenr inequality O ~ ~ 1 - './xx,,+ x~ + y1 - ·2y.>'O + yi;, or O :::. (x - xo>2 + (y. · .Yuf, which is 
ot,,,iously tme. 
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Z. Jensen's ir1cqu~lity yields: lu(~(x1 ·l- x2 · • · + x.) ~'.. ~(In x1 + !11..-1 + · · · + lox.) ,··. ! ln(x1x2 · · · x.) = 
ln(.t1x·i ·, ·x,)11". Since In is suictly increasing, the n:quirerl inequality follows. 

3. On the right-halld side of(*). tlt<,co,:fJicient~ AJ +Aland J.., sum 10 I, so definition (2.3.1) for 11 = 2 applies. Next 
note that>.,/()., + J..1) and J..2 /! . .A.1 + J..7 ) abo smn to I. 

4. Because ).(t}.:: 0, we tla<<J J..(t)fLr:(1)) .:.· ;..u)/(:t.) ~ f'(z).l-(r)x(:) - zf'(d;.,v). J,,tcgr.dlc each side w.r.t. r to 

get J: ).(r)fix(c)) dr - f(z) t J,,(1) dt ~ f'(<) J: i.(t)x(t) dr - ~f'(z) t ).(1)dr. Bui J: >.(r}dt ~, land "[so 

z ,. J; i,(r)x(t}dt, sv t i,.(t)J(x(1))d1 - tU; i.(tlx(r)dt) ~ 0 . 

5. See SM. 6. SetSM. 

2.5 

1. From (6): (a) Pis strie1ly concave; (b) Fis quasiconcave; (c) Fis concave: From (7): (d) Fis qu.isicouvCJt 
lP = -2, 11. = I): (e) Fis concave (p "~ ·• 1/3, µ, = l); (J) Fis concave <p"' 1./4, µ, = 3il6) . 

1.. (a) f is linear. so quasicoocave. (b) x + ln y is a suru of concave functioti~. so concave aod thus quasiconcave . 
Becau..: u ,..... e" is increasing, f(x, y) = r+"'·' = ye• must be quasiconcave (Theorem 2.5.2(a)). (c} f is not 
quasiconcavc. (lt is qua.~iconvex in die first quadr:mt..) (,l) f is qoasiconcave. 

3. (>L)" :::; 0 (b} x is concave according K• Thwr~m 2.3.5 (a}. h is quasiconcave according to Thcon:cn 2.5.2 (a), 
t,,.,caus-, f i&. in particular, quasicoucave . 

4. f'(x) = -2.r/(I +x1f:md f(x)-+ -l. asx-;. ±oc,. Seefig.A2.5.4. Pa= tx: -:x!/(l+x:) 2:a}. Ifo > 0, 
1bcn Pu is empty. If a= 0, Pa = 10}. If a E (-1, 0), Pu is the closed interval with endpoints ±..,/-a/(1 +a). 
Fiually, if a .:o -1, then P. = (··OQ, co). In all cases, P. is convex, so f is quasiconca~e. Since J'(O) = 0, 
Theorem 2.5 .6 doe.\ not apply . 

r-­
,' -a 

·-·v 1+" 

y 

t ,-­' -a 
\l ]+-;; 

·-~-----/--+-~,-----------., 

y=~ .• ..• Y~·-. ---
J'::.. .. , 1 

Fi9u1e A2.5.4 

y 
• :, =x·'-x 

I / 

~<j, 
I J 

Figure A2.5.6 

5. f'(x) IO for all :x inipll~s !hat f is stri.:dy quasiconcave. (In fa~l. ev~n i( f i$ only a C' function. f'(x) # 0 
implies tbat either f is (sr.ricdyJ incre.asing or ~strictly) decrrasing, and soi~ qua.~iwr.cave accordiClg ro Example 2. 
Tt is then also stric1Jy fJUasiconcave. 

6 • .f (.r) and g(.t) arc quasicou,,avt', but h(t) = f<.x) + g(x) = .~3 -· .t b n<>I. $<:c Fig. A~.5.6. Se,e also SM. 

7. (a) Follows from th<! definition. (b) No. f(:x) = !.x - x"l is ~inglc-pcalr.ecl and concave, bm n<Jt slri,lly concave. 

8. If f(x) °'F .f(•"). then x ur x" is 0. and the right-haJ1d ,;ide of(9) i~ 0. l'ot· ;, f- fO, 11, the-lefl-llaml side i, I. The 
set {x: .f(x) ,:~ 1/2/ ~., (·-W. 0) IJ (0, oo) is nm con~ex, so .f is notqua,iconcave. 

9. We sr.<., that q>''{.r) ,.,. 82(x. y)f( F{I\ so th<, conclusion follows. 

s~ 
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I 
I 
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ANSWERS 

). l:sc Theorem 2.5.1 (5). Assumt F(f, (":,.) ..... J.,(x)) ~ F(f1 (,1.0) •... , j,,,(x0)}. Now, by C0!1cavi1y c>f each J;. 
J;(}.t+(l -· J.):r.0) ~ >.!, (:s:)-;-(l -.1.)f, (x0). Sine..: Fi~ i.t1creasing. l'"(f, (.\.x+ (I -.l.):x0), ... .f.,().x+ (1-J.)s0)) 
2: F(J../1(x) + (l -J.}fi(x'l) •.... Af,.(x) + () -- ).)f.,,(x0)) 2: l''(fc(x0), ...• f,,,(,c'J)). hy qua.si~oncavily of F. 

l. Sec SM. 

.6 
I. (sJ f(x,y)""' l +xy (bJ f(x.y) '" I +x=-yz (c) f(x.y) '"X +::?y- ~xz -2xy-2y2 

Z. (a) f(x, y) >'.:;-J -· x - y - ixl - i/ (b) J(x, y) ''-' l +., + ~x1 + xy (c) f(x, y) ;-:, .,2 + yz 

t U(x,, .... x0 ) = Tl - X1 •·· .. • - Xr. + i(xf + · · ·-'- x;) + R3 

&. When x "' y ~, 0, z = 1. We. get z "' l ·• x + y + ! x2 - 2.t y + !J2 . 

. 7 
l. (~) f i8 C 1 eve.rywhere ;,mJ J; = 3,2 + l ,6 U, so Theorem 2.7.1 implic,sthat z is defined as a cl.function of x and 

yin a neigbowtoood of(O, 0): and y' = - J;!f; = 3x= /(3y2 + l) = 0 al (0, 0). \b) t; =" l + x cos(xy) >= 1 ;,!c 0 
at (0, 0), and y' cc-: --1;;1; ,~ -(2x + y cos(xy))i(I + xcos(xy)) = 0 at (0, 0). 

?. (a) F(x. y, ·z) = x 3 -i- y3 .;-z3 - xyz - l is obviously C 1 everywhere, and F~(O,O. l) = 3 -# 0. ~c> by the 
implicit Cun~tion theorem the equarion defines ~ as a C 1 function of x and y in a neighhoufhood of (0. 0. I). 
g1(0,0) = -1-'{(0, 0, l)iF;;(O,O. l) =0. J.ikewis~.g2(0,0) =0. (b)g1(l,0) = 2. g2(1,0) =0. 

3. u~, v~. and w; must ~atisry ,( - u.~ - 3m: = 0. -2 + u.~ ,- w~ = 0, 2- u~ - c~ + 3w~ = 0. The unique solution 
hu~ =5/21 v~ = J. 11;: = l/2. 

'- a(/. s)/:J(u. v) = e 2"(sin2 v +cos2 v) = e~ # 0. (a) No wlutiorn. (b) An infinite set of solutioos: u = } In 2, 
v = rr/4 + 2krr for all integers k. 

;. jj(F, G)/iJ(u. v) = -2u2 + 4uv + zv=, so around points where this expression is Jitferent from 0, one can express 
u aod v as C 1 functions of x and y: 11 = J(x. y) 3lld v"' g(;r. y). Ai (xo, y,,, u0, t'o) = (2, I. -l. 2) (which dOo!S 
satisfy the equations), a(F, G)/<1(1<, t) =0 • -2 and J;(2. l) = li2, [;(2. l) = 6, g;.(2, l) ., r. and g~(2, 1) = 2. 

i. The Jacobian i~ x,. We find thatx1 "'· y; + }'>, -'2 = Y2/(y1 + y2) (pro\'jded Yt + }'2 i= 0). The transformation 
maps the given rectangle onto a quadrihceral lo1 the y1)·2·plruiedetemuned by the inequalities I ::: y1 + Jl:l ~ 2 and 
YI S Y2 S 2y1. 

1. 11-.e Jacobian dcten:ni11a11l is w) -be= 0. Suppooe a ~ 0. Then v ~, (cja)«. The 01bcr cases ,ire similar. 

~- (a) J == r (b) T(,, 0) = T(r. 2;i) 

>. Tbc muin condi1ion is that the Jacobhm detenuiua.m J "' : ·; -j. 0. Diflerentiating the cwo idcntiEies I/,' f' I 
, f/1 gz 

f(F(u, v). G(a. u)) '" "and x(F(u, 11). G(u, V)} = v w.r.t. u, keeping v constant, yield~ f;r: + f;c;, = I 
and g;.F~ + K~G~ = 0. By Cr.wtu:r\ n1k C>r orhccwise we get the desired fonnula$. 

). (a)"~ = 3/2. v~ =,. 5/(6ln 3) (h) j(u) ,-.= u - a~•(b·- IJ is srrictly incn'..1Sini; because b ~ l. Also f(r.l} :£ O at1cl 
f(I) ~ 0. (c) Let., ,.·, ( l +xy)/2 and b "· x, and us,~ chc rcsuh.from (b). Tltis give-s a unique valucr.1f 11. l:l(,'C.tUSt; 

u ~ JO, I J. the first cqnation then givts a u11iq11c valu,, of,,. 

. 8 
I. (•) ThJ"ee degrees of frc:crtom. (h) .f'(Y - 1") * I is sufficient.. 

l. (a) I">i.rc:tot v,~rificalion. (b) (i) u = 7.(lnu)2 ·· !nu, \ii) t' -~'(I· u)/(l + u) 
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3. iJv//Jy = g\(il,y/oy) .;, g2 = g\(-·/1!/i) + g; = 0. bc.:au,,~ j;.s:; = fig;. 

4. (a) &,sy verification. (b) w ·.,, (,.2 + v1·)/2 

2.9 
1. (,i) 11,e partial derivatives obviously c;ist and arc cominuous fot (x, y) =!- (0,0). "Moreover, {:(0,0) == 

lint •. ,o[f(h.O) - /(0,0))//r = li.m0 .. uO = 0. and similarly j 2(0,0) = 0. (b) Eve!)' directional derivative 
clearly exists for (x. y) / (0, 0), because .f is cc>nlinuously ditforentiabie at such point,. u· a = (1,1. a~) ~ 0. 
t;lO, 0) = li111~ ..• 0[f(ha1• ha2) ·- j(O, O)J/ h = lim •..• 0(121aJ/(af + h!·a)) ,·. ,~fa1 if a1 f: 0. If a, = 0. 
then J~(O, 0) = 0. (c) f(y2 , y) =· 1/2 for ally# 0 Md /(0.0) :·, 0, so f .:anoot be conlm11ous al (0, 0). 
Differentiability implies continuity, so f is not dillerentiablc. 

2.10 
1. The leading ptincipal minors are 1 aml 1. bnt ,c' Ax= (.x; + x2)2, which is O when x2 = -.r1 . 

Chapter 3 

3.1 

t. The Hessian m:ttrix is g''µ, y) = ( g~'. "':::) s= ( 
6
; 

6
°.,). We see !hat g is stric1ly convex in its domain since 

.I/,, 82. • . . .. 
the leading principal minor:; are positive. Stationary point where 3x2 - 3 = 0 anti 3y1 - 2 = 0, so ("I, ../b/3) is the 
onlystationarypointwithx > O,y > 0. Tcis:i.(glohal)minimumpointforg.andgmiD = g(I, ../6/3} = -2-4-./6/9. 

2. The profit is ,r(.r, y) = 13., + Sy - C(x, y) = 9.r + 6y-0.04.,2 + 0.01xy -0.0lyl - 500. From 1t,c fiit-c,rJer 
couditioru;, ir;(x, y) = 9-0.0&x +O.Oly = Oand JT~(x. y) = 6+0.01.t -0.02y "'0, wegetx = 160._.v = 380. 
Since :;r is ea,;ily se~-n to be concave, (160,380) is the ma.'Ulllum p,)int. 

3. (a)oj = i!
6
tlq/3q1\v; = d.p6q12q1' (h);r'(p,q1,q2) = .-hp"q11qt. Thccqualitiesi,1(•)followeasily. 

4. The. first-order <.:011c.litions for(-<". y") rn solve the problr;m are ihat f{(x', y•. r) ~~ --2x• - y• + 2r "' 0 and 
j:(x', y•. r} = --x· - 4y"-;- 2.r ,,, 0. It follows rha1 x• = 6ri7 and y• '"" 2ri7. f fa }slric1Jy) ~oncav': in 
(; v'1 so this is tht1 solution. The ( optimal) value funclion is f" (r) = f(.x". y•. r) ,., -(., • J • ... x• y* - 2(y.)" + 
2,.:,:·+ 2ry" c,·, 8r2 f7, so df*(r)/dr = 16r/7. On the other hancl. J3(;r", y'. r) '"' 2..t· + 2."' = 16r/1, so 
df"(r)/dr e= / 3<.t', y•, r). 

5 . . t"(r,s) = t,·2 and y"(r,s)"" /1,s1 . ~1on-.over. f'(r.s) = 1'~ + ;s4. so i!f'fi!r = r3 11ml iJf/ilr :·~ 2rJ;, so 

af (x', y\ ,, sJj;.lr = 2n' '" r-'. Al,o, f!f' /iJs = iJJ (x". y•. r. s)/<ls -.~ 6.ry" "'· ~.r3. 

6. (:1) 1!; = 1,a.{q, .• \, i = I. .... n (h) D,fferentiate ir(v, p, q, a) = p{a: 111(1:1 + 1) +···+""In(,,.+ I)) -
q1 i,1 - q~ i;1 - ... - q. v, w.r.t. a.l.l the paramcte.-s, zitd evaluate the panials at i:1, i = 1.. ...• n. Then compnlc tltc: 
value fur.,1.it.111 ;r• ( p, q, a)~, rr(v", p. q. o.}. and cheo differenti~re w.t.t. all parnmct.crs . 

3.2 
1. Tht· only s1,nionary point i~ (0, 0. O";. TI1e leading prindp;il minors of the He,si;m :1T1> n, ""2. D·: ··. 3. and lh = 4. 

so (0. 0. OJ is n 11,cal minimum !")int by Theorem 3.2.1(:.). 
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2. (a) S1ation.tl}' poinEs w/J;:rc .,2 = y •nd y1 = x. 111tn y4 = y, with the solutions y = O ,md y = l. H•·nce !he 
~r,uionary points are (x, y) = {0. 0) and (I, 1). The quadratic focm is --6ii 1h1 at (0, 0) •nd 6(/ii ··· h,h~. + ii~) •t. 
(l, I). (b)-6fr!h2 isinuefinirc. Completingthesquarc,weseethai6(h;--h1h2 +11{) = 6l(}11-lh2 )2+!1r}J ,. 0 
for (h1• hz) ,fa (0. 0), so this fonn is p<.•sitive definite. (c) (0. 0) is a sad(Ue point and (l. l) is a lo,;,il minimum 
point accor,ling IA.) ( 1 )-{3 ). 

3. (al (0, -2, 0), (0. 2, 0), :ind (±.J'i. -1. 3/2) arc saddle poincs. (0. 0. 2) is a loc:,\ mfoin111ru point. 
(b) (-1, -1. 2, 3) is ,.saddle point, wh.::n;as (5/3, 5i3, 2, 3) is a lo.::al ma·iimum point. 

4. ft is easy to see that (0. OJ is the only ~tatio11ary point. The st,cond derivative, arc Ji, (0. 0) = 2, f{'_i<O. OJ"' 0, and 
J;1(0, 0) , .. ,. 2, so (0, 0) is a local minimum poinL 11. is noc a global minimu1n p<>inl because f (x, -2) = -x1 + 4 
1<>.nds lo -oc as x -~ oo. 

3.3 
1. (a) x =0 a/6, y '" a/3. { = a/6. J.. = -a/3. (The Lagrangian f, = JOO - x2 - y1 - z2 - J..(x + 2y + z - a) ha.~ 

stationary point where.£~ = -2x - J.. = 0. ,I',~"" -2y - 2J.. = 0, and .t:.~ = -2~ - ). = 0. Inserting y = 2x and 
z = x in10 lhe constmim yields x = ui6. anJ then y = a/3. z = a/6. with J.. = -a/3 . .t is con~av~ in (x. y, z) as 
a sum of coocave function,.) (b) f"(u) = 100- ..r2 /6. We ~Cc 1hat ,/f*(a}fda = j,. 

2. Maximum 11)8-/_7/7 at(.,,_ •. z) = (~ ,/7, ¥fl. -;/-,,/'t), with AJ = i,,,/'t, ;.1 = f 
(l:,) ,1.,.f'"" is,17. (-1)+0.1 · ~ "'-0.()()') 

3. (a) With ,£ = ,r + 'y + z - ;.1 (:< + y + z - I} - ;.2 (.x2 + yZ + .z - I), the fin.t-order ~onditions are 
(i) <1,/../llx == eX - i..1 -- 2}..1x = 0, (ii) °CJ.C/ay = 1 - J..1 - 2)..2y = 0, (iii) ii.t./fJ: "" I - J..1 - 2;,2z = 0. 
Fr,)m (ii) and(iii), J..2Y = ),1Z, so (A) ),1~"001 (B) y = z. etc. Four candidates: (0. 0, 1) and (0, L, 0) with ). 1 = l, 
J..2"" 0: (I.fl, 0) wid1 iq "~ 1, )_2 "' !<t -1); ( •· ~, j, j) with J.. 1 = t + }e-C/5 and ;..2 "" t - {t- lf). The value of 
the ohjccti•e function is highest, and e.qual lo e, al (I, 0, 0). (TI1e maximum exist~ hy Ehe extreine value theorem.) 
(b) llf* "")..1 · (0.02) + ;.2 · (-0.02) =• 0,02 - 0,02 · l(e - 1) •• 0.01 (3 - e). 

4. (a)xi<mi "' ~'"' +2),x~<m> = icm-4).).. = Icm+ s>-1 

(b) u·(m) ~, ~ ln(m + 5) - In 3, dU' idm = ~(m -;. 5)-1 =;.. 

S. We~ndtbatx·. = mf(l"tr) andy• =,.,n/(l +r).so.f*(r.m) = l-rm2J(I +r). Wcfind1h11ttfj"(r,m)/vr = 
·-m·/(l + r))' ,~ ·-(x·)· and iJf'(r, m)/iJm = -2mr/(I + r)) = J... 

6. {a) Ma:umum I at (-3Mil0 . ../10/10. 0) arid ac (3../Jo/10. --../Tii/10. 0) wilh J..1 = 1. i..1 = 0. 
(b) l!.j' "" I · 0.0j + 0 · 0.05 = 0.05 

7. (:t) With .f. = I:;;=l a; ln(x, - ,1,) - MI::; .... J p,x, - m), the fim-ordcr conclitfons arc 
( .. ) .tj = "i /{): j - "i) - )..pi = 0, or l'J-'j = Pi"i + aj( , .. .i = 1. .... 11. Surmning 1he;c C(Jualitics fwr.\ j = l 

10 n, yield~ m = LJ=I "; l'j + l ;;... TI1e exprc;,sion in th,: prohlcm for Pixj follvws. 
(h) U*(p, m) =Vex*)= L]. tu'; ln(a,(m - I:;' I p,a,)/pj) = Lj·al <lj lna/ + Lj,ol a1 ln(/11 - I::7 .. 1 ,,,,.,) -

LJ=C c:,i ln P;· Roy·~ ide111ity follows by differentiating w.r.t. /J;. 

8. (a)The constraints have the unique solution (x, y) "' ( ;../2. ~ ./2), and this pair with;. O mtL<ts,)!ve the pmblem, 

(b) With .t ~· x1 ..1.. (y -· 1)2 + 1.2 
-- J..(x + y - ./2) ·• µfx1 + y 1 

- I), .c; , .. Oat:"' 0, and the constraints give 
the same solution as before. But. the .. ,uations £' =, 0 and£' , ••.. 0 give a contradiction. m1e matrix in t7} is here 

( ix 
2
\ ~). whi.;h has rank I when x :, y./ ' . ' 

?. The Lagrangian i~ .£ "" x'Ax -·· J..(x'x •• I). In vector 1101atio11, £~ '" 2Ax - 2;.x =s 0, or{•) Ax"" ).x (see 
Note 2.'.l.4), so ;, i,< an r.i~(>nvlllue (>f A, with x a, an eigtnvector. Multiplying (*) from the left hy 11' givei, 
i( Ax = •'(i.x) = )..11',;: = )., lx:ct,ose x'x .,., 1. We conclude 1haE tht maximum v~lnc of ll'' Ax subject to ,i'~ = I 
musl be rh.: laf)l.cSteige.ivalue (>! A, whe1eas the minimum value rmm he Ehe sm,1lles1.eigc11v,1loc. Borh a maxiruum 
and " tni11imurr1 value exist by :he extreme. value th..'O,:c,n. 

10. s ... .c SM. 
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3.4 
I. (a) (x, y) == (±./,(})with J.. .. J/4 and (U, ±../2 J with J.. ,. 1/2. (b) 82 (:t.L. 0) ,·. -(,4, so(±!, 0) are local 

minimum points. (--1}282(0, ±.Ji) , ·.· 64, so (0, ±,/:i) are local maximum points. 
(c) TI,c C()t1Stl'aint curve is ltllell.ipse, and the pf(lble.m ls to find those points on the. curve that have the smallest aud 

the largest (~quate} distance from (0, 0) .. • 

, ., · _.,., ·'ii : t i I -12, so Che sec(>nd-ordr;,r condition for local millimum is s:1tisfil'll. (The 

minimum poim is{] iJ. 1/3, 1/3).) 

3. At (1. 0, 0) with J..1 "' l, ).i =-" -1, we have (-lf B, ~-. 16 > 0, which gives a local maximum. 
Al ( - J /3. -2/3. -2i3) with )q c:· - J, ),2 "" I /3, we have ( -1 )1 Bl "' l 6 > 0, which gives a local minimum, 

3.5 
l. The solution i~ obvious: to n1aximi1." l - x2 - y 2 you must have, x and y a, small as tl1cy arc allowed to he, i.e. x "·· 2 

and y = 3. With.C = l-·x1-i-J..(-x+2}-11.(-y+3J, thdirst-r>rdercondirionsfor (x". y") to solve the r,rohlern 
ai:e: (i) ,.,2x• +).. = 0: (ii) -2,· + JL = 0; (iii)). 2: 0 wilb).. = 0 if x' > 2: (iv) 1• ~ 0 with/< :: 0 ii y• > 3. 
Since x· ::: 2, (i) implies j. =c 2.x" > 0, an<l since y• ?.; 3. (ii) irnplic~ I' = 2y* > 0, so from (iii) atid (iv) we 
conclude that.,• = 2, y• = :i:Thi~ is an optimal so/u1ion since l is ,;01,cavc in (x, y). 

2. (a) See SM. (b) (x, y) = l3/2, l /2) solves the problem. (c) V'(5/2) = 4/15 

3. The soluEion i~ (x. y, J.. 1, i. z) "' l ,;/2. 2 - ../2, 4 - 2 v'2, 0). (Rewrite the problem as: max -4 ln(x 1 + 2) - / 

subjecllo -x1 - y :, -2, -x ~ -1. The ncces~ary Kuhn-Tucker condition;; are: (i) - /x ~ + 2i.;x + J..: a•· O; 
x- + ~ 

(ii) -2y + J..1 = O; (iii} ).1 ~ 0 wid1 ;_, ~., 0 if x 2 + y > 2; (iv) J..1 ::: 0 wid1 J..2 "' 0 if.t > I.) 

4. Tf /l > 1 and I,> 2, (.r•, y') "(I, 2); if a.> I and b::: 2, (x', y") ,.'" (I, b); ifa ::: land b ~ 2. (x*, y') = (,1, b): 

if" :S land b > 2, (x". y•) e:. (a, 2). 

5. Et:eau.<c (.t + y - 2)2 ::. 0, !he constraint is equivalent lox + y - 2 = 0 anJ the.solution is (x. y) = (I. 1 ). rron1 
th.e Kuhn-Tucker conditions, y- 2J..(x + y - 2) = 0 and x .• 2i.(x + y - 2) = 0. u'Uing Cx, y) = (1. l) yield< 
1h~ conc:radicti<>n l =, 0. Note that gj(x. y).,. g2(x, y) ., .. · 2(x + y ·• 2) = Ofor x = y = 1. so 1hc1,-adkn1.of g at 
(1, l) is {O, OJ, which is nor a. linearly independem. Thu;;, the consuaint qualitication does not hol<l 111 (l. l). 

6. (a) (x. y) "' (-! ./JJ-!./H) !b) f(x) ,~ x 5 - x', x::: 1. Max. at x = -~.jff 

3.6 
1. Kuhn-Tuckcrcon,liti<ms: (i) -2(~-1)-2J..x ,~ O; (ii) -2ye~

2 -ny , .. O; (ill) J.. :::_ 0, with), = Oif.,2+ y1 < 1. 
hom (ii) and;.:~ 0. y = 0. Fwm (i), x = 1/(l + :...) > 0. Ji;. > 0, then x < land so x~ < 1. Then (iii) gives 
i. "~ 0. So J.. = 0, and the solution is r = \, y = (). T:!ccanse the I.agra.ogian i< concave, this is the optimal solurion. 
Note that for the optim«l solution J.. = O and x2 + y2 = ] . 

2. (x, y,.,\.1, J..:) = (1/2. J/2, 0. 3/2}. (With .l = xy + .1: + y - iq(~z + y~ -2) - ).2(x ;- y - l). th.: flrst-or,kr 
conditions are (iJ a.t:.;ax = y + 1 - 2i,;., - J..: = O; ~iiJ i/.lj,)y ,-, x + I - 2)-:y - J..1 = O; (iii) ;..; :~ 0. 
with ).1 = O it' x 1 + yl < 2: (iv) ;..2 >: 0, with l.1 = 0 if x + .v < 1. Look at the cases (Al ;.,, = 0, }.2 = 0: 
(B) J..1 ··., 0, i.2 > O; et~. C,sc (T:!) give, !he •<>1111.ion. An oplimal S(lllllinn exists hy the exueme value ths,,,n,m:, 

3.7 
1. (a) For a :'. 1b, (.,, y, z) , = (I>, ) {,, - b), 1 (" ··- bJ) with ).1 = e.-<•,-!,jfl and J..1 = ,,-b - ,,-·<.•··•1;:. roe- ,1 < .J/J, 

x '·" y ,.,. z ,., ~" with J..1 = ,,-a;; Arni J-:,. = 0. (bl h>t a ::: 3b. f"(a, I>} = !00 - ,,-• - 2e· (,, .~,p ruid 



' O AN 5WERS. 

8f'jcla ::.· l.1 , :Jf" /ilb = ,\z. Fora < '3b. f' (a , b) =- LOO - Jr. ·~/l ,oo ilf' /c1a = ;.1, iJf' fM, = l.1. 

(c) l..e1 g(a) = 100 - 3c-•I>, h(a} =· 99 - 2c•r.. Then F'(o) = 11(0 ) if a < O. F'(a) .,,. h(a) if a 2:. 0. Tut> 
furtctim1s g and h are hoth C():ic:1ve. Mm·cover, g (0) .,., h (0) ar1d f/ (0) "· h' (0.l, so theil· graphs b•ve a com.moo. 
taogent .n the point C<lm:sponding I<) a = 0. It foll,:,ws ch3L l·' is concave. 

f' (r} "' (1 + r)2 for r ,:: 0.f"(r) = (l - r) 2 fot r < 0. (GrJpb the parJbola y •• (.r -,)2 ovc-.r the interval {-1, IJ 
focdillerern: ,-,ilue:; ofr.) Note that dj'(r)/dr-+ 2 a~ r ..... o+, v.1iilcd.f'(r )idr .... --2 as r -+ o- . 

i. (a) x. , .·. +-!s./i, y :, (),with). = 0, µ, ~ i, J'(r,.t) "" !s2. (b) x = 0, y ~ ::t:~r, with ). = L µ " 0. 

/'(r, .r) = l r1·. (c} The adruissible set is the axea between Lwo ellipses, and the problem is to hod rhe square$ of 
rhe la1·gc:1t and the sm3lkst distances from the origin m ~ point iu this ~dmissil>lc ..et. 

, See SM. 

8 
• (a) 1 - .x1 - y1 =o l fot all x ~ 0, y ~ 0, so the optimal solution must be,. = y = 0. 

(b) With .t, = 1 - ,.: - y1, the K11hn~Thckerc,)Oditio11.~ are. (i) iJL/a:x = - 2x :5 O (= O if .x > O): 
(ii) a.c;ay = -2y (= o. if y > 0). 'The only solu1i1>D is obviously .x "' y = 0. The la&'111ngiun is concave. 

• (a} (x, y) = (l, l/2) (b) (x, y} ""' (2«/(a + P), Pf(« + /3)) 

• (a) The solution is: For r. ~ 0, x · ,:, 0, , · = ../6/3, with J.. = "'6j1Z; for c > 0, x' = c../6/./3.-l + 1, 
y• =-· ./613..ficT+T. with i. = ./6./3c2 + 1/ 12. (b) For c !5 O. f' (c) = o' + y• = ../6/3. For c: > 0, 
f'(c) = ex'+ y• == (./6/3).J3c2 + 1 -+ ../(./:las c -> 0, so f' i.s continuous also ar c = 0. Noce that 
df'(,:)idc,.,. x• in both cases, so (J .7 .5) holds. · 

• (a)With ,i! = ln(l+x)+y-.1.(px-t-y-ni). thcKuhD-Tucl<.~"tcouditiOf\S arc: (i ) 1/{l +.~· )-J.p :<; 0 (= Oif.t ' , . O); 
(ii} I-). ::!,0(=-- 0ify' > 0); (iii);,?.: 0 \\ith.l "'Oif px· +y· < m. (b)x = - 1 + 1/p,y = m +p - 1, 
with ). = I is the solution for all p € (0. 1.1 and m > l. .l.'.(x, t) is concave in (.x, y). (Hint.· ;.. ::: I > 0. so 
px· + y• = m. Look firs t at. the ca.sex· > 0. y• ~· 0, which gives the solution.) 

(4, 3) Ul (S, 3) 

ii 

V 

0 X 

Figure A3.8.5 

See Fig. /\3.8.S. Th<,-re are oo stallonl!I)' r,oi11L~ in the i,11.cri,,r of S. Toe Kubn-Tool<.cr conditions are: 
(i) 1 - (x + )·) - 1 /4 - ). , + J., :;: 0 (= 0 if .~ ,. 0); (ii) 1 - (x + y) - 1/3 ·- .I.~ - 2A3 :: 0 (" 0 if y > 0); 
(iii) ;..1 ?:. 0 with l.1 = tl i f., < 5: (iv) >.1 ?.: () wirb J.2 a. 0 if y ,: 3; (v) AJ ::: 0 wi1:h ;_3 = 0 if -x + 2)' -: 2. 
The st•lution is x = 3/4. y " 0. 

SeeSM. 

I.I$£: (A) W prove thlil r:;.1 i-.1g;~'i:) :: )_:~ .1 J.._.gj(x'). Then artoe wily the la.,1 imx1ualicy is ~o e.quality. :St>e SM 
for dcuuls. 
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3.10 
1. {3) With J'.(x. y, .:. u) , ... .rZ + yl + i! - ).1(2.rl + yz + z2 

- a~) - >.2t:x + ~·.+ ,), the uecessaxy c_onditions are'. 
(i) <J£/<1x = 2.x - 4.1., x - J.2 '" O; (u) il.t,iiJy = 2y-· 2A1Y • · ).z = O; (111) ~.!0t , ... : ~t - V. ,l .-· .l._2 '·' 0, 
(iv) ).

1 
> O with;,., :: O if2xl + / + !~ < ai . S0l11liou: (..x • . y• . , ·) = (0, ±t-v2il. 'F ;i: Jia). with A J ~0

• 1, 
>-z = o b:«h l!<,l...c chc pmolcm. (b) f'(a),~a2 .,., df'(a)/,ia = 2a, und.,J:v' . :1• . i•. a)/aa "' 2.l,a , .. , 2a. 

3.1 1 
1. See. SM. 

Chapter 4 

4.1 
1. (a) .t _ x> + C (b} ·-{x-l ~- C (c) f (1 - x2)2 dx = j(l - 2.r2 + x') dx "'x - }x1 + !x

5 + C 

2. (a) 2500/ 3 (b) t~0 (-21e.-2t - e-2,) = 1- 21r.·21t (c} 320/3 --!- 11 ID l l"" 133 .• (lntro<lucc u = t + I a.s a new 
variable,orusepolynomialdivisit1n: (10t2 -t1)/(I + l) = - 1z+ ·111 - !I + 11; (1 + 1).) 

3. (a) 64/3 - 12../3. (Subslirute u .= ./4 - x•.) (b) 2- 6 ln i-(Subscirute Ii= 3 + ./r+S. Then u - 3 = ../i+8 
and l" _ 3)2 = 1 + 8. Differeoliation )'iclds 2(u - 3) tlu = dt, etc.) (c) Jc)+ i. (luregrnnon by parts.) 

f 
z,, 2xn m + 'lm 2 :ln.+ 1/l 4xn-tm+ I/~ 2x2.m.+ l/Z . 

4. () ::.....: •• x x ix = -x__ _ +--- +C (b)l- ln(e1
i
3 +l)+lo 2.(Substirutt: 

a ..;; ' 411 + 1 2n + 2m -+ 1 4m + I _ _ 1 

u = r + I, d.t ,.,, du/e.' = du/(u -- I).) (c) 272ll5. (Suhslirute 11 .,,,, , l:x - l.) 

s. (a) l +In ~ (h) ~. (Sub8rituteu = 1 +.fi. then int.:gration by patt~.) (c)45/2 -3 ln 4. (SubstituLc u = l + x '
13 

.) 

4.2 

J,
, 1 I • 11 - H,-r 

(b) F'(x) = - di = - te - 1) (c) F (x) ,., -. - - )2 dt 
1 x X o(l~· XI l. (a) F'(.~) = J.2 

e"dt '"' ~(e1' - e') 
l X r 2,1 

(d) F' (.x) = )
1 

( l - .uf dt 

2. F'(u) ""(ere" - e" + 1)/ 2«1 for a "f'- 0. F '(O) = 1/ 4. 

l 1 r•' . - ,. d 3. (a) F'(.x) = l6x1 (h) F'(.r} , ... _,.6 +3.rs + sx4 (,,)F'(x) : ,2.x - ! x·· t,t•s(x- x') +4x .. _r.srn(1• -· x") 1 

4. f "'· e·Pf lP) f(g ip))g'(p) - UC,,} ie-1'1 f(t)dt 

s. M'(t) ,., r:""xl°" f (x)dx, 3\IO .SO M'(O) =: f ':,,xJ(x ),l.t. By induction, M(•>(r) = J'":;..,x"e." /(.t) d.r. Md 

M'"i(O) = {:;,, x• f (.t )tf..r.. 

6. :i:(I) = y(/} - &.t(r ) 7. dF(<11)/drr1 = _c;: U'(J•, + GJ.!.)ldµ.;Jdct, + .:)/ (:. 0, l)d, 

11. V(t) -= (l/T(O))[G(i,1)+ l.<JaG/or) dr.). Herc ac;ar = · · k(t)J(t- r ) untl Git .1) = k(t) ft' f(f;)dl; "' 

k(r)T (O). The oom:lusion follows. 

'>. We have : (r) = J.21 F(:. ,) d~. wb~.e F(r, tJ = x(r)e- f.' , :.,)<1,. Leibniz'& formula gives i(r) = }F(21.1) -· 

F (t, 1) + /1' (& F(~.1)/iJ1)dr = 2;.(21)e·-(/' rlM;. - x(t) ..:. J,2' x(r)e.- f; "M' ,-(t ) d-r '" 2..t (2r)p(1) -· x(t ) + 
J,:" F(-r, 1),(1),fr ,., '2.p(t)x(2') - x(t) + r(r).z(t), and therefo[t W) - r(t )z(t ) ,., 2()(1)x(21) - x(r). 

10, (a) .s'(Q} "',: +h fl f(D) d/J - p fa f( DidD. g''I Q) ,., (h + />)/(Q) ·~ () forall Q, a,1J tl1~.refore;: iH(•nvCJ<.. 

(b) ,-·«n = (p - r.>tlfi ... p) 

.,., 
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1. (a) {.Jrr}a. (Substitute 1 "" ,lax an<l use ('.l).) (h) I. (Sub~1.i111rc, = xf ,/:i and use. (3).) 

2. Fro1n (2), re i) = f( { + l) =- i r{}.) .·, ! J.i. fortheinduction proof, see SM. 

3. 11! a,. r(n + l) ,~ ..ffii(n ·r n•+li"e-<~+;:r.4ill(n>!) =. ·'•~ (nfe)•, whel'C 
"• ,= (n + 1)"'1'li'l,i-<•·•·ii2ie-1 e•m.(n+I) = v'T'+iin (1 ..;. l /11)"r."' 1e6111("·1 ll ....;. ] as n ....;. 00. 

4. dt = -dz/~. r = 0 1,-:ive~,. = I, a,1d i , .. , oo gives z "' 0. Then l'(x) = J,';' e-'r'-1 d1 = .f! 1°-r(-r.-'),Jt = 

fat (:In(]/~) )'-1 dz. 

S. (a) Introduce u = >.x as a new variable. (b) M(I) = >."(i. -1.\"'". Then M'(O} r. r>i;,. and in general, •11-1"(0) 

a(a + 1) · · · (o + 11 - 1)/;.". 

1.4 
1. (a) J:(J0

1(2x +3y + 4}dx)dy ~, J~1 (!::~(x 2 + 3xy + 4x))dy = fu"(5 + 3y)dy = 1~(5y + ~y1
) = 16 

(h)kah2(3a-b) (c)l6ln2-31u3-5ln5 (d)l/8-l/4;r 

2. k<eb - ebf") + i -- l 3. *• = 2 + 4/(a2 + 3a) > 2 for all"> 0. 

4. I = -16. (The inner integral is j\(x' y; - (y + 1)1) ,/y = -¥x2 - 3.) 5. See SM. 

LS 

.. --··--~.t: 
1 

Figure A4.5.1(a) Figure A4.5.1(b) 

3. The J<>llhlc int~gral. gives the area of A. 

J 

' J,'=X 

:~[7]· ' ·:::c/ 
'1 .... /./ 8 

. ··--·( . . . . . . ···-· ·-· ,·· ... -~ 

Figure A4S.6(a) 

• 
11 

... ,,· .,·····j---·---. 

~,~·--
... L-A···1 -----. __ 

x•··1 ...... A_..- ... , 
.. _. ------ l ,.. y 

(l,U)J 

tigurc M.S.6(b) Figure M.5.7 
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s. f}(J/15=;, 2x d.,).!y -~ jo4(J]'i4
2.,, dx)dy = 14/3 ... 12 -'50/3 

6. See Fig. A4.5.6(a). [; J; !x - YI d.t dy = 1- Ge<>meaic.tily we compute th~ v()Jume of two pyra,o.ids (see 
Fig. A4.5.6(b)). Each pyrnrni,l has a ni,mgular h2.se (Band .1) 11,;1:h area I · } = ~ and height l. So the volume of 

each is :\ · } = ! The 1c>ta 1 volume is 2 . .: ~ = ! . 
7. Figllle A4.5.7 shows the set A. We gc1 ff, 2ycos.r dx dy = f,~' <t;' 2y co~ :c dy) d., ,-, ·-4;r. (You 11=:I inte­

gration by par1:s tog.et f x~ cos.ulx = x2 sin., + 2x cosx - 2 sin .t + C.) 

8. l3) J;-6 e"o e•r dt ~' e·•" I~ 0 f;e•r '"· ~ (e.b" /J-b,9 - e""). Then I= t J: (e1'P c(J-b)@ - e''o),tQ = r<•;. ~;<b!. 

(bj See Fig~. A4.5.8(a) aud A4.5.8(h). I ·= Ji· ( f[-T e"'' ebr d/J) di'. , 

T r 
t 

F I'' 4 

2 

F 

Figure A4.S.8(a} Figure M.5.S{b) Figure A4. 7 .1 

9. (a)fr;(J;: /(~1.s2)d~i))d~1.wherea = 1/q,,b '."' l/q2-q1{1/q1 (b)j~'<.1~· f({i,s2}dt)dt1,whcrec:= liq:, 

d = l/q1 •• q2(2/l/1 (c) i!g;:Jq1 = -(l/q1) fdNI tif(;1, liq~ -q1f.c/q1)d~1 

4.6 
]. (a)2. See SM. (l>Jf

0
1 (/j(2x-y+ l)dx)tly = J;<l~(t2 -xy+x))dy = J:<..2-y)dy = 2 . 

4.7 
1. (a)SceFig.A4.7.J. 1 ~, J:(}; 1<.,+xy)dy) dx + f(f:;cx+xy)dy)dx = ft 6.t2 dx+ J:(-6.t' +24x)dx = 

16 + 32 = 48 (b) J1[J:Au + }v + ~"2 - }u2)! d11)d1! = J;(~v1 +" - ~)dv = 48 

2. SccSM. 

3. (a) rr/64. (ff A x1 dx dy °"' J;' U/--i<r? cos" f))r dr) dO . J;~ co,1 f) dO fc::2 ,l dr = rr/M.) (b) ;r /64 

4. (a) (l(f - be {b) al'eatT(A')) '"' arca(A) .,., ,/2J& = 4, IJ[ = i and an,o(,4') "' 2 · 4 = 8, ~o tbe. form~la is 

coo/inned. 

S. (a) rr(l-. ({:sing polar coonlinate,;; Jf.i, (1 - :c2 - y~) ,tx dy ~• ,t·• ;IH J~1
(1 ··· ri), dr "' ~ i2.) (b) 144/25 

4.8 
1. (al ~ll'. (Use 1)01.>u' coordinat~s, !.;1 A. , .. , {(x, y): 1 ~ x 2 + y2 :: 112 ), and comp111c Jf., (x1 

·'· :,2) ·3 
dx dy.) 

(b)Convt>rgence.torri(1, ··- I) for p > I. Diwri:cnccft•r p :SJ. 

2. l,•t / (:) = r~. F(x, z) d.t. where F(.<. l) '" f'~: f (x. y) dy. Then 1'(1.} ~· C','<. iiJl-'(x .• ~)/ilz) d~ 

... f~~. f(x,-;. -.;t.),J.x. 
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• (a) Introducing polar c.0<•1dinate.,. ff,,.,.2. t k~-_-/ dx dy ,.· .. k f/" dO J; vi - r 2 . rdr :: Zrrk/3, so 

k = 3/271. (h) fx (.c) "'(3/2r.) h'+Y':,.l ,il - x2 - y1dy •··· (3/2;r) f--.::;y:_"' Ja1 -- }'2d.Y = (3/2;,r)~,ra2 = 
? (I - x 2 ), whet"C o ,, .. .Jf="x2. 

. One iterated imegral is 1"' (j"" -!---!....,dy)h '" lim ( lim I (b. d)l • -
2

1
, whcn,as the othct is 

l 1 (}' + r).., ~•oo a-x 

/,"" {"° j - X l 
( --3 dx)dy ,. Jim ( lim /(b, d)] =•-;;:,so rlrcdouble int~grnl is uot well <k:Jined. 

I • i ()' + .r) d-•<» ,,_,.,,, ~ 

. Put F(x, y) =- J:«.• G(u, y)du, wilh G(u,y) = J!.
00 

f(u, v)dv. Then F;(x, y} = (;(x, y) and F{;(.t. y) 

G;(x, y) = f(x, y). ff 1-'(x. y) '-' }(2 - e-')(2 - e-Y) we ~asi]y iind that P1;(x. y) ,., ir•c-Y = 1~-,-1, 
• (a) Using the sets .4. in Example 2(i), I, = fq2,, (!; (ri(I + r 2 ) 3' 2) dr) df! = J;" dfJ j~"(r/(1 + r•)3!2) dr 

2.rr(l - 1/,Jl+ni) ..... 21r as 11 ..... oo. (b) !Jr3r. 

. (a) Jr. (lrltroduciog pol!II' C<M>r<linates al\d defining A, as in Example 3, we get ffA,x2(x 1 + y1r1nd.tdy = 

J;'(J~~r.(r1 cos2 8)r-3rdr)d0._-= fa2" cos 10d/l / 1~. dr "',r(l -1/n)-+ ,r asn-> oo.) (b)rr 

1apter 5 

l!x(1) =Ce-•+ !e', thenx(t)+.i(t) =-ce-• + 4e' +ce-• + !e.' =;e'. 
If x = c,•, theni = 2Cr,and sot.<= zcrZ"" 2:c. Thecurvcx = c,2 pass,;sthrough (1,2) ifC = 2. Hence, 
x .,. 212 is the desired solution. 

Differentiate xe"· = C implicitly 10 obtain re'' + xle'·'(x + ri)J "" 0. Cancelling e" and rearranging gives 
(I + rx)x "'· -x2• 

(a) Difierentiation of x1 ~ 2at w.r.1. t gives 2xi a: 2.:i, and furthec 2t.r2 +a"' 2:a2 /x1 cs 2a. 

(h) Diffe.rentiation yields fe'
2
2: - e-'i:(x + 1) + e·• i = 0, and tl1e result follows. 

(c) Diffe1e111ia1ion yields -x1 +2(1 - t)xi = 312. Simplifying and using (I -t)x1 = 1) yields 1be given equation. 

lfx"' Cc -C:
2

, then_,= C, so.i?. = C 2 and ti -x =re-Ct +C2 ,;, C2 , If X :, i, 2 . then.i ~c !1, soi2 = !r2 , 

and 1.i - x = f 1'. We condude lh,u r = Ct - c= is not the general solutio,1. 

Since i = (] + .r2
)r, i < 0 for 1 < 0 and i > 0 fort > 0. Thus r = 0 is a global minimum point, and 

because x(O) "" 0, one ha., x(I) 2; 0 for all 1. Dift'erentiaring !he equation w.r.,. !·yields i',., 2.cir +(I+ ,:2) = 
2.rt(l + x2)i +(I+ x1) ,., (I+ x 2i(2xt2 + 1). Clearly .t ,- 0 for all,, so x "'.x(t) is coJIVex. 

See Fig. A5.2.1. (The ~olutions are.x = Ct, for Ii 0. with Can ~rbiaary comt.tnt.) 

The desired integral curve is !he upper semicircle in Fig. A5.2.2. See SM. 

' I' 
figure A5.2.1 

;r . • 
, , t ' x1 + y2 = 4, X ·;,, 0 

;~~:·: 
· i.-· ·-;.-rf · ·--· :\·~t?: : ; 
" - 1 ..•. 

Figure AS.2.2 
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5.3 
I • I • 3(i-;i.-··-. -. - .. t. xlJ.l "" (r -1-· l)dt, so f .c2 d.r: = f(r + l)dt. Integration yields lx' = 2t' +t +c, orx , .. , V 1r +:3r·.1·3C ... 

lf x == I when 1 = I , lhcn I = j? + 3 + 3C, so ~ + 3 + 3C .-~, I, and hence C ~, - 7 /6 . 

2. (a) Direcl integcation yields .r ''"' i,• - U°2 + C. (b} Direct intl:1,'Ialit>n yield.~• ,:. fe' -.,S - !r2 ·t: C. . 
(c) e' dx = (t + l) dr, ~o th.at J e' dx. ,: j(; -t-1) dr and e' = }12 +I+ C. The solution is .r :" ln(it2 + t + C). 

3. (a) .t = ere-•; C = I. (Separa!e: d.r:jx = ((l/t) ... !]di. Integnuc: lnlxl = l11ltl; 1 +.c,. Hence, !xi= 
e1n1,:-,.,c, ., .. ;11,,1,,--,,,<·1 = c,111,,-·r = Cic-',whereC ,·-., ±Ci =±ec'.) (b):r = C-v I +t3 ; C .-.,.2 . 

·· · I -· e-1• • 2 
(c) x = .Ji2=1. (Genentl ,obnion: x1 

- r2 = C.) {d) .r "' 
1 

+ r'll . (Hint: e" .i = {x + 1) .) 

4. x ,,, ce· .. /•<rJd,. If a(t) = a +be', then a(I) Jt =- a1 + (b1 lnc)c . his IDlp 1cs .t = ,e e f , , 1· · · )' c .. .., , .. b/lni>c' 

C{e-•)1 (e-61'"•)"' = Cp1qc', with p"" ~-· and q = e-•Jln, . 

5. fn both cases ,V de;<pends on both N and 1. (For jnstance, in fig. A in lhe text, N(r,) == N(t2), but N(tt) 'F N(r2),) 

<i. (a) x = Ct" (bl x = c1he•1 (c) x == Cbi /(I - acr•) 

7. (a) Separable. Let f (1) = I and g(x) = x 2 - l. (b) Separnbl~. bccau.">C .ct + t = t (.1· + I). . 
(,\ Not separable. xt + 12 cannoche written ;11 Ille fonn f(l)g(x). (Not.e 1hatt(.r + t) does not count as a separation 
~canse bo!h factors would chcn depend 001.) (d) Separable, be.cause e'~' = e'r.'. 
(e) Not separable. It i~ impossible to writt; ~t2 +.r in the form f(t)g(x). (f) ~·01 sc~atahle in general. (Looks 
simple, hue no method is known for solving this equation, except numericttlly 01 m spe.::1al cases.) 

}i(l-b+(-) 

8. (a) K = [ An;\ab (1 - b + c)/''"+.), + c] , . . (b) [cr.t - fil<t'toii:r -·al-''= Ci"•-,~), 
· m:+e 

· ;., ];;. · ")1'" d v 'l •(K!ll1-" ..... A< ·A/')'l-a)/a 9. (a) K/l, = (KIJ/Lijc"""' + Cs.1iJo.)(l-e-" ) - (SA/,,.' an ·"/ = ••. , '· '" "' 
1

,
0 

as t .... 00. (b) l( '"' sAb·(, + a)P" Kl··•. $0 K(!) = [Ko+ saAb" (<1 +a~··«-f: - al'<•+') /(pa+ O]. · 
Hence, K/ l = { Kg /b"(t + a)P" + (.rttA/(pa + l)J (t + a - a1"'+t /(1 + a)'")f "'-' co aH ··• :X.'. 

to. Using the given identity,(•) implies f (1/y +ay•-1 /c.l - ayQ) dy = J d.,fx. lnre.gration (witb l > 0, Y >. 0) 
yields In y-(l/Q) ln 11-ayQI = J,u +C1 . Multiplying both sides by r, JeadHo~ny"-ln 11-tty"I,;: lnxQ+(\e, 
or Jn IY~/(1 - ay•); = Jnec'~x~. Hence, yll /(I - ayq = c.,q, with C = ±e iQ. Pmt1ng ft"' 1/C and solving 
for y yields ( **). 

5.4 
l. x = ce-112 + f. The equilibrium siatc x• = ! is stable. See Fig. A5.4.l. 

2. formula (3) yields i.mm~diately: c'a) x =Ce-•+ lO (b) x 0~ Ce3' - 9 (CJ x = c,,-s,J• + 20 

3. Applying (4) with a '" - J and b(t) = 1 yield, .t :a Ce' + e' Ji e-• dr. lnlc&,rnting by parts, J ,.,-, dt 
-re-,+ J e.-• dt "'" -,e-' - e .. ', and so the soh11ion i~ x = C,i' - 1 - I. 

Figure AS.4. 1 
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t (a} x = Ce.·'' · · 5/3. F'<>r C ,.,,. 8i3, the integral curve passe.s through (0, l.). 
(b) x = ce-~•iJ -8. Por C , .. ,. 9. the in1egral curve passe~ through (0, lj. 
(c)x = ce.-21 +c-1! .f t!~'t;dr ·,· .. ce-~' + V' "'· ~r +}.Fore . ., 3/4, theintegralcurvepa~sesthrough(O, l). 

5. dx/dt = b - ax, so f dx/(b - ax)= f dr + ,1. or (-1/a) In lb-· ax.I = t + ll. ere. 

5. (a) i + (2/t)x ~, -1. Apply (6) wilh a(t) = 2/1 and/,= - I. Then f a(r) dt = f (?./t) dt = 2in It(= In ;tf1 = 
lnt2 .audsocxp(j a(t)dt) =c~p(lnr2

) =t1
. Tti"n.x = (iit1)lC+ f 12(-l)dt] =Ct-1 -it. 

(h)x ""Ct+t 2 (c)x =C,./12 - l +12 - l (d)x ,,,C,2 +2n2/3r 

7. Clearly, i (0) "·' 0. Mun:ovcr, x(t) ~· 2.t (1) + 21.t (1) + I + tz + 2f•. HUI tht'n .i:(0) = 1, and x "" 0 i~ a local. 
minimwu point. (It is not ncces~ary to solve lhe equation. but the ~olurion i$ x(t J = l

2 
- I - ! 12.) 

3. Substimting T for Ill and -<r for .to, equation (7) yields the a1Lswer. 

I. x "'(a - l)ax - (a - 1),8 with solution x(I) = (x(O) ·-· pfaJe'''"-i)' + p/u. N(l) ~ !x(r)/A]11'•-ll, X(r) =· 
t\[N(t)]•. If O <" < I, then x(t)--+ fl/a, N(1) --+ (/Jja,1)1IC•-il, and X(I) - A(ft/aA)0 i(o-f) as t -> oo. 

). (a)x(t) == X (1)/N(t) increases with r if ae1 ==-: p. Wh,•n u = 0.3 and p = 0.03, this implies thata ==-: 0.1 (= W%). 
(b) See SM. (c) F0teign aid must grow faster than the population. 

.5 
l. Separating che variables, 3x2dx "~ -21d1, so J 3x2dx = --2 f 1d1, which gives x3 + r2 = C, or x = ijC - ,f. 

:\lteroatively. with f(t, x) = 21 and g(r.x) =s 3x2, we b.1ve f: =< g; ~-. 0 so the equation is exact. From (8), 
h(t, x) = j~ 2T dr + J:. 3~2 ,t~"" 12 +x3 -1J - xJ,sothesolution is given implicitly by rZ + x?· -tJ- xJ = C1, 

i.e. ,2 + x3 = C. 

:. x "' -~r + j~,2 + C. (We :\re in ca;,: Il. wi1h i)(.l) = x.) 

6 
.• (a) SubstilUting z = .x-1 lead.Hi) i.- (2/r)i. = -1 who~e8o]uticm is z = C1' + t. Thus.x .= (C12 +rJ-t. 

(b) X = (Ce'lJ - e'>2 (c) X = (I+ tn t + Ct>-1• 

:. Withx = w/t. x = (rti, -w)/t2 . Jnscrted into the given equacion this gives r(l + w)w = 11,. whkb ls sepaf3ble: 
f(lfw + l)dw = j(l/t)tlt, ~<) lnlwl + w = lnt + C. or ln!tx( .... w =Int+ C. With 1 > 0. we gel 
ln r + In Ix(+ ex = In r + C. St1 In lxl + Ix = C. In addition, r(I) "'0 is a solution. 

'· K e.o {ce···«m-H, ~c,An~c.1-b)e1••·N): i(a,, + .s+o-8(1 -b)i} 1111-ki 4. K "" [ceri<l «)r - ,1b/rzJ1i(l-u) 

:. (a) x = 0 is a solmion. With x = iz, x = z +· r i, which in&erted into the equation yields ( ~) i. ~· - f (1 )z i. 
(b) Equation(*) reduces to;:= -··t;:1. /(r' + 2), which is separable. Tl1e geJ1eral solution: x "'° 4r /(ln(2+ 14

) + C}. 
C '" 4 - ln 3 gives the solution through ( l, I). 

• (a)Withx •~ zr,i =±i+z, whichle,dstor.i ,~ g(~)-- z. tb)Write.theequatiooasx "·' }(.r/:)+!(</r;-·1, which 
leads to the equation t:: = :\ z-! - JZ, or [z1 /(1 ··· Z.:1JJdz = 3(1/r)dr. lntrodudni;the new variable u = l -- '.k\ 
leiids lo l = vt + C/t2 , an<lfinalty .<=I, = {di·;~ c,. 

• X = {Al) -fl/(At2 + 1) . 

• l.f x """+Iii. then.,,_., ,i - i/z2 . If«., .. u(I) is a panicular solution, the equation is converiect into the linear 
fonn i + [Q(t) + 2u(t)RU))z "' -R(r). !'or the equation ti = .r - (x -1)2 and the particlllar sol,ui,m" = t. w.: 
get ti+,= I, who~ •oluti,:,n is tz = C + 1. Thus x == t + t/(1 + C) i< the general solution. 

7 
• (x) x = I i~ un.srabl.: .. See Fiii- A5.7. l(a). (o) x = 12 is st,ihJ,,. Sc<> Pig. A5.7. l(ll). ic) x = ·· 3 is st;1blc: x = 3 

ii; u.Dst:il:>k:. Seo:: Fig. A5.7. l(,;J. 
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Figure A5.7.1(a) Figure A5.7.1(b} Figure AS.7.1(c) 

2. (a) i ,, (x - l)(x + tf. Hcrcx ~• I is un,tablc, where:u. x = -1 is neither stable norwi.stable. {It is s1able on the 
right, but unstable 011 the lefr.) (b) No equilibrium states. (c) The only equilibrium state x = 0 i:; unitable. 

3. (a).t(t) =(I+ Ae')/(1-Ae'). See SM. Sc,; Fig. A5.7.3(a) for some integral corves. (b) x = ·-1 is s~hlc; x"' 1 

is unstable. Sec Fig. A5.7.3(b). 

\ 

\ I 
Figure A5.7.3(a) Figure A5.7.3(b) 

4. (a) iJk" /'iJ., "' /(k")/f}. - ,tf'(k")I > O a11d /.W ;a>.= -k" /[).. - sf'(l')] < O wh~n;, > sf'(k'). 
(b) c = (Y - K)i L = (I - s)Y /L = (I - ,,)[(/.:). Buts/(k') = ;..k', so whe.n k = le" we have c = /(le') - ).k;". 

(c) O = ic/ k"" k i K - i./ f."' Ii:/ K - ). i11 llie stationary state. 

5.8 
t. F(r, x) = 1.I/ t ii no1 oominuou~ at t = 0. so die conditions io Theorem 5.8.1 are not satisfied at (0, 0). 

2. F(r. x) = r• + e.-•1 and F;(t.x) = -2xe_,,. ;n·c continuous everywhere. (..et the set r be defined by 

r = ( (t,x) : [Tj :'.: a, lxl .::: n(<12 + 1) ). Then M = maxc,.,,,.r(t2 + e··1
·
2

) = a2 + I, r "'a ar,d the con­

clusion follows. 

3. x(r) = 1+ t,1 + }1,2+ ... = e.'. (xo(t) ·"' I, x1(t) = f + J.; ds = 1 +1,x2(r) 0·= I+ f~(I +s),is = 1 +i + ~,~. 
etc.) 

4. X · ·' 1/ (J + <! 
1

) 5. See SM. 

Chapter 6 

6.1 
1. (:i) i "·' j r. dt = ~12 + A, ~ox s· j(~ r2 + A} dt ,., !13 +At+ lJ (h) x = -sin r + ,1r I·· ~ (see Appen<fu. Tl) . 

(<:) .. ,,., •" + Ai'-+ Al+ B 
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x ~ .1e' - !12 -·· r + B from T:;,:..,mple ~. With x(O) = I aud x(I) ,.: 2 we get A.._ 8 :cc l anl.l !le+ fJ = 7/2, 
so that A =5/(2e. - 2) and B = 1-A. 

(a) x = :1.,-i. + H + 41 (b) x = Ae11 + B + re.2, (c) x = Ae.' -;- B - i13 -· 12 - 21 

(u) Let 111(y) = u'(y). Then -w'(y)/w(y) = A, so that w'(y) "' -.l.w(y), which has the SOiution w{y) = Ao1-·~1. 

Jniegruion b-ives u(y) ,.:. J u,(y) dy = -(A/'J..)e .. AY + 1:1 i.f .l. 'f. 0. ror;,. "' 0 we get u(y) = Ay + B. 
(b) Let w(y) "' u'(y). Then --yw'(y)iw(y) ,.,. k, which is separable, with rh,: solution u,(y) " Ay-t. Tiien for 
k ,f I, u(y) ,, f Ay '1/y = Ay1"' i(] - kh- 8. Fork,,. I, w(y) = A ln y + B. . 

(a) See SM. lb) (i) Solutions itre given implicitly by x·' +Ax+ 11 = 61. ln addition, JC "' C is a solution. 
(ii) X"' lJeA• 

(a) u: = cui«
2 
cu". u: . .r = r:i"1·'1"

2 
e"~. u; -= a2erul e"> 

1 
so u:,e = u~. 

(b) u; = g'(y),-
112, ":, <= g"(y),-:, and u; = -tor'(y)x,-V2, so x"(y)/g'(y) = -f y. With w(y).:. g'(y) lb.is 

gives w'(y)/w(y) = -}y, with the solution lnlw(y)I =-ii+ C. Hence, iw(y)I = e-L,'~c = e-h2 ec, so 

u,(y) = Ae-h'. where A"' ±ec. It follows llmt t4(Y) = A J e-h1 dy + B. 

(a) With "2 =- te.', 112 "'e.' +rt', ii1 = r' +e' +1e' = 2e' +1c1
• so ii1 -2u2 +u2 = 0. In tbe same way we verify 

chat u, = e' is a solution. If u2 :;;- ku1 for all r, then r = k for al\ t, which is absurd. Thus the gencntl solution is 
x(r) = Ae' + Bte'. (b) One partkulat solution is 11'(1) ,..- 3, so 1he geJiera.1 solution is x1·1) ,.,, Ae' +Br-,'+ 3. 

Easy verifka1ion by differentiating .,int and co.s, twice. Creneral solu1fon: _t :-= .~ .~inr + B cosr. 

(a) x = :\e"' + Be-3
' (b) x = Ae~ + Be·-'• - r -· A 

By direct dilTerentiation, u, ,.., e"' anrl u2 =. ear!(l-a) "re ea.•ily seen to be solutions. They are not proportional, so 
the ge.necal solution is x(ri :a Ae•1 + Be';i;,i -.-1. where A and 8 are arbitrary constant~. 

Geneulsolu1.ion: X,: A(r +a)-;+ ll(t + br·. 

fa)x =< Ae.J3, +se·-,h, (t,)x = e-2'(Acoi2t+8sin2r) (cix = A+ lle-s,;3 
(d) x '"'e-'12(11 + Bt) (e) x <=Ac-''+ Be11 - 4/3 (f) .r = ,1e-• +Re-~'+ (l/42Je5' 

(a) x = Ae' + Be-' - ! sin t (b) x = ,\.,' + Be-' - J,e-1 (c) x = Aes, + Bt,,5• + fsl -1. ris 
(a)x = -(6+ l)e-• + 11 -41 + 6 (b)x = ! sin21 + {rrf2 + l/4icos2t + 1 + 1/4 

11' ···•kt+ Lo+ [,B + a(l - ,B)Jki·~· is a pa1ticuL11 solution. Oscillations if y2[,B + u(l - ,B)f + 4y8' < o. 

Using formula (8.1.8), C cos(/J! + /)j = C cos ,'11 cos D_ - C sin .Bx sin D = ii cos /JI + B sin flt pro,ided that 
A =··.CcosDand B = -CsinD. ThisrequiresC = ,/A2 + 81 and D ·,-=tim-1(-8/A}. 

Jfx = ,u". then.,=· e';(.ri+ru)and.i' = e''lii+2ru+r2u.l. Tlms.i'+:ix+I:>., e: e''lii-1-(2r+a)u+(r2+ar-l-b)ul = 
r"ii beca.us" r = -·a/?. :rnd r is a root i.11 the ch,ir.<eteristic cqu.~tion. Thus x = 1u" ~atislies the !,-iven equation 
provided ii = 0. The h•st. equatk1n hns the genetal solution " = .11 + 8. so the conchLsion follows. 

When (a - If= 4b, u1 = ,;(I~,, am.1 ll2 , .. {ln1)11'1·-•l are 1101 proportion:1l •11d sntisty equation (8). Let u.~ 

;,rove that uz sacjsfie~ the ,,1uation: We ge,11;2 ,.:.[I+ { (l ·- u:) In 1J1 ln--a)-I and ii.= ·-lq ··- a~}(ln tJri,1-,)·-~ .. 
md it follows c~sily thut ,i;;2 + tau2 + bu1 ,, 0. 

'.a)~ '' Ar 1 
-·· B1-l t.1:t) X "··Ai+ J/t~ ·- r~· 

I 
f 

I 
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!1- Characteristic equation: r 2 + '2tlr - '.la2 ,., (, - a}(r + 3n) = 0. Gener~! solution of !he lwmogeocous equation: 
Fru· a f O. 1 "' Cc•'' + Ci<·3•'; for a = 0, x = I'~ Qt. Panicular solution wheu a f. 0: u' ,., Re"' with 
R "" 100i(1>2+1ab-3a2) ior b ,fo a and I, op -31J. Pora 'F Oand /,=a ,md b = -3a, u' , .. , S,€.i, with S"" 25/a 
andS::-25/u,n:~1)'.'Ctiv,:Jy. f'or.n =Oandb =0:u• =50t1,andfora sa,Oandbi O:u•" (100/h2),~'. 

6.4 

I, It is clear li:om the answers to Problem 6.3.1 that (h}, (.!), and (f) are globally asymptotically SIJlbk. ch,~ others are 
not. This .i.s easily seen to agree with (6.4.3). 

2. According to (6.4.3), the equation i~ globally asymptotically stable iff l ·• a2 > 0 and 2a > 0, i.e. iff O < a < J. 

3. For). "' y(a - a) > 0 the solution is p(1) == ,1c" + Br" - k/r2 , when: r = ./}.;for;., = 0 the solution is 
p(I} ...- A1 + R + ~kt2 : for}.. < O ll•e solutio" is p(t) = A cos At+ B sin H. r ·- k/'J... The equation is not 
stable for any values of t:bc constant$. 

6.5 

1. (ai x "' Ae' + Re-• -1, y = Ae' - ui:-• - J. (Differentiating rbdustequation w.r.t. 1 gives.i' = y, and substitnting 
from the secood eqll3.tion we get x = x + 1. The me1hods of Section 6.3 give the solution for x. n,en from the first 
the equation w,: get y = .i.} (b) x = Aev'i: + Be-v'i,, y = A(.J'2 ·- l)e./i• - B(.Ji + lie-,/Z'. (x - 2.t "'O.} 
(c)x =Ae-' +Be!• +r-i,Y = Ae-• - ~Be~' -i- ir-· ~. (.i'-2.i-3.t ~·, -31.) 

a a-b b ·b a-/, 
2. (a) r = --/• ... ~I• - ---, y = --e1"" .Jr+ ···--··--

. a+b 2(<1 +h} a+h Z(a +b) 
(c)x = -~cos2r+c-Ost-l/2,y = -! sin2t+sint 

(b)x ,.,r+ l,y :a -21' -2t+ I 

3. X = AeCl+./2), + 81:(l-,,/i1,. p = A.J2e.<J:i-n, - R..!5.e.<-..1'.-l),. (.i' -2x - X = 0.) 

S. dy/dr = yf:i: = x/y, a separable eq11<1tion whose wlution curve through x = 1, y =·' ./i i.s / •= l + x 2• 

Then j ""'. whose iolution duough t = l, x = 1 is JC = f (1 + t2
). implying thal y = J 1 + 1 (1 + t 2)2 . 

6.6 

t. (.a) A == ( ~ ::::: } Hence, tr(A) = -3 :ind IAI = l2. so chc system is ,;tobaUy asymptotically s111bk. 

(b) The trace is eqnal to 0, so U1e system i.s not globally a.$ymptotically s1.ablc. 
(c) 1l1e trace l• equal to -.1 aJ1d the determinam is 8. ~o rl\c ~ystcm is globally asymptorically stablt:. 

2. (:t) A= ( ~ -;, 
1 
). fr(A) = 2u aucl IA! = ,,2 + I, ,o the system is globally asymptotically stable i1f a < 0. 

(h) A :·, ( ~ 4 
-;}"' )- tr(A) '·"' 3a and IAI ,.,., 2a2 + 2" - 4 = :2(1t -- l)(a + 2). su tbe systtm is i;lob-~lly 

asymptotically stable iff ,1 < -2. (Ll:;e. ,1 sign diagram.) 

3_ (i) ., ""· ,\e1 + Be-• · 5, y = ····· H-,-, + 2. (ii) S<:c, SM. 

' 
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''fi ,. (a).r,,. A,/• ... 21, + s/a+2J• +:... .-:aa. y = _.4.,1a--21, + R,,i•+2)r + 2.u,. af3. 
a 2 -4 ,,2 -4 

(
2/J - aa '2c, - ,1/J) 

(b)(.t', y') ,.. --,,----. --.··--- i~ ~Jobally a.symprotically stable ifJ' a < -2. 
a·- 4 a· -4 

(C) .r = .,-Jr+ 2, )' ••·· -e·l• + 3. 

7 

Figure A6.7.1(a) Figure A6.7.1(b) 

Figure A6.7.1(t) Figure A6. 7 .2 

• See. Fig. A6. 7 .2, which also shows ~ome solution cuncs. Note that the solution curves that ~tan in the first lluudrnnl 
canno1 escape from it. and appear to be closed curves. (See Example 7.5.2.) 

• See Fig. i\6.7.3(a). (111e nullctines are C =AK" = 2..;i and K = (aA/r) 1f!?-al ,. 400.J A more. detaik<l ph:1sc 
d1agrrun w1U1 S<.rme wlution curves is given in Fi;;. Ati.7.3(b). 

C C ~ 0 #- K ·.· 400 

I~ 
40, 

{V r 
1U 

t. 

Figure A6.7.3(a) Figure A6.7 .3(b) 
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4. (aJ The equilibriu,n is (0, U), which is noL stable. Sec Fii;u,·c-~ A6.7.4(a) i,nd (h). 
~b).r(t) ~ -e-1,y(I) :c·• (z(f))-;,wherez!,r) = .,, "(,,--i .._ J;e"'-'dr). Hcn;(x(1),y(r)) ~ (O,O)as,-• ·X. 

Figure A6. 7 .4(a) figure A6.7 .4(b) 

5. (a) See Fig .• ,\6.7.5(a). (b) See Fig. A6.7.5(h). 

!. .t = t )' ~ .l ~·· lnx T 1 

3~ +7 
2i L i/ "l 

1 \ 14· 
1 

I 1· 

. ··1-L..::L- ' ----+--+ X I 2 3 

Figure A6.7.5(a) Figure A6.7.5(b) 

6.8 

(
/{(x, _Y) f,2(.r, y)) (. -l l ) (-1 I') J. A(x, y) = . = , $0 A(6, 6) = . 
g·,(.x,y) g~(x.y) .-2x+B -2 -4 -2 . 

Since tr(A(6. 6)) , .. , .. -3. and IA(6, 6)1 = 6. the equilibrium p,.lint (6, 6) is locally agymptotically stable. 

2. (a) A(O, 0) = (-1 ... ~). tr(A) = ·-3. and ;Al"" 2, so (0. 0) is Io,ally a.symptotic«Jly stable. 

(h) A(l. !) ·" ( ~ -~). tr(A) > 0, so (1, IJ is not locally asympt,)tically swbk:. 

(<:) A (0, 0) = ( ~ ·-~} so tr(A) = 0, and Theorem 6.8. J does not. ;ippJ y. 

(d) ACO, OJ '.·.·· ( -~ -~), tr(A) ••· -I ,md IAI = 2, so (0, 0) is !<JC.ally asymplotically siabk. 

~- tr(AJ=-k < 0, IAi "·· 11J'-:, 0.andj5g', = -w2 f, n.sobyOlech',theol'em.(0,0)i~globullyasymptoticrulystabk. 

.t. With f(q. p) = a(p - c(q)) and /l(q p) -~ b(.J)(p)-q). !he lllarrix A in'me.)1em6.8.J. evaluated at.(q'. p"), is 

(
' -ac'(q') a ) , , . A = ' -·b /JD'(p") - If V (1, ) •:. 0 ;1ml c'(,/'J > 0, 1he.n a:(A) ··.: 0 and IAI > 0. ~o !hat it/", p"J is 

J,JCall'~ asympl(>t.ic,illy ~ta.hie. 
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5. Dirc:cr application ofOlech', thl:<•rem. 

6. (K· p•·) -((')11c1-~i .i.(!)i'1(•-•>) .1.h . • ·x• P'). {-(1-a)S 
• . - i , Y ., . ematrcl ,,( , . 1s \ /l(K")•'-' 

Tirui tl:(A) ""' -( I. - a)f. - y < 0 aud IAI = (1 - a)/ip > 0. $0 (K •, P') is locally asymptotically stable. 
K(l) = ((KJ-°" - .s/o)e .. !0-•Jr + s/~J11(L-•J ..... (s/E)1i(l-«i •~ k" a~ t ..... o.J. 

. 9 

l. (a} A= ( ···l~2. ! } Since IAI = -1/2 < 0, the C<juilibrium point (4. 2) is a local .saddle point. 

The eigenvalue8 of A arc ,_1 a,· -I /2 ancl }.2 = I. An eigcnv¢<'tor associated with J..1 :, -1/'2 is ( ~). 

(b) See Fig. A6.9. I .. The solution cw:ves thar converge to the equilibrium point are given by 
x(t) = (x(O) - 4)e ··•J2 + 4, y = 2. (One for x(O) < 4, one for x(O) > 4.) 

?. The equilibrium (k•, c") is defined hy llu~ equations f'(k") = r + &, c• = f(k") - lik'. It is a saddle point 

3. (a) (:co, Yo)= (4/3. 8i3). it is a (local) si!ddle point. (b) See Fig. A6.9.3. 

Figure A6.9.1 . Figure A6.9.3 

J. (a) (9/4, 3/2) i~ locally asymptotically stable, (9/4, -3/Z) is; saddle point. 
(b) St..-e Figure A6.9.4. 

Figure A6.9A 

Chapter 7 
7.1 

1. x = Cie' ;- C21:···• + C,e.2, + 5 
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2 .. , = Ae' + ne·· • - ·ire-•. (111c-" two re-quired equations are here: (i) C'; (t)e' + C
2
(r)e-• a..· 0, 

(ii/ C1(r)e' - C',!t)e·' = e.'. From (i), (\(r.) c,·., -c'.'1(t)e21 , which iR<en.ed in10 (ii) yield~ C:(t) = ~r2' . 
and thus C1(t) "" -±e.-

2' + A. 'T11en (\(r) "'- -i and !bu; C2(r) ~ -!1 + ll:, ·nie geoer-J! ~olution ;; then 
x(r) ~-. C 1 (t)e' + C;(t)f,-' = Ae' + Be-• -· jre-•, where JI= B: + {) 

I cosr f sinr 
3. x = A si111 + n co~ t + sinr -

1
-dt ... cos 1 -

1
- dt. ('fhe,integrals cannot be evaluated in rernis of eJemcn-

1ary function•.) 

7.2 
1. (a)x = (C1 +C2r+C312)e-• +3 (b).r = C:e21 +C11e2r .._,-'12(CJcos!v'31 +C.sinf./3r) + !t- ~ 

2. x ,.,, (t - l)e' + .,-, (t + I )2
. (The characte.ristic polynomial is r3 - ,? - r + 1 = (r - l )2 (r + J ). Note that cv.:ry 

pmicular solution must contain a term of the fonn ,1t2e-' .) 

3. K - pK +q Ii: = 0. where p "" Y1K + l'2 +µ,and q = (y1K + Y2)/L- (YJO' + Y,)f.io. Th~ characteristic equation is 
r (rZ - pr+ q) = 0, and r~ :... pr + q = 0 has two different real roots not .!qua[ to O provided p2 > 4q and q 'F o. 

7.3 
1. Using (3)(c), a 1 = 3 > U, a3 ~-, l > 0, and a,a2 - a3 = 8 > 0. The equation is globally asymptotically ~table. 

2. a1 = 4 > 0, a3 = 2 > 0, and u 1a2 -- a3 ~, 18 > 0. Hence rbe equation is globally asymptotically stable. The 
general solution i~ x = C: e-, + Clte-, .:.. C3e-21 , which apprt,aches Oas r "* ()(;. 

7.4 
]. X1 = Ae-•+ne··2'+Ce11

.x2 "' A,-, -se-2
' +Ce21

,X; = -Ae-• +2Ce2'. (We find that i, +..i:'1 -4:ii -4x; =·· 0. 
with characreristic polynomial , 3 + ,2 - 4r - 4 "' (r + 1)(r1 - 4).) 

7.5 
l. (a) V(x, y) = x2+ y2 ispositivedefiniieand V = 2x.i+ 2yj = 2.,(-y- x~)+ 2y(x- y3) =-. -2x4-zy• < Ofor 

all (x, y) j:. (0, 0). i\c.:onling to TI1eorcm 7.5.2 the equilibrium point (U, 0) is loc,.Jly asymp10tically swble. Si.n~e 
1'(.t, y) ""x

2 + y2 
_,.. oo a.~ ;l(.x, y) - (0, U);I ···• ll{x, y)il = ../x1 + }2 --,. oc. th~ equilibrium point i.s globally 

ai;ymptotic.ally srablc according 10 Theorem 7.5.3. 

(bl V(.r. y) = 12x
1 + J2xy + '.!0/ is easily seen lo be positive definite and V = 24.d + 12..<y + t2,y l· 40yj, = 

24x(-ix + ~ y) + 12(-Ix + !Y):V + 12.t(~r- iYl +4-0y(f x - hl = -33x1 ·-47y2 < 0 for all (x, y) F (0. O). 
According t.o Theorem 7.5.2 the equilibrium point (0, O) is locally asymptotically stable. In foct, nieorcm 7.5.3 
implies that (0, 0) is glohally asymproticallystable. (V(x,y) = (2x-;- 3y)2 ... I ly2 .) 

(c)The matrii inTheorem7.5.l isht,reA=, (-f .J). TI1eei,genvalues~atisfy 1-} ;J.. ~ l.; ,, o, i.c 
4 4 4 -··-,.: 

;. 
2 + 3J.. + 2 ,= 0, and we see that both eigenvalUcs oove negative real part. (Using Tilcorem 6.li. l 'we can u,;e the 

fact.1~,1 the trace of A is n,~g:,ti,c (," -1) a11d the determinant b posiiive ( =,· 2.) 

2. The equilibrium point is />Q = /,fr,. VCp) > il for I'-# P,,J, Moroovcr, V(p(tl) ,., -('l.n.ipc)(I, - pc)2 <. Q for all 
p ;f pu. and we conclude that Po= b/c is a locally a,ymptotic~lly st:tble equilibrium poin1., 

.t V(x) is positive definite. t.forec,vcr.. V(K) ,.·,· z:: .. l -u;tx)u: (x) = -(V;,(x)}1 < 0 for x t 0, and we c,;ndudc 
.-hat O is locally asyrnptoiically s11tbk 

4. Sc:cSM. 5. r.x0 • yq) is locally a,~ll\prot.ii:ally siahh:. 
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. (a) Ry integration, z = ~x• + !x2y2 -- 1;' y + if(Y), where ,pis an o.rhitrary differenti•blc function. 

(b) z. = 3x + ,p(y - 2x), whcce :;, i~ an a.rbil!llry differentiable func1ion. (c) z. , .. , - · ·-··-=:·-·- - ­
! +x'l'(l/y - l/x) 

• Tbe equalio,~~ in (3~ are tly/ dL '" 1/y and d:/d:.: "" z./2y2• Tbe '1~1 equation yields b,1 = x + C1, and then 
•lie second equatloo reduct!." m dt/ dx = z./ 4(x + Cr). This is a scp:ir.ihle differeu.ti.al equation wilh solution 
In.:• = ln(x + Cr) + (:,Z = Jo I .v2 + C2, (){ .: = C.,.fj for a new consmn1 C3. We can wriie thete Ilk! solutions 
~ y2 

- 2x = C,. zj../y = C1. The soluti()n of 1hc Riven partial diffm:ntial equation is I.hen given im plicitly by 
<l>(y2 - 2.t, ;:/ ./1) '"· 0, anrJ lhett z. ,.., ,,/y'()(y2 - 2<) . 

• (a) : = x + '()(.ty), whercq> i.~ ru, Mbitral)' differentiable. function. (b) 'l11e condition /(x, l) = .x2 implies that 
• Y + q,(i ) =- .r2• Thus 'l'(.t) = -.r + :l"2 for all x, and hence / (x. y) = x + '()(..t:y) = x - xy + ( t y}1. 

. U~ing the definition of elasticity, we t,oetxz.: - yi~ = xz.. Th<.: wlution is In, = x 1-q,(xy). or ~ :-: e',f, (xy). where 
vr(.xy) = ,,,,.c.,yl . 

. The equations in (3) ared.t1idx, ~., - f(x1) and dU /dx1 = 0, with the solutionsx2 = - F(x1) + C1 and U = C:2 , 

where Fis an indefinite in1,;gral off and C, and C1 are constants. The solutions of the equatior, are therefore given 
by cl>(..t? + F (x1), Ii ) = 0. and thus U = \o'(X1 + F (x,)) = 9J(x 2 + f f (x1) dx1). 

. The equations in (3) reduce to dy/<I.~ = y/x and dz/dx = nz/ x, wi!h the solutions y/x = CJ. z/x" .. Cz. The 
general wlution of the equation is therefore <t>(y/x, z/x") = 0, or z = x"rp(y/x). We Seo! that z as a function ofx 
~nd y is hmuogeoeous of degree n. 

. S« SM. 

. Toe equations in (8) reduce- to dxi/dx , = - f(x, . .ri), dx;/dx, = cl, ~ml dr,/ J.r 1 ,c, 0. Toe first equ.otion has a 
solution of !he f.:>rm g(xi. x2) = C1. and the others. x3 = Ci, z =· Cl. 1bus dte general solution is I)[ 1hc form 

· H (g(.x1, xz. x3) , X3, t) ,a.·. 0, or 7. = G(11(x1, x=, -"!), x,) . 

hapter 8 

. (i) J(x) '" j~l(e~ - 1)1t2 + (e1 - 1)2Jdt = (e2 - 1)2 !~ (j f~ + r ) = (4/3)(e1 - l )! 

(ii) J (x) = f0
1r(e'+< - e1-<f + (e1.,., 1- e1

- 1}2Jdt"' ,t - I. We find that e• - I < (4,'3)(e2 - J)2 . 

2 

. With F(t,x,i") = 4.xr -x=. r1 = 4rand f1. = -2.c,!><:> the Eute.requutionis4t- (d/dr)(·-2x) =0.orx ,., -2r. 
The i.-cneral solution is x = - 113 + At + B. Toe bouod.ary conditions yield.<\,: -I and 8 = 2. The function F 
is (foe I fixed) cooc:tve in f.x, xi. M we have found 1hc soiution. 

Herc F(t, x. i) = ri + i 1
, t·: ,.., 0 and f; = 1 + 2i, ~o the Euler c<\U:tlion is -(d / dr)(r + 2.i) = O. Hence 

t + 2.i "' A for some constam A. i.e . .t =,. } A - ! 1, ttnd then .x "'' } Ar - f t2 + B. T'ht boundary condition~ yield 
A = -3/2., B , ... 1. The function f,' I~ coovtx in (x . . i), ~<) we have found tlm soluti<>n. 

l~) .i'-.,::,e' (bl .i'-ai + n""O (c}i-ai + (n-2).x...-O (d)i+(li l).i ,:, J 

J~ttlcr equation: .'i "' 0. St•h1tio11: x .,, 1 + I. 

Eule,. e.quatit•n: .'>: - 1x ""~,. G~neral .solution: x(t ) " ' Ae!-li, + nt-- ( /i, ··· t. Wich x(OJ = O and x(l) = J, 

A :-. -B = 2/(el./i -e .. ~./>.\. With F(t. x, i ) , , ., 1 +1x ·l·tx.H-.i2. we !lave F;', = ?. :;,. O ;,ntl P' F'.' - (F". / ,= 
4 - ,i > 0 for 1 C [0. J J. F i~· (!.lrictly) c~x. ,;owe h;l\--e foun<l 1hr. .<lllutioo. . . ,, " " 

!-

6. x(r) = x~ + ~L-=~ (t - ,~). the. strai&ht liue through the-two points. 
ft - lo 
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7. &lier equation: ,2.i' ·t- 21 .i: - -\ x = 0. General solution: .Y(I) = Ar"' + 81"2, where .,,,2 " l1-l ± ./3). (S<.'C 
eqltarion (6 .3.8).J The boundary ct•mlit.ion~ yield: A = -· fl = (241 - 2•1r··1. F(r, .c, i:J "" x- ·I·· 1.i:x + 12.:i:'- is 
convex, ~o we have found the solution. • 

8. Let,..= [N(i) + xf(x)]t!'- " . Then 1hc Eu.lei·equalionis.rf'(x)e·-" -· 1,[N'(i)+ f (x).le-" = 0 , i.c .. r f'(x)c ···r1 -

1;(N'(i ))t!"°" + rN'(i)t:- " - ;'(x).:ie- " - f (.x)(-r)~- n = 0, wh k h redu= ro d\e equation given in die problem. 

8.3 
l. x(i) r·, <1(1 - t 2) is admissible and makes the integml e<11ml "' 11"2 /JO, which tends to x as a -.. co. The 

conclusion follows . 

2- (a)The Euler equation mkes 1bd00ll (tli dr)[e-"U'(c -· .ie''J = O. so V '(c -ie") = Ke-" for somcconswu K . 
(b) x = A+ (B + 1i v)e-" . where A and B ~re determined by the equations A+ B = .t~. A+ [B + T/i;Je-,T ::= O. 
Thissolvestllc pcoblem bec.itl:;c U"(c) = - v,: -"" < 0,so U iscxincave. 

3. 1l1e Eulcrequo.tiou is (d/dt)tci) "' 0, so x = A+ B Int fort > 0. Wben a G (0. 1) the only St1)11tio11 satisfying 
the bouoda(y conditions i:1 x(I) =- 1 •• In r / In ll. 11,e iiltegrand i$ coJJvex in (x, .r), so this is the sol~li(ln. For a = 0 
wre me nt> solutioos lo the ne<.-e.<;Sary conditfons, so there is no ,1ptitual rolu1i(•n in this case. 

4. (a) 'j- (2/rr ) y + (l / <1 1)y = Cz/(f2)(((r) - rri(i\) ~b) y = A,,r,u + Bre''" -1- i loe'" j(l -- au) 

8.4 
1. 4K. - 15.K + 14K = cl.The solution is I( = Ae2' + Bei', whr re A= P (Kr - K~ei 7 ), B = P(Kr,,.ir - K,-) 

with p = (,.2T _ .,lr}-1 

2. (a) The Euler equation is x - -wi =c -· i.ir. The solution of lhc problem i6 x = A + Be'il6 + -l.;r2 + 11, where 
A= -·/:I = (-;k T7. + ~T - S) /(erno __ I). (h) Asinparl (a),butwitl1t1 = - IJ a .. , l2.5i(l -•) . 

3. l_be Euler ~quntion is l{Uk - S) + (djdt)U'c; = 0, ut U~:(f~ .• ~l + UccC + u~, = o. We deduce that 
C/ C = [(-U,;,/ Uci - (f',c - ~})/&, where ,;i is (h-, cla.sticity w.r.t. .:o!.\$U\\1ption of lbc morginal utility 11f 
consumption. 

4. (a) D + (p - ll(D)jJD/~p - (d/dt) [ (p ·- b' ( D))aD/a Ji] = 0 

8.5 

,, • ~' ..; Ai - A/a f,A + 2aAC - C , . 
(b) p = C1t + Ci"- + k, where.!.= - fl--, k a·,.·· 

2
A(l - a,t) ···~ , 11n,l C, and Ci arc dctermmed by 

tlte equ.Uio11.$ p(OJ = C1 + C, + k. p(T) = C1e'-1" + c,,,-~r + k, when; p(O) and p(T) ace tlte given \'alues of 
p(1) fort = O and foe r = r. 

1. /.'(1. x, x) = r.i +i:J. is conv..:x in (x, .i:). Evl<.'\rcquatioo: -J;·(I +2.i) ,~ 0, nnd SOI + 2:r = A for some constant A . 

Integrating with .t(O) '" 1 yk,!cl~ x(l) .. ,· ··• !1 2 + iAr + I. Ca<e (i): Conditit,n (2) is (FJ,~i =· l + 2.i(l) =· 0, 
which rcdu,;ci; to A "'0, and lbc~lurion isx = -i,i+ J . Cii:;c (ii): Condition(:3) is bere(PI), ., = I+ 2x(J ) ~ 
0 (:-•. 0 if x(I) ;, 1), which m tuces to A :! 0 (= 0 if X( I) > 1). Viith .4 = 0. x( I) ,~ -! + I < I. Tht1s ,t > 0 
a11d.t(l ) = l, so the solu1ion i,; x "'· - t,2 + ti + 1.. 

2. (a) .T = Ar1' + Be-2
' , with A . , -·B = e) .: e,-i. (b) (i) ;· "" 0 

3. Replace Gin Lhc ir11.cgran.d by G = (rJr2) Y - (l/r2)Y. Eult>.t cquatiou: Y = m1 Y with m7 = (,m.r/ + « 1rii/<ri . 
Svlu1ion: ii = Ae"'' + fle···" 1, whereA ·,., (r1 + m)Yo/(e.1"'"'1m·- r1) + (m 1• r 1)), Fl, .. , ro - /\ . 

4. A= Ke''+ (r ·-· p)t/br + L. The cons1:i.nr~ Kand Lare detcrruiitctl hy A(O\ = Ao. A(T) "' A~·· 

5. (HJ Th" conditio11s arc -(d/dr)[C:'; (t, x)c-" J = 0 3.nd C1.(5, x(5)) ::': 0 (." 0 if .r(5) ;, !.'i()()). 

(b) x(t) : , 300r. implying tbal plantiag rak1::1 place at the consl,uil ralf." of 300 he<.1ar~ pc;- year. 
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The HamiltoniM is H = e.'x - ,.z..;- p(-u), son; = e' and f( = - 2u - p. Becau,;..: U =· (-oo, oo), (7iimplies 
that u0 (1) = - :! p(t). (5) reduce.~ fl.• j> = -e', p(2} =• O. from wh.ich it follows 1.hat p(r) ,~ -c' + c'-. Hence, 
u•(t) ""· i'-' -1e2 . From x' w. - u"(tJ = - ,:'-' + fe1 :i.nd x• (O} = 0, we find x'(;} "'· he2 , - c' + I ). The 

Hiuniltoni:11\ i~ n sum of concave fur1<;tioos. so u•(1) = !e' - ~.,Z is 1he optimal coo!JOI. 

u"(r) = U,.r' (1) = e'. p (t ) = 0. tWith H = 1- u:+ p(x+u ), Hi~ concave in (.t, u) arid H; '" p, u; = -2u + p. 
If (x',,.') ~lvcs the pi:oblcm, then u,;y ~•. 0 gives u'V) ,." !P(I ) . Moreover, j,(1) = --·(H;)· = - p(t), with 

p(l ) = 0 implie$ p(r) = 0, and $0 u•v) ~·· 0 . T'llc:n from i'(t ) = x '(r) and :c'(O) = I, we get x'(r) ~ e'. This 
!,OlUtion is also obviou~ without ILiing the maximum principle, lx:c~use 1 - u(1)2 is larges! wh~~ u (1} = 0.) 

u'(I) = -!1+!,x•(1) = it2 -!r, withp{I) "'1-l. ( lbeHamiltoni.an is H .., -(x+u2) - pu. Note that the 
fir.st minus sign is insertell bec.iuse we minimize the criterion.) 

14'(1) = r -· JO, x' (t) = !t1 - LOr, with p(t) = 4(1 - JO). 

u•(r) "' 1<cT-, •· !), x'(t).., ier+r - }e1 ·"< - !e' + 4, p(t) = er-, - l 

(~) l:i = qf(K) - c(I) + p(l - U(). (7): c'(l'(1)) = p (r), (5): p(t} - lip(t) == -qf'(K"(t)). p (1.'} = 0 

(b) K - 0.04K = - 0.5. General $Olution: K = Ar.r'·2' ·i- B e--6·2' + 12.5. K {O) = 10 ll!ld p(lO) = 0 determine 
the constants ,1 uod B. The l famill.o.,nian is co11cave in (K. /). 

11~(1) = l wilh x•(1) = r is tJ.ie obvious optiwal solution. We find that V {T) = j{ x•(ri dt = J;; rd, = ! T 2 . 

The Hamiltonian is H = .t .i. pu, sop = - H.; = - I, with p(T) = U. Thus, p = T ·- r. The opti.m,u control must 
= imizc p (r )u = (T - t)u foru € (0, I). so u'(t) = l. As before, x (1) = I. Th(}Hamiltonian is linear and hence 
concave in (x, u). 

1i' (t) '°" A(e' + e-') • .x ' (I) = A(e' - e"''). p(t} = 2u' (r), wh.ero A "' e/(e2 -1). 

(a) u•(, ) "* O. x ' (r) = x0 (b } u'(t} = -J and x ' (t ) = x0 - tin (0, J'fi-=-:tJ; 
u•(r) ~ -i(T2 - 12) and x'(t) = ~ 1J - !tT2 + x0 + (?,T2 - i>"71~ in (.JP~. T] 

, . . { ( l, 1) if I € [0, 2] . 2 10 
(a)(u• (tj,x' (t))= . ., w1rh p(r) = 2 -1. V=fo 1dt .,-fi 2dr = 2+1 '1 = I&. 

(0, 2) if t (a (2. 10] 

r 
( l. I + X.1) if t E [0, Xt - .to) 

1b) (u' (l ), x"(I )) .... · . . , with p (I ) :, Xt - xo -1. 
(0, x:) i.t t E (x, - xo, TJ 

V = f;' .. '"tt +xo) dr~· _r:,_
41

x 1d1 = Tx, + xo,,1 - }x.J- !x / . 

:a) With H "' -(11 1 + x2) + pau. (6) gives ;, = 2.~· . ,md (5) implies 11* •• 0 if -U + ap ,a 0. u' =: I if 
- 2u' +op> O. Condition (7Xc!) fields p(T) = 0. If a ::: 0, u" (I) = U, x • (r) = l, and p (t) ,,. - 2{T - r). 

J , zu•(t ) e•1 + e'J.,.T t ~•• 
'.b) If a < O. u' (r) = -·---:;-:-, (cf' - e201 e- 0

'), p(t) = ----. x ' (t) = u.r · . 
J + e·" a 1 + t · 

3e0.h I 5(eo.h - l) 3 
·,'(r) ,. .. 5 - ---- ---- x.' (1) = --~- - - - St + 10 with p(t ) = ---- - . 

2(r0·' - J) ' ell-' - l ' e"-~ - I 

'.n) With fl =-·(ax+ hu2) + pu we: have p = -- H; = .. a.and u'(t ) .rruuwnizes - bu2 + p(t )u for u ::::. 0 . 
:b) If lJ >.: <IT1 /4b: 1,0 (1) = a(l t ... T)/4b + B/T, x •(,) =< w (r •• T) j4b + Bt/1'. p(1l "' at+ 2b8/T - aT/2. 
'( .. ~ . • .... { () if I f- (0, t'] '( ) ... f O if t .. (0, t*) d 
· B ~. aT / 4b. u (r) -· a(t - ; ')/2b if t € (1 •, T)' .t 1

' .... u(t ... t ' f/41, if t E (t' . 'r]' an 

c(t ) "" u(r - t ") , wbere , · = 1' ·- 2.,/FiF{ii. 

8. With , · = j (I + ./5), the solution is: 

r 
l if t € (0, r•J • { I + I 

.,• (t) = 0 if I E (1' , 2) ' X (r) =· !(3 + ,/S) 
if t 1; (0. t"] 
if r ;; (I'' 2]' wilh 

f)(I) '" - ' . { 

... 11 - 21 + !(3 + .J5) if I <: [0, r'J 

- (3 + .Js)r + 6 + 2-/5 if I ~ (1 ', 2] 

9. (a) Show I.hat />U + p(r) must be 0. Hence, p(I) "" - 1. anti H "' 0. 
(b) mill J; u (t) dt = max 1; i (r) d1 "' n,axx(2) = I. 

JO. (:1) Obviously, u• (ti "' 0 is the only admissible control, ~o it is optimal. 

CHAPTER 9 

(b) Witb H = - J>oU + pu1, the equ:iti<tn 'H~ = -p0 ~- 2pu ,..() ha.s the solution u = 0 only if Po= 0. 

9.5 
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1. TbeBulerequatioo is.I' =_, ..... The &'Qlotionisx ~: - e-• + ,.-11 + I To solve it a~ acomrol problem, put .i = u. 

2. x•(t) = ,tel·12r + (I - A)e-! ~, with A = (4e,i2 - 1)/(e~J'! - 1). 

J. Tbc Euler equation is -ff; ((-2 -2.i}e-1/lOJ = 0, which implies .i: = Ae1i 10 - 1.. for some con$1Jlnt A. Integrate and 
use tbe boundarycooditionstogetth«:solutionx = 1-t. (Alreroativeform ofche Eulcrequ.ation: x- j0.t- -;\; = 0.) 

Thccvntrulproblem is: max /~(- 2ii-u=)c..;flO dr . .< = u,x (U} = l,x(l) "0. Wefmd that t<' (t ) = - l. p{r) = 0, 

andx(t) = 1-t. 

4. The Euler eqU11tion reduces to f,[a,.:<•··l')r + a•e•J!-•l•J = o. so ae<q-f)I + 2 i: •e(lf-,)r => C fOT s,1roc CODSUlnt c. 
Then (o:t/iH:}e-'' = ( - ne'" - 21'e~' )e-" = -C, and we can let c ,.,. -C. 
Wlth" c .i, the 8amiltonian is H ,, ir(u)e· " + /"", a,,d J)IO\'ided Im.Ti: is an interior solution. 8H

0

/3u c 

'.'l''(11' )c-" + p(tj = O. and j>(l ) = - aH ' / 3.r ..,. O. w p (t) is a con&!,mt. !be-conclusion follows. 

s. (a) Wlth fl= U(x) - /,(x} - gz + pa.~. (be conditions are: (i) x• ,r,a~imiies U(x) -·b(x) - gz• + p(s)a., for 
.t 2: O; (li) ft = g. p(t} = 0. from (ii) we imnied.ia1cly get p(I} = g(t - T). Moreover, JH' //he "'0 yields(*) . 
(h) }I is con~.tve in (z, x). so Mangasarian'$ th~orcm :ipplic~. We find th.~t Jx'/ dr ,., -axi (U" - b'') > 0. 

9.6 
I. (a) u•(t) cc T - t, x.• (1)-= xo + Tt - it2, with p(t) = T - t 

(b) V (xa, T) ,~ x.,, T + ~ Tl and 1hc cclevl\n( eqoalities iD (5) a.i:e ea.sily verified. 

2. H·(T) = x· ( T) + p (T) u"(T ) = x•(r) = r. so using lbe expression foe V(T} found in Problc,u 9.4.1, ii follow~ 
that V'lT) =·" H' (T) . 

3. lfsins the results in lbl. an~w= to Probl~ n 9.4.4 (b), weliod: av (oxo "x1 -.to, .. ,.. Pl0), ilV /;Jx, = T +xo-x1 = 
-p(T), nVj<!T ,~x1, and H'(T) =x'(1') + p(T)u'(T) ·,, x,. 

4. M for T ::, 1 tn 2 we have u '(t) = 0 an,l .x"(ti = l, with p(r) "'' 2e-:·, ( l - e-Zcr--,J). 

For T > t In 2, let , . =~ 1ncJ i(,tfT-!- .,zr - le1Tj. Tb.en for l € [0. ,·1. u'(r) ,.,, 1 811d x· (1} ,.,, ti. wilh 

p (t) = 4(e-• - e-'') -t· I. for r E rr•. T], u•{t) = 0 am! x' tt) = e'", with p(I) '" 2e'' (,.- i, - e" 11). 
(b) .l'or T :::: ! ln2, V (T) ,. 1 - e -iT and 1l'(T) = 2e-1r , so V'(T) >< Jl·(T). for T > f lo2. l'(T) c 

• • d t' ,,. 'l' p ,.. • 2t• - e'' ... e11'-lT + 2, so V'(T) .... (2 - e' - 2e2' - l T) dT + 2.- -, ,,,. 2e ' -., , ·., Tl (T). 

5. i_a} We g.:t x ' (t) = xo. Fur xo < 0. u· = U maximizes H ,,. xou. f(J( xc > U, u• = 1 maximizes I{ ~ XQU. 

(hi V(zo) = 0 wh,·.n x0 < IJ and V(x,.) = xo when .to ~ 0, .-c, V is not differentiable at 0. 

9.7 
1. (n)u"(r) oe· 11(1) .... , t +x, - x,. - ! , ,,(1) :· 112 + (x: -.t~ ... !)r -,· xn 

(b) Ve.rifit:d hy diffon:ritiating Ulldcr the integnl ~ign. 



B ANSWERS 

. (a)(s•(r)_k•(r))= 1{l.(ir+l)1.} ifu-i0.4), p(:)"{6/(r-t-2) ift~[0,41 
(0, 9) if:€ (4, 10} (10 - r)/6 if r;;; (4. 10] 

- [. r ,. ] { ./i;, if p > 1 
(bl H(t,k, p) = max,..,u.!t vk + .;k(p -1).,- ,= _ . . 

.,/k ,fl'~ l 

Hence ii" is concave in k fork > 0. TI,e solution candida1e in (a) i$ 1herefore optimal. 

u -· 2/3 ei"-2P)T _ ,,<• -2~)1 / e(•-2~)T _ 1 · 
(a) u•(1) = ----. ----e1-("··6)<, x•(1) ~, -----··---·--- ~·, p(/) ,,, ,I-·-·--···- c-•r. 

e!•·2/l)I - l e<•-2~)T - I · · y 4(a. -2,8) 
(Hin,: Argue why u"(r) > 0.) (I;,) The solution is still as in (a). 

We fi.nd !hat g' (0) = 'il f (x0) - (x - x0}. Since g has a maximum au = 0. g' (0) canno! be > 0. so g' (0) :::: 0. The 
conclusion follows. (If f is concave, the implication can he reversed.) 

3 
(a)u"(ll =< !-r,x•(r) = !1(\-1), p(I) = u•(t). r = !- cWith H ""x--r~-!u1+pu, H~ = I andH~ ~, -·u+p. 
Then p:: -1, with p(T) = 0, so 11(1) = T - t. Also, H~ = 0 yields u'(I) = p(1) = T -t aodtlieni'(:) = T ··• r, 
wilh .x*(O) "' 0. so xii)= Tt - ~t2 With p(T) = u"(Tj ~" 0, H'(T) ,~ .t'(T) - T 3 = T2 - ir2 - T3 ,,. 0, so 

T = T' = 1-l (b)u*(r) ,,,,6, T: = 8/3 • 

T = 2(Bb/a)112 

(a)u"(I) = ft1~1•··l'l• - }pet'-~''· For a"" fl=· 0, x•(r) = K - fat+ f;_(e" - 1) with p = *1(1,,r - K). 

(b) u'(T·) = ~-(a - z), where z = pe'r·. The condition H'(T") = U reduces 1,:, ?.
2 - 2<1z + 112 --· 4c = 0, wi1h 

(the only admissible) solution z "" a -- 2 jc., whi_ch is positive because a2 > 4c. The equation for determining 1'" 
is q,(T') ,·= arr - (a - 2jc.) + (<1 - 'J..jc)e-•T' - 2r K ""0. (Look at q,(0), q,(,:,o), and the sign of q;'(T").) 

With W"" -x~ - ~u1 + ;.(x + 1,), i;H')Jr, = -u +).. and fJW/ax ,·,a .. 2.t + ;... iJ(H')"/8u "" 0 yields 

u'(t) = ).(1). Moreover, ,i_ - 2).. "" -a(H")' /:Jx = 2.x• - J.. witn /..(T} = 0. Thus x• and). must be solutions to 
x "' x + ).., ), = 2x + J... Derive x - 2;i - x = 0. with solution: x = ,\e\1-t-./2jr + 8el1 ·./!lr. Then,,- = ,l, = 
.i:' - x• ,,. A,,/i,e.<·ii~l)t - JJ...fj,,;tl--../'i),. x'(.0) = l and J..(T) ""0 yields lhe same values of A and Bas before. 

Sec the answer Ct> Problem 9.4.6, 

H·· = -2u-u2 +J..1,. o(fl')'iifo =Owhen 11' ,~ !>- - l,and.i.- Tii;. = -/;(H')'iax = 0. Wdind11" = -1, 
x· = I - 1. and>- ,, 0. 

10 
u'(I):: l - ~I. x"(t) = -~11 f r + l. p(I) = 2. (11 n I - IU ... r/ + pu, S(x) :c 2x + 3. H; = 0 implfos 

p(r) .,,. ;;, ~ C<>nstaoL But p(.l) = f, = S'(.o:•(J)) = 2, so;;,., 2. H; = U yidcls u• = I - ;.,. e.tc.) 

-1"-ni• +(p-r)C!'/U'' =0, A'(O} "' Aa. ~(A.(T)):: U'(1·A'(T)+11, -u(T}) 

Ur c [0.9), thens•(t) = l,k'(t) -, .. qi+ lf,ar.dp(t) = 11/V +2). 

IT1 c (9, 10], thens'(I) =0.k'(I), 30.25, ru1d p(I) =~·--ht-

{ 

(l, I·! t) if I €- [0. ~} 
(a) (u•(,) . .t ·ct))= • . . , • . with p(t) = -f + 3/2. (b) Same solotion as in c_a}. 

(0.1} 111c(-i,JJ 

(a) ""(t)"' -2t,,l, .r"(t) = ,,nen ' - ~'),pit)-.,. 2u'(i), where-a=-~,- . 
3e· - 1 

-2!".tof 
(h) V(x0 , T} "', ----'-·--3,,ir - I 
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,,r(e"(l + r) ... l) aTv" - r1 --2o,·-re" 
6. u•(r) = at - --···;, •. x"(r) , .. ,. m ·•· -··-··-------L-, J..(t) .:· .. -··--·-······-·-

e'· (l + r) ···I· ,.-T(l+r}-J. ..,,r(l+r)-1 

7. The only problem is lopr.ovcthai 11(11) = S'(x•(t, )): fromp ''" q+ S'(.i:•)wegecq = ,;-S"(x·ix· = p-S"'-•')g'. 
Moreovtor, lJHi ;ax :: -ar i~X + S"(x'}g' ~ S'(x')ag· ia.< + qi>g' /»x. }knee iJ ,:·, -a Hi Nx implies that 
1i ,,., --aH" /[Jx. 

9.11 
I. i,'(1) = 2,,--o.;,, x'(I) = lOe"O.Jr 

2 ( "() '( ') __ {([,el-<'') if IE'((), Jn2l 
• • U f , X f) ·- , , 

(Oji-) iftE(ln2,oo) { 

2c'·• - 1i2 - 1 if t E [O, In 2; 
p(,) == 

2e-r if t E (In 2, oo) 

3. V = (1 - .SJ"1l(p- r)//i + ,r~(Ao + w/r)1•·1• Asp increases, V decrease~. As w iJ'lcrea.~es, \! increitS<:~- We 

se" rh,u .)V /nAa ""I= ).(0). 

{ 
I if t E [ -1, 01 

4• u•(r) = 0 if t E (0, oo) ' 

9.12 

• () _ [ e. - e-r if r E [ - l, OJ 
X t - e - l if I € 10, 00) ' 

I. (a) fl'. :;- ax-· tu2 +Al·· b:x + u). Sy~t~m (2) i~ .i ,,,_ -bx+ i-., .i.. "' -a+ (b + r)A. The e<[uilibrium point is 
(i, ).) ~: (afb(b + r), a/(b + r)j. (b) The pb,lSt diagrnm i~ $inti\a1· to figure 9.12.1. The solurion is x·(t) "" 
(.to-a/b(r +b))e''' +a/b(r +b), 11"(1) ,~ >-(1) = i (c)Easy verification. (DilTercntiateunJcrlhc in1cgralsign.) 

2. x•(t) = ,(1-,---'2>1, u•(t) = --./7.e\!-./'i.)r, /1(1) = -../f.el·-,,/}.-11,, >-(t) = -J2i1-./2)r 

3. la) \Vith Ti" = lnC + i-.(AKU -· C), 8(H')'iaC = 0 implic~ C').. "' l, and soc· jC" + .i.f,. = 0. Also, 
.i.-rJ.. ,., --a(H')'//JK"' -··>-a.1(K')0 - 1, or f..;>-"' r - «A(K')"··1. (b) Sec SM. (c) The.solu1.ion curve 
conv"rges to the equilibrium point. For ~ufficient condition.s, see Note 9. 11.3. 

4. (a) .i = x + >-. i :o 2,; - 2. with equilibtium (xo, J..o) = (1, -1). (b) u'(r) = l - .,-,, x"(I) = 1 - ;.e-•. 

Chapter 10 

10.1 
1. lfy(r) = f~ G(t,x(r),.i(r))Jr.,theny(I) ,., Glt,,<(t) . .i(1)),sothcconb·olproblc.n\i~: 

!.
,, 

ma-x ., F(t,.cu)di, {
x =U 

y = G(_l,X,U) 

x(1<;) = x'l. x(r1) '"· x 1 

y (to) "' 0, Y\11) ,-: K 

. d d iW' JH' :JH' ~H" 
2. With VC(;(.C)r nl)[aUon, ~/~ /-{. , ... dt H (1, ~·. u·. p) = - ;,i -'- at . *' ~ a;- .••... ;. ap . j,'. B~cau.se 11te-orem 

10.1. l yields aH· /iJK = -j,, aH" /.lu,. 0, and iJH" /Jp .ca g' = :i:", equation (1 J) follows immcdiatt'ly. 

3. f(i,,x1 +( 1 -)..)x2) ~ F()..x1 ! (1-J..).x2, Alli +(l-;..)u2} ~ }..J-"(x,, u1 )+(l-i..) P(x1, u2) = i.f(x,H·(l-I)j(x2), 

Ctmcavity of g is pmved in a ~i111ilar m«nner. 

4. Define y(I) = f~ h(T .. t(r.), 11(-r)) dr. Replace the inl1'gral Cl)nstrnint by .Y .· •. , h(t, x, 11), y(tol ,.,. 0, )'(/;) -·· K. 
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}.2 
. 11•(1)"' - 1 io (0 . 4 - ,/2], 11 ' (1) " 1 iu (4 - ./'i. 4], p 1(r) = 1 - 4, P2(t ) = -!(t - 4f. 

(ff= IO- .r1 + p 1.r7 7 (1 -~ />:2)u,andu· (1)"' 1 if {?. (r) > -l, 11' (1) :o Oifpz(r ) < -1.. j,1 = l 11Ddp1(4) = 0, 
so p,(I) = t - 4. Since frz ,,.., - p, anu p; (4) .,., O. we have pz(r) = - 1(t - 4)2. Note that. m:(r) > -J iff 
I> 4 - ,J2.) 

. .ri(r) = x?t"' 3/ld x2{r} ~-0 4 for I in [0, T - 2/u], 
x;(1) = x~,,..'l'-2 :ind .t: (1): .<f + axf.t'r-i(t - (T - 2/o)) foe I in (T -2/a. T]. 

, { l if t ~ [0. 7" - 2) • . { l if l E {0, T - 51 • l I i.f t C [0. T - 2) 
. (a)u, (t)= 0 iftE(T--2.T]' u2(l)m O ifrE(T -5,7"]' Xi{! ) "' T-2 ift f(T-1.TJ 

.t2'(t) = ' P1(t) = ~(1' ·•· r) P•(t) = -l(T -1) { 
t if I E [0 T ... 5] 

1' - 5 if I Ee (T - S. T]' t ' • 5 

(b) uj{I) = u;( r) = 1 a,\() .rj (t) = :c~(r) = r £or aU t, PJ (t) :: 3 + !(T - I ) , P'l( r) = 2 + ! (T - 1) . 

. i,1 = l in [O, 1' - 2/b). u2 = l iu (T - 2/b, T - ,·jaJ, u1 = u2 = 0 in (T - c/a, T]. 

. u'(r) = 0 in 10, r.J, u•(t) = \ in (1 •• t.,J, and u'(t) = 0 in (1 .. . '(]. w~re. r, "" T - tc{l + ,If- 2bc) and 

1., = T ·- t (l - .jf:... 2bc) . 

• (n)Neccssary cooditioos: (i) j,1 = - iJH/ilK :.- - pif~, (ii) ir. e 0, (iii) 'ilH / 3u >= pd; - Pi•• 0 , 
(iv) riff f,k = U'(c)c-'' - p 1 = 0. (b) DifferenLiaring (iv) w.r.t. t and u,ing (i ) and (iv) again yield~ U"(c}ce-' 1 -

rU'(c:)r" = - p,f~ "' -U'v:)J;e-". Using the definition of lb lllld rearranging. w~ find the. 6m ~umion in 
lb). The second equality in (l:t) is obtained by differentiating (iii) ..... r.t. t and using (l). 

. · u ' l.t.l = fol if t~ J x"(•)= {t+I ift ;:!; 1 }·• (t):: (t ift~I n,_(l) = 2 -l , "'I.I) = - •.'· 
if t>I' ' 2 ifl>l' · l ift>l ' ro "' 

l.3 
. 11'(1)= I in!O,- lnr],u'(t)=O in(-lnr, oo) 

. (a) .ri(t) '"' xf_ .rj(I) = ,urr, 11' (t ) = 0. (b) No soluti()n ex.is ts. (If .i:1 = bx 1, where r < b ,: a, the objectiw 
function becoll\CS infinite .) 

1.4 
. (i) (x(r), u (r.)) = (e' -· I. l) is admissible; (ii) N(t, x} is th~ rect:lllg.le {(r. s} : r !: x, .t - J ::; s !: x + I}, which 

surely is co11vex. (Draw a graph .) (iii) When lr<I ~ \.Ix+ ul ~ !x! ... J. so condition (1) in Note 2 i.s also sa1isfit:d. 
We conclude from Theocem I 0.4. l th:u the problem b;tS an O{>limal solution. 

. The clliM.ence of a soluric•n i, secUied by Th,-on;m 10.4.l. The s1.>lution is 1t'(t) = l if r c [0. 1/2), u' (1) ""0 
if I E (l/2, 11. (.r '(t) > 0 and p( l) = 0, so there mu.~t he ao in(e,rval (1", 1) whMe u"(t) "'0. Nore that p(() is 
s1riclly decrea~ing und x"(r) i.q inc,casing.) 

. u' (t} = o. x· (t ) c, r + 4 and p(r) = _ ,z - ~ l ,- [05/ 16 for t in (o. n u' (J) = i, x'(t) "' - 3, + 7 and 

p(t ) = 3/2 - l4t + 141/\ 6 for, inn. I]. {Rim: U = u"(I) m:uin.tizc.. ••p(t)U'' for II in {-l, 21. Theo u•(t) must 
be 2 if ;,(1) <. 0 and O ii p(t) > 0. Since lul ::: 2, one ha~ .i 2:; -3, and therefon: x(t) ?: x(O) - 31 = 4 - 31 ?: 1. 
for r in [0, JJ. Thu.~ any admissible x(t) is positive and p(t} = - 2.r' (r.) <. 0, so p\f) is strictly dccr,'~sing, etc.) 

1.6 
(a} H = -!u 2 - x - pu and .C = H + q(x - u). Tl i$ concave in (.1. 1t) and h(1, .t , 11) = x - u i$ Ii.neat and 
lh«efore qu.~siooncave. Her.\ (j) a:.e.• / ;Ju= - u'(1) - p(t) .• q(r ) "'0. (ii) q(r.) ?: 0 (= 0 if x • (r ) > u•(r)), 
(iii) p(r) = I -· q(1), will> p(2.) = 0. (b) u' \t_) = x•(t) ,, e· '. p(t) = (t' - ! (t' )2)e' - I - ~e-1, q(t) = 
- t:-, - p(t ) for t in (0, r'J ; ., "(t) = 2 •· , •. t'(t) = Jr'· - '1.1 + 2 + t• - ~(1·1'·. p(.t} = t - 2, q(t) •-= 0 for r in 
(t'. 21, with r ' d~1t,rmined by~---,• · .. · 2 - r*. (1' ,.,, 1.84.) (Not.e ttu,r one ha.s to check that q(t) ;:,: 0 fl•r tin [0.1'], 
ioo that ,:"(t) ~- u'(r) for i inc,·. 2).) 

C HA!'H~ 11 

2. Let t• "" 0.44285 be the solritiun of 2 - · r • ,·, .. e' ' . Then, 
for I iu (0, r ' J: .1' (1) = 11' (1) = e', p (r) •. , (r' + !e11' ),.-• + !e - I. and q (<} = p ( t) - e'; 
fort in (r'. 2J: x·(t) " --!tr2 - (1•)2) + 2(r - r' ) + .,,· , IL·(t) = p (t) = 2 - t, :uid q(r) , ,. 0. 

3. u'(t) "" C, .t'(I) :,, (.1:0 - c/a)e"' + t:/a, Jlll) "" ~a(t' - r), q1 (!) a, e•«'-,) - I, ql(I) = 0 for I in (0, t'J; 
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u' (1) "'' u.x•(t) , x ' (t) = vc - i:/a)e"''··+c/u, p(t) = r.(I' - 1) + I, q1(t) "'· 0 , qz(t) = a(t - t') for I in (r', T); 
where t''"' {IISX{'I' - 1/(I , I''\, t" =, (.l/lJ) l11((xr - c/11)/(xo ·- c/ a ) I, 

4, Fo, tin !0,ln2): u ' (I ) = l, .r•V) = e' - l, p(r) "" 1{1(1) = (4 - 21n2)e··• - I. q~(I) = 0, ql(I) " 0. 
fort in (ln2. 1): u'(i) :a l + 21n 2- 2r, x '(r) ,, 21 + l - 2 In 2, p(t) = I ·• r, Q1 (1) ,,. 0.112(r) = O. q3 (1) =- l - 1. 

10.7 
1. In (0. ,ji°J; u'( r) = 0, x•(1) = I - !t1 , p(I) = t + l ·- .Ji, and q(:) = O. In (v'i,5}: u'(t) =- t, x' (t) = U, 

q(1 ) = l with p (t) = l in ( ,/2, 5) and p (5) = 0 . wilh f$ = I. 
2. . ·() ·(·) l (- 1.1- r) ifr e[O.l), 

\U 1 
'X I) = (0,0) ift E ( I , 2) . 

3. u ' (1) = !(t - 2), x' V) = Ht - 2f, p(r) = t - 2, and q (I) "' 0 in (0. 2]: 
«· (r) = 6, x ' (t) = 0, p(t} = 0, q (t ) = l in (2. 10]. v.ith P = 0 . 

. ( , ) • ) { (2, I :;. 21) if r E [0, I], ( ) - 3 
4. ta) " (r • x (t ) = (0. '.l) if r e (1, 3], JJ ' "· P = - .. 

(b) It obviously pays lO keep u(t) as large a~ possible. Thcrdore we sugge~t 

foe I in {0, 2]: u' (r) = l, x"(t) = I + t. p ( t) = t - 4, q(t) = I; 
for I in (2, 3): u' (t ) = 0, x '(t) = 3. p(t) = - 2, q(t ) "'O; aod fl = 0. 

It is ensy 10 verify that all rhc c1)odilions in l11eorem 10. 7. 1 are sa1is.6.ed. Thus we ha,·e {\ll.lnd on optimal solution . 

Chapter 11 

11.1 
1. (a) According to (4). x, = 5 . 2' - 4 (b) .r, ""' (l /'.l)' + I (.::) x, = (- 3/5)(-3/2}' - 2/5 (d) x, = ·-31 + 3 

2. (a) Monotone convergence lO x• ft0m below. (b} Damped o,;cillations uround x•. (c) Monotonically ioct~a.si.og 
towards oc-. Cd) Expl01;ive osoll'1<ions around x•. (e) x, = x• for:.U,. (f) Oscillations around x• with construrt 
amplitude. (g) Monotonically (lim:nrly) incre.asing towarrli; oc. (h) l\-lonotonicaJly (linearly) dt:etc~sing ~,;wards 
-oo. (i) x, ,.,. xo for all I. 

3. Y,+ 1 = ay,, such that ,Y, ,,, .v-0a' . etc . 

4. (a) Becansc the p,,111meters are positive. Yt-ti is positive provided Yl > 0. Since :,o is p())iti~/so is y; a.s.o. 
(b) Substituting y, = 1/ x, give.< x,..i = (a/c)x, + bfc. V.'ben a ,,, 2, I, = 3. and.:= 4, x,+1 "' (l /2),t, + 3/4. 

WhenXo "" l/}':J ,,, 2,.r, = (l/2)'+: + 3/2, and so y, = [0/2)'+' + 3/2r'. Then y, ~ 2/3 a,; t - oc. 

S. x, ,~ ,/x~- l. = v's=-1 =2, x~ '"· ~ = -·./2 - 1 =-- l,and.t.,"" .ji-::"i: = v'0 =- 0. Toenx,, · . ./'o-=-i = 
.r-.1. which is not a real ou mher. 

11.2 
t. a, ,e (1.2)' · 1000 + 50 l:~,,1 (1.2)' ·• , . .,. ( 1.2)' · JOOO I· 50!\l-;' ,. 1250(l.1}' ··· 250 

2. According to to) in f;x:,mple l., lbc yearly repoymem i~ a = ?:;}~;~ ""' 805R.64. Jn 1h.: (u:;t y~..u- the imcre.~t 

payment i.< O.O?"H = 7000, and so the principal repaymcni is'"" 8058.64 - 7000 = 1058.64. In lhe last yeai:. the 
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iorcrcst payllle!ll is 0.07b.:s, "' 8058.64( 1 ··· (l.07)-: J "" 527.20, ancl so the principal ~~ymcnt i,- ,>: 8058.64 -
527.20 ~ 7531.44. 

(;i} Let the n,1nai,iing deN (ml fauuary io yem n be L •. Argue why ' ·• - l - L. = !rJ •• _1, 11 ,,,., l, 2, •.. 
(b) (l- ,·/2)'°£ :.:: (l/2)Limplicsthat r,, 2-2 -2·· liJQ ,,,.0.1339'.\4 (c)SeeSM. 

See SM. 

3 

(H} x,;-1 = A + R211·1 = A ..;. 2 IJ2' aod .<,+2 = .1 + e2•+2 "'' A + 4 82'' so x, •. z - '.lx,~, + 2.x, ,~ A ·I- 4}12' -
3,\ - 6B2' + 2A + 282' = 0 for all 1. (b) Direct vl>Tlfkation a~ in (a). 

x, n: A+ B t iJ 3 sofulion: x,+1 - 2x,~1 +.r, = A+ 8 (1 + 2) - 2[A + 1J (t + l )] ·/-A+ JJ t = A + Br+ ZB -
2A - 2 Br - 2B + A + B t ~ 0. Subs\i\uting t "' 0 and t = I in x, = A + Br yields A = xo and A + B = .~1• 

wl(h solution,\ = xo end B ,,,. x, - xo. Sox, = A + 8 t is me geno.,..,l solution of the giver, cquatio11. 

x, = A 3' + B 4' is a solutit}o. Substituting r = 0 and 1 =- I yields A + B = x.i and 3A + 4B = x:, with soludon 
A = 4~ - x i and B = -3x,, +xi . Sox, = A 3' + 8 4' is the general solutioo o( the giv~.n f'guatioo. 

Widu, =(A+ 8 t)2' + l, we have x,1.z- 4x,+1 + 4x, = [A+ B (t + 2))2"'.z + I - 4{l.4 +THI+ 1)12'+1 + l] + 
4((A + B r)2' ·HJ = 4A2' +4Bc2' + 8B21 + I -8A2' ·- 8Bt2' -8B2' - 4+4A2' +4llt2' +4 =I.Substituting 
t = 0 and r = I in x, = A 2' + B t2' + l yield~ A + l "' Xo Md 2A + 2 ll + l = X,, \\~th solulioo A ""Xo - I and 
JI e j x, - xo + ! . So x, = A 2' + B t2' -'-- 1 is the general oolution or tbe gi,·en equation. 

See SM. 

(a)x, "" ,1+B1 +u:. whereu; = - I:~ ... 1kl:k-, + rr;~=J C"k-l· (b)u; = I(r- 2)r(t - 1). You should verify 
that u; is a p:inic11Jar ~olution to the ,,q11ation. 

4 

(a) x, = :12' + 84' (b) x, = A4' + Br4' (c) x, =- A..j'y cos Or+ B../3' sin /Jt, where cos(I = -,,/!,/3 

(d) .t, ==- ('?-)'(A .::o.~ r' + B sin it)+ j 

(3) x, = (.4 + Brj(-1)' +2' (b)x, =A + H2' + !5' + ;!co;;it + ~.tjn fr 

(a) r,· = bf(I - t1) (b) m 2 - a(I + r)m + ac = 0. !w,.1 differ~ot real roots.~ double teal root, or tw<> ,ouipkx 
roots. according a~ a(l + c)1 - 4c ,. 0,'" 0, or < 0. 

lfo ,j,. -2. D , .. , c/{a + 2). If a= -·2, D = 4c- S. D. "" Am;+ Hrni, wherem1.? = 2(ab+ l ± J°I + 2Jlb} 

x, = 1'1 ( ··a/2}' =(A+ B r)(- ll/2)' , which is the resullcfaitned forcasell in Theorem 11.4.1. 

(,\) S1;1blc since lal = 0 < I - } and b = -f < I. (h) Not stable. (c) Sublc. 

(a) The fir.it two ~umoo~ suol<: thnt consumption roid c,irital are pMpottional LO th" utt national produl1 in the 
previom period. The third cqu.t1ion scares dun the n~~ oaliooal p!l'ldu.:t, Y,. is divi<lcc.l between c005umprion. 
C,. and net i.ave..im~ut. K, - K,. I ·· (h) Firs! re11lar.c t by r + 2 io the last displayed cqu,irion in tilt problem 
to obtain Y, .... ! = c,~i + K:+a - Kn·l· But c.,.i_ .,, c r,+t, K1+2 = n' Y:+•• and K,+l = <TY,. ~o WC obtain 
Y1+2 - (c+O')Y,~, +,,- Y, .,, 0. Explosiv<0,'81.i.lfo.tior1~,,ccw·wheu (c +a)2 < 4a a.aJ <1 ~. I. 

a(l + gV 
(a) r; = --···· · ·-· · ·- (b)(b + k}2 ,, 4k (c) r ,~ ..,/k. J)arnped oscilJ3tioos if k < I. 

(J ;. gJ2 - b(I + 11) - kg 

... .... . :· 
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10. (a) Toe tirst l-quatiou st.>tcs t~~t t!,e. prnpomonal incnca.sc in wa.tes is equal to the proporti()n:.l in<...,..,tL<e iii the pfice 
index one period = lier, whcle:is the Se<"<>lld equation relnte$ pri<-c.< to eurreot v.-ages. (b) The 'citpre.ssion for 
P, from (ii) is ioscrtcd in (i). Then !he equruion 1;-:iv,,,s (iii). (c) W, = (IV~ - c-; /(1 - c/J))(c{J)' + r.y/(1 - c{I), 

(l 'I- c/3) . Tu e.q1111tion is i;k•bally asymptotically sl~b/c if \c/J I < I. i'hu~ W, ->- - ~!_ as t --,. oo. 
I-· c{J 

11. See SM. 

11.5 
1. ( .. ) x, r-·, A + llt + C(-2)1

• (The chamcteri$tic polyoo1r1ial is (r -· 1)1(, + 2).) 
(b) x, ,.·= (1\ + Tit) oo~ !ft + (C + J)t) sin ~·I + 2.. (The ct:iaracteristit: polynom.iul is (t' + 1)2.J 

2. (a) Stable. (b) Not stable. (c) S1ahle. id) Nornable.. 3. A triangle with comers a, (--2. lj, (2. I), and (0, -1) . 

4. The equatloo is Slablcoo O < k < 1 andO < b < 1. 

5. Both characteristic rOOL5 comple": p<f < 4(1 - a)a. Stability: ( I + a)fiO' < 4<i' aJtd a < 1. 

11.6 
L (a} -<, '" ~ - 4 (-1)', y, = } + { (-1)' . (l'rom the equatioos we deduce that x,+2 , ,, x,, de.) 

(b) x, = -} + ;(-2)' + 1t(3-t),y, =, -t+ !(··2i'.::, " ' 1 + t(- 2)' ,;-ft(I -1) 

2- (a) For J.. "' .;;;f;,x, = J..' (A + B(-1)1), y, = .!.i.'+1(A -11(- 1)'). 
ll 

ad+ck: I . . bc-,-dk -
(b}.r, ""i.' (A + 8(-1)') + ~k',y, = ;:;i:+' (,1- TJ(-1}' ) + tl _;;;Jr.'. whereJ.. = -./ab. 

3. (a) Y, <-t - 0.92y, + 0.18894y,_, = 0 (b} Solutions of the ch.&ra~teristic equation: m 1 .,,, 0 .61. m: "" 0.3\ . Thu~ 
y, ""A(0 .6 1)' + B(O . .ll)', i, <v. 1.47y,+1 -0.72y,, etc. 

11 .7 
J. Letg(.t) = f(x) - x. Then g(t1) = ~ - t, ands<~),, ~1 - ~ ha,·e opposite si;;r.s. and lb<: intermcuiate ,-:ilue 

theorem im!)lies th.It// has a zero x• somewhere be1wccn ~1 and ~i- Then f (x•) "' x• , so.~· is an equilibrium state. 

z. (a) x• :::s: - 2.94753. See SM. (l:,) Sioce :c = e' - '.\ ~ :c •·= ln(x + 3}, 1hc positive {OOt of .f(.r) •= x is a (stable) 
equilibrium state for x,+1 •= g(x1), wber" g(.t} "' ln(x + 3). St.11rting this time with xo •= l, we get X1 = l.3R629. 
x·: :.;, 1.47848, .rs = l .49928, x, = 1.50392, .. . , converging to :c .. <>: 1.50524. 

3. The cycle points are ~1 =· (25 - 3'15)il0"" 1.82918, ~ = (25 + 3./5)/10"" 3.1708'2. Since /'(/;1) /'(}:J = 
-4i5, the cyde is fol:all y a~ympLOtically stable. The equilibrium ~tares .ire x1 = (J 5 - / j45 )/ 10 "" 0.29584. 
x1 = (15 + ./i45)il0 ::,; 2.70416. with f'(x1) =- l + ,/NT:,, /'f!'2) = I - ./'N/5"' -1.40832. It follows tb,H 
both equilibria are loc;1Jly unstable. It is also ClcaJ· thal x,. lie.s betwecu ~1 and .;2. 

Chapter 12 

12.1 
1. (a) Ji (;,:) ::x I ... x1 fnrn2(x) = 0, 1:(x) = 2 ·• 5x2 /3 for ui (x) , .. , xi3, lnlX) = 3 - 21.x1 /11 for u0(x) = 5x/ 11. 

I t follows 1hat u0(5) = 25/ 1 l. Hence .rj = 5 • 25/1 1 ""' 30/ 1 I, so ui tJ~/11) = 10/11. and finally. u~(.,)::. CJ 
and xi =20/ 11. (b)xr . ., 5-- uo. -<? = ; - uo-u,. Thesumin(•) isS(u,l,u1 , u~),., ... 22- 2u3- ('.5 ··1tof -
2u~ -(5 ··· 110 - u,)2 - 2 .. r Toi~ cooc,tv1,fw1ctionha,;a111iutirnumforuo ,,. 25/11.u, = 10/ 11,u: :,,CJ. 

- ····· l 
2. With fl , .. , (l + ,) .. 1, /r(x) , .. , /j7 ..ji with r.r;.(.•) '·" I: h - 1(XJ = fi1 -'.fi./l + p,tl2with r,j._1(x) = ~:-~jii; 

1r.1(x) ,., pr-i,1; ,(l· +,,Pf.(+ PP') witl11'1-_z(.T) ,., 1/(1 + /'/12(1 + µpi)). 



~ ANSWE~S 

· (a) With /J ,~ (1 + ,)-:. h(x} """ {17 X for uj,(.r} ""·I.for /JP< I, lr-1(.t) "'pT-lx will1 "r-1Cx} °" l.; for 
{Jp?.: I, h--1(.t) = ,~f:ITx wiEhuj .. :(x} =0. (b)for,(lp < 1, I', ccs.fi';for{/p:,;: I. I',"·" {IT pr-,. for{Jp < J, 
.fo(x) ~,. x and u1 = · · · ~• IIT , •. \; for /jp 2:: l. Jo(x) == {J7 prr and UJ ,.,. ··· · = ur-1 ,, .. 0, u1- = L 

(,1}a11d(b): /7_.(:r) ,., (2n +3}x1 withu}(x) '·" Oan<1u;,_.(.t),:, I forn= I, ... , T. 

lr(.t} = In X, ui-(x) is ,1rbitr:lf)', lr .. ,(x) = 111.r + C with C = ln(3/2) - 1/3. The optimal cont{O)$ are Uo(x) = 
u;(.,} = · · · = "r- 1 (.r) = 1/2. The <lilfereuce equation for x,•. is x;.1 = !x,•. wilh x; ~, .,·0• The solution of this 
fir.~t-ordel' diffcren<'e cqualion Ls x,• = (~ )' x0 . 

(ll)lr(.t) =m.'"l.\'.,,,A(x-1-1} =.~foru1(x) =0. J.(:r) "'max.,nlx-i,2+J,., 1(2(x-'-u))Jfors =0, 1, ... , 1'-l. 
(b) Use induction.,,;(.<)"' 2r-, - 1 fort= U. I, ... , 1', and V "" J~(xo} = J0 <0) "'I:.J=0(2' - 1)2. 

(a) lr(x) = -cu-Y•, lr-c(x) = -2./ae-''. Jr_2(x} "' -2312a1f•e-r•. 
(b) l11e diff~ence equation for a, is a,_1 = 2.Jci;, 1 = T .... , I. 

(a)Jr(x) = .fito(l, = 117,(x) = I; lr-1(x) = .fimax.,10.11(.Ju+,/P../I -u] = ..,/xJl +pwith11j-_1(.<) = 

1/(1 + p); h,-2(x) = .,fi,/1 + P + p2 with u7_2 (x)"' 1 /(I+ p + p 2). (b) Use induction. 

.2 
(it) F(t, x,, Xr+1} "" 1 - .,? - 2(.t, - x,+i)2 for r "' 0. I; F(2, .>:2, .t3) = I - .t?, (bJ The Euler c,q11ation is 
X2 - (.5/2)x, + Xo ~ 0 (fort = OJ, xi - (2/3)x: =-- 0 (fort = 1). With.<~ =~we find x 1 = 30/11 aud x 2 = 20/ll, 
as in Problem 12.1. l. 

The problem is ll1llX I:.?~--;,1(-2i3Jlx1+1/-t, - l] + lnxr. The Euler equation gh'es (-2/3):r:r~i t xi1 = 0 and 
(2/3)x,+1/x;~ 1 - (2/3) 1/x, = 0, which yields (a) X1 ., (3/2)xr-1 aud (b} x,+2 = x;+

1
/x, for r < T - 2. For 

1 = T - 2, using (a) and (b), yields -'T-1 = (3/2)xr-2. Nc:xt, inserting 1be t..ner result in (b) when t = r - 3, 
)ieldsxr-2 = (3/2)x,-3. And so on. 

.3 
luserting ilx) ,, .. -,u-x into tilt- Bel.Iman equation yields -cu"' = max.,.Rl-e-• - }e-• - atle-2'+•). The 
ma,cimiiing u is,,. ~; - ! ln(ail). and the equaiion reduces to a = 2. . ./alf + J. Then v'a « .,Ip+ . .;"'f+TT'l., 
and w er = (./µ + .., + I /2 )1. For optinta!i1y. sec St.-f. , 

( J. (3 2)(1 µ· 3 fl ., .~- I . . I . . 5/j ... 3 + ,/(5/3 _:-3)! + 24/i a " --- +a ) "" « , anu wcon y ""s1t1ve so u!Jon 1sa = • -. ~ ~ . 
u'(xl = -a{Jx/(1 + at/i. (b) Note 2 applies forx e X(.t0) <; [-xa, Xo), u E [-x0 , x0 ]. 

.4 
H = I - (x= + 2u

2
) + 1>(.t - u) for I ~ 0. I anll H ,,, 1 - (x1 + 2u2) fort= 2. Condil:ion 13) yields Po= -4u,i 

and Pl "'' -4uj, and condition (4) gives Po = -2.;; + Pl and Pl = -2x2. Now . .rj = .t,j - u0 = 5 - 110 and 
x; = Xi -ui = .5-· "o-"i. From all these equation wcgctuo '" 25/11. "i = 10/11, ui = 0. (Start by eliminating 
Po and P1-) The Hamilconirut is COJ\Cave in (x. u), :,owe have found lhe solution. 

<aH = }::°;.,11< .. ~-2.r;J "" u~-zxJ+ I:.;,,. 1cu;-2x;) ""'uj+ I:.:~: c"~ -2u~_1> = -ui-ut-ui-·. --uL +ur 
I is m.u.imi7.:d when ui, ""ui = · · · -= "r _1 = U and u1 = ±l. (o) p, ""0 (c) The ffamiltonian i~ minimized . 

.5 

(a) 1 "" 12 ... 21to - ZuJ - 11: - 2uf - 2u~ - 2i.'O -· vl - v1 - 11f - irz. Since I is concave as a sum of concave 
tunccio11s, the uniqu(: Sll!tioual'y point (u0 • 11), u1. v;, u1 , •>:>.) = (-!, --·I, -- ! , -! , 0, o) solves the problem. 

(b) Ji(x,.vi "'I+ x ··-:; forui = v; ,,., 0. J1(x:, y) ;., ~ +2.x -· 2y forui "-!, u; =--~.and lo{x.y) = 
3t -t-3x .. 3yforu0 = .... !. u0(x,y) ,···:-!. (cJSeeSM. 
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2. TI1e 11.:imiltonian Ls ll ,~ -x2 
- u' +PY+ q(.v + u} fort< T an<fH"" -x2 --,~2 f~r-i.;,,, r, so it is ~vein 

(x, y, u). Toe. conditions ia Thc,m:m 12.5.1. usiug Note 3, arc therefore· sufficient: · '. .. ... ·. ·.: 
(i) -2u; +q, '"'0 for I<. T, -2ur ~· 0 (ii) PH .. , -2.x.: fot t < T, Pi-1 = -2x;: + Pi·;witb Pi= 0 
(iii) 'l<-1 = /11 + q, for I <: T, qT-1 ~, qr, with Qr·"" 0 (iv) ...:,'+1 = y~, V;'.._1 = y; + u~: . 
Derivetheequatio11x;+2 - 3x,"+1 +x; = 0. Fort < 1', the solution isx,' =Am\+ 8>n~, whcrcm1,2 = .~(3±.;/s). 

Mol'e.over, x() =· x0, xt :-·:- yij :·-= y0, and}~= x;+i• P: = -2x;H,qt = 2(xt_t-1 -.r;~\), andu7 = Jq,, withuj. = 0. 

3 . .r; =s P' x6 , "~ = p<+• Xo, (With H = /3' ln(x - u}-i· pu, the oonditions are: (i) oH' /<lu"' p, - P' /(x; - u;> = O. 
(ii) p,_1 = iJH• /iJx "" /J' /(.r;- 11;), (ili}!i!!!, ... 00 p,(.t, ·• x;) ~ 0, (iv)x,\1 ""u~ .x~ =- xo, From (i} aod (ii)we 
get P,-: ,., p,, sop, "'· /\ a constant. From(i) and (i\'), .t;+J "" x,• -/J' /p, with8olutianx; "" .to+(t!'-1)/ j,Cl -{3). 
The firmerm in (iii), ;;x,, is positiv~. Moreover. -px; '" -· ii[.<o + Ul' ·• 1)/ p(l - fl)]-> 0 ifl' jj = 1/xu(l - ti), 
and then x,' ""/3' xo. Nore th.at x; - u; =- ft' xo(I - fl) > 0.) 

12.6 
t. tr, .. 1 = 21u,K)1f2, u,-1 = x - (1/2y)ln(a,K); Ctr = 8. (If J,(x) = -<Jl,e-r•, writing x,_1 = x, u,_, = 

"· and V, · = V, the optimality equation is J,_1(x) "" -o-,-1e-l'' = max.(-e-r• - a,Ee-•<2.r-.+V)J = 
max.,(-e-"• - <¥,Ke-r(2x-•l). The first-order conditio,1 is ye··r• - ya,Ke-2r•+r•· = 0, with solution u = 

u,_1 = x -(l/2y)!n(er,K}, .so -a,-,e-r• = -e! 1•~s,KJe-r• - a,Ke-r•e-il•C•«Kl_ Hcncc, a,_1 = 2(a,K)Jl2 , 

Cl]'=~.) 

A, · · • [ ,, - V, ) o ( l' · • l . 2. Optimal control: C, = - an_d u;,, where w, L~ a solution u, E -.-, -"(·---- = no c.-.:p ic,t ,ormu a ,s 
I:, . .. I, i, + r, - V,)w, 

uvaifab!e). Herek, is governed by k, = 1 +k, 1.i/(l +$), kr = i:. Valuefunction: 1,(.1,) = (l + 0)-1k, lnA, + b,, 

1 [ k,.._r ( k,+1 ) ] -t . 
wherefori < T, b, =-Ink,+ (I +6)- k,+i In 

1 
+6l -In 1+ J .;.e +d, +(I +ti) b,+1, w1thb-r = 0 

and,t, = E ln[(l + r,)w, + (1 + V,)(l - w,J]. 

3. J,(x,) = k, + a,x,, a, = a2•-T, k,_1 = k, + 2/a,, kr = 0. "• = 4/a~+I 

4. Thcoptimalitye,11~1tion~arc-b,.p:2 = J,_1(x, 0) = ma'(.{-«2 -(1/4)a,(x,-;-u)2-(3/4)b,u1}, and-<>,-1x1 = 
J,_1(x, l) = max.\-u1 - (3/4)a,(x, + u)2 - (l/4)b,u2}. The optimal l!onlrols are u,_1(x,U) = -o,d,x, where 
d, = 1/(4 +a,+ 3b,), wilh b,_1 = a;d; + Cl/4)a,(4+ 3b,)2d'f + (3/4)b,a;d~, and 11,_, (x, I) .. -3a,,:,x, wbe1·e. 
c, = 1/(4 + 3a, + b,), and a,_1 = 9a/c(.- (3/4)a1 (4 + b,}2cl + (9/4)b,a'fc?. 

5. (a) and (b): J,(x) = maxtx2, a, + 2x2) where a,_1 = -i + !a,, "r-J = ·· l, u, = 0 if a,+ x2 ~ 0, "' :a:. I if 
a, +x2 > 0. 

6. u, ''- .t,/(1 +t1;+1). a,"" (I+ a~+1J1i2, a7 = a/2 

7. u, = ii ., (q - i>)/(ij + p), where q = q-11«, p = p-lJ,,, J,(x) = t\,x 1-", A,_1 = ,1,[pll ·-;- u)1-• +q(I - ,,):-•i 

8 . .l"f = i .... Ur,, X2 = 1 .... lJo .... tJ: ~ .t3 = ! - UI) - t,'l - VZ 

12.7 
l. (a) a"" [I - 2/J - jl + 4p2]/2jl, b = afJd/(1 - fJJ. (b) Si.:e SM. 

2. The optimal controJi.s u,(.r) = (1--a)(l +tcr1 x. an.:! tl:-c valuefuocrion is J(x) = a lnx+b, wberea := (2-cr)-J, 
b"" [ad+ aa lr.(o-a) - (I + aa) ln(l + aa}](l - ixr1. and d = t; In V. 

Chapter 13 
13.1 

l. d(11,y)~ f..t;-Y,;lforallj,soifd(x.y) <r,theuix1 -.Y,I <r,whichmea11sthat ·-r <X;-Y; <r. 

2. Ry the triangle inequality, d(:t,!t) ~ d(z,y) + d(y,s), .<o d(1..x) -d(z,y) ~ d(:,,;,y}. M-,reover, t.l(z,y) <: 

d(z. it)+ d('x. y), s,, -d(x, y) :: d(z, x) - d(z. y}). This proves the desired inequality. (Recall that l"I ~ b ~-,.,:.> 
-·b ~a::; b.) 

~ 
11 
I 



ANSWFRS 

d(x, y)-= ,/L.1-i (;-;:";~·)-=, ::= I::j ,1 ,/{xj - Y;)' = l..,j,., lx1 -- Yi I 

S1 is open and bounded. S2 i~ closed and hountlul. S3 is closed and unbounded. Sa is neithur open uor closed, but 

houn&.:I. S: is open and unbounded. 

See FigllreAl3.l .5. Sis closed because it contains all ilS boundary points, which are 1he points on 1he c111'1/C. 

Figure A13.1.5 

(a) Tiie point, ( l/11, I), n = I. 2, ... , all belong 10 E, bul lim.(l/ 11, I) ,., (0, 1) does no1. Hence Eis no1 closed. 
(b) F i.~ closed. (The point (0.0) is !he only accumulation poi,11 of F-i.e. !he only point wi1b the p.-openy that 
cvcfy open ball around the point contains infinitely many pointS-from F. Forruna.tely. (0, 0) E f.) 

Clomlness: 'inc pointS (211, I) are bounlfat)' point~ of A and B, but do not belong to either of tho~e sets, so A llO<l 

8 are not closed. C is closed because ii conlliill~ all its boundary poinrs. Openness: A and C are not open since 
no ball (two-dimen$iooal disk) at all can t,e. contained in A or C. B i~ ob"iously ope,1., becau&e it is the union of a 
family of opeu rectangles. 

a S = cl (S) n cl(CS) is the inteti;ection of two close<l sets, and is lherefore closed. 9. See SM. 

(a) The interior of an open set is the set irisclf (see the remark just b~fore Theorem 13.1.1 in the main text). Hence, 
for every U in 'U. we have U "" int(U) 5:; int(S) {by Problem 9(a)l. Also, int(S) is ope.n and comained in S, so 
int(S) € '11. lt follows that illt(S) s;; Uu,u US int(S), ~o int(S) = Uu.u U. 
(b) Similarly, every closed set is its own closure ($CC Problem 9(b)), so for every F in :r. we have F = cl(F) 2 
cl(S). Moreover, cl(S) is closed and contains S, •O cl(S) E :F. It follows thal cl(S) ;? nf·<,- F 2 cl(S), and so 

cl(S) = n,,,s· F. 

Le.I A, = CB!i•(O) = {x : f:llll :::. 1/ k}. Since B1it(O) is open, Ak tsclosed foe ea.ch k ~.- I, 2, .... But the union 
A ""U, ,1,. = C(n. B;i•(O)) = {x: x?.: 0} = lit : x 1' 0} is not cfo~cJ •. since O belongs to cl(A} but nm to A 
itself. 

Let { f; ),0 be an arbitrary family of closed sets. To pr<we (b), note that (1, F; = C{U;(Cf,}). Since e.ach CF, i~ 
open, the unioo U, (CF;) is op<.,'11. and therefore its complement is closed. Prut (cj follows in 1.b<' same way from the 
identity U, F; =" C(("l;(CF,)). (In (c) we mll<I assume th:it thcindc,: .\et l is tinite.J 

aO. = J.1, ~cause adiitrarily clo~e to any nnmher iu R, we can find a rational number. Hence, 0 = 0 U ao = R. 
Since every open in!Cl'Val contains irrntion•l numbers, int(O) = 0. 

!HJ ,fa .5 ,! R", let a E S, b •" CS. forµ. in fO, I J, let"" =a+ µ(b - a). Then Gi = ;i ES. but c, '·" hf S. Let 
i. = sup{Jt E [O, 1 l : c,, ~ SJ. l'h<:n ,:,. E as~ cl S, bui <'~ ( int S. Herter, int Sf: cl S. so S c-innc.•c he both open 
and closed. 

(a.) and (c) are fal~e. (b) and (cl) are true. See SM. 

2 
(a):,,:•··> (/J, l) (h)lf; docsnotc.onverge. (c)lf;., _,. q,oJ (d)~ --> (l,e). (Recallthar(l ·l· 1/k)'-> ",.,, 
2.7l1l28 ... ask -. no).) 

(HAPTEK 13 597 

2. Suppose that the sequence {lrtl convc~cs m x, and l.~at y * ,:. l..cl r = d(x. y) > 0. The-re exist,;~ nacu,.al number 
K such that for a!Ik > K., ~ lies in IJ(x; r/2), which is disjt1im from B(y; r (1). It follows 1ba! 1hc sequence c.allllot 
C(>OV~-Cge toy. 

3. Suppose (,:t} is :i sequen~ein R" c.:mvergingtox. Givens--:,.. 0, choose an~1ural number N -such th,il \l,c,-xl! < e/2 
for all k > N. Then fork> N and m ~ N, ~x.. .. x .. 11 = l!(Xt -- x) + (x - lCmln ~ IIXt - x1: + :1x - x.~11 < 
ei2 +e./2 = e. The-refote /x,l is a Cauchy se.quence. 

4. ff S io unbou11ded, then for every k then: c;xi..i.s a point X.t in S with ,is, ii > k. Ko subsequence of {s:1 I can he 

convergent 

S. Hint: Show that if rhe sequence [:i... I does not. Co(lverge to x0, then it h:,s a sut,scquence converging lo a point 
different from -,.0 . Remember that !he set X is compact. See SM. 

6. You ueed to show that A x B is dosed and boundw Sec SM for details. 

13.3 
1. Define the continuous functions f and fl from t.:2 inl.C> R by f(x, y) "'2x -- y and g(x. jJ = x - 3y. Both these 

functions are continuou~. and ~01:he !Sets 1-1 (· .. 00, 2) ami g-1(-oo, Si are borhopen. S j:; open a.s Ute intersc<:tion 
of these open sets. 

2. S = n, g,1 (!-x, 01)- Use 'fheorein l3.'.\.4(b) aud Theon:m l3. l.2(b). 

3. (a} S = IR. f(x) = e', j(S) = (0. oo) (bi S = H, f(x} = .,x'. f(S) "' 11, oo) MS= (0, 1), f(x) = lj., 

4. for any c > 0, Jet t = e. Then if d(x. y) < .5. it follow~ from Problem 13.1.2 that !f(x) - .f(y)! "' ld(x, it) -
d(y, a)I-=, d(x, y) < s. 

5. The inier:;o;e1ion of Sand B(y; r) is clos.:d and bounde.d, hence r.:ompact TI1en h(ll) att:ri.n~ a mininm111 at some 

po.imx" in Sn 8(y; r), and:,:" is the requirr.:d point. 

6. Tf f is not continuous at x0, then there exists an :; > 0 ~uch tha1 for every k = l , 2. . . . U1ere exists a poi~t "l in 
/J(:,!l; I/ k) with llf(x,) - f(llG)II > F.. Toe sequence {x,} converges to x°, t>ut {f(x.t)I does not converge 10 f(x"). 

7. Sec SM. 8. You =:d to consider tht F--1i definition of continuity. Se.e SM. 

13.4 
l. (a) Sis cornpact and f is continuous. so by Theorem 13.4.l. V is continuous. 

(b) 1bc clos11rc of Sis cl(S) = /(y. i) : y 2: 0, l:::. 0, y1 + zz :::: 4). This set is compact, i.e. closed and bounded. 
Hence, for any x, fC,. y, z) will attain a maximwn value al sowc point (y,, z,) in cl(S). Obviously • .Vx > 0 and 
i.,· > 0, so (y,. z.,) E S. This implies rhat tli,: rupremum value of j(x, y, z) over Sis au.aine.d at (y,, x,). Hence., 
V(x) ,= max.(J>,,)<•!<SJ f(_t, y, z), aJJd by Theorem 13.4.I, Ii is continuous. 

2. (a} Theorem 13.4.1 implic~ that V1 i~ continuous. r_b) Let ~(x. u) = .,-•"
1 

- (u -· x)\ so that V2(x) = 
m~,.,R rp(.t, u). ltis cleartb,itif .c <: 0. the-D V1(x) = ,:,o. It'., :: 0, lhen 'i';cx. u) i=: Ofor ,, :::: OandfP2(.t, u) < Ofot 
u > .<. Therefore V:(x) = max"eR q,(x '. u) ,.,. ma."<.,c(0 .. , 1,;,(-t, u). so fof x > 0. Theorem 13.4.2 yi,;Ms continttity. 

3. For each fixt:d x. ~mdy where J (x. y) is iucrea.<ing with resp;..:! v., .r aJ!d where it is uccrca.sing. See SM. 

Al!'J 
4. We have f~(x, y) ,,._. 

1 
+ ;-~-r ··· 2y. «> it is clear 1bat /2(.t •. ~) > 0 for atl y i 0. Hence, for MCb value of x, 

1.h.o func.rifln /(x. y) alt11.in~ its m:u:imvm wi1h res11ect toy in t at s(n1n:, point of fO, l]. (Sine" f(x, y) is stric<.ly 
concave with respecl toy. lhc maximom roi1,1 is al~o unique.) Then·f,.>n: V(.r) •·· mu.xy,[U. lJ f(_x. y). Since [0, l} 
1$ cmnpacr, Theorem 13.4. l shows that V is cc,n111mou~. 



ANSWUlS 

.5 
(a) S +Tis the n:ctaagle (Can,~i•n product of imt-rvals) (a,b) x (c, d) with corners (a, c), (h, c), (b, d), and 
(a, d). (h) S + T i• S tr:tnslatc<l so that its sourh-wesl comer coincide& wifb T -i.e. S + T is the r~-4:t\Jlgle 
(b, b +a) x [b,b + a]. 

(c) co(S) =· the set of all points i111hc mangle with vcrtic.,,; lit (0, 0), (a, 0), and (0, a). 
(d) co(S) is the clo.sed square wirh the. four points a., e~ircme points. 

Let)., = 11;/N for i = L ... ,11. Then tbc ,t, are all nonnegative and lheir sunt isl. Hence :i; = E'.:1 ,\,X; is 
a com,eJ1. combination of the points J.;. It is called the bary<:c11t,e, OI cenrre of gravity, of the X; (with weights 
,t, ""n;f N). 

h + (I - A)y = ~f=l ,U;u; + r:r l (1 - ).)11,;V;, and Er1 u., + EJ~1<l - i,,)µj " ;_ + (1 - i,.) = I. 

An interior point evidently lies ''properly inside'' ~omc line segment in the conv.-:"t set. 

Mathematical. induction. 

See SM. (1/irrt: Every pc-int inco(S) can be written •Sa L-onvex combinali<ln of exactly n + I points (not necessarily 
distinct) in S.) 

6 
Use Theorem t 3.6.1 to fio<l a hyperplane that slrictly s.,pru:ates S from the origin. 

Foreveryi.infO, l], wehaveJo.x1 +(1-,\)y, E S,andtl1crefo,:c,>,x+ (l-1,,)y:s,, tim1(x.i: +(I-· ).)yl) E: S. 
Hinl: If x i$ interior in S, there exists an n-~ubc conlaincd in S, with x as its c.:ntre point. Arbitrarily i.:Jose to each 
corner z; of the cube there is a point y, from S. aod when the YJ are sufficiently close to zJ, then evidently x lies in 
the interior of the convex hull of the points y i. See SM for a diffet"ellt argument. 

y is not necessarily a houndazy point of S. lf S "" Q, the set of rational nwnbel'$, then S = C. "" R. the whole 
real line, nnd ../2 is certainly not a ooundazy point of IR. 1-'or a different example, consider the closed unit dfals. 
D = ((x, y): x2 + y 2 ~ l] in R2, and let D. be the punctured unit disk D, = {(.r, y): 0 < x2 + y2 :S l). i.e. D 
with the origin removed. Then (0, 0) is a boll{ldary point of D,, but 001 of its closure D, "' D. 

TI1e statement is false. Con$idcr two intersecting straight linos in ?~2 • 

7 

(a) We easily find 1bat (l - Ar1 =· l ( ~2 i2). am.I from Theorem 13.7.2 i1 follows that A fa productive. 

(b) Ler 1 be then x l matrix. (column vector) with. a)l clelll&llts equal to 1. TI1cn AI is the vector of row S\Jms in A, 
so Al « 1. Hence A is productive by the dcfiniflon in (1). 

(a) ,\ = 3 and (I, I)' is an associated eigenvector. (b) ). = !<2 l-- ,Ii). An asS<>eiitled eigenvector is (3, .J2 )'. 
(c) ). = 4, nnd (2, J, l J' is an assodated eigenvector. 

1apter 14 

The dQlnain of Pis clo~ed, and ire gropb is dosed. Fis obviously •K•I upper hemicontinuou, at x = 0. 

(a) The graph is doS<.'tl, so the. cotrespondcnc.: has !he closed graph prop, .. ,:ty. ft is aot lower hcmicontinuous. 
(b) Closed gr•ph propeny, but not )()wcr hcrn.icontinuous. (c) Not clo~cd graph property, bur lower hemi­
:ontinuotL~. 

The- domain of Fi,; closed, and ilie graph is closed. lb show l.b.c., for as1y / E!. F(.,0), if x. - x". choo.se 
y0 ""miu{/>, l/x0 ! (le.t Y• ... , i if x. = 0). -1ben Yr. -+ y0, with /J ,;- F(;cu). 
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4. See SM. 

5. For a sufficicnl.ly large number a > 0, tx,th F(-1/) and G(x0 ) are conuinc,I in the ball B(O; a). Then 1bcrc exist~ a 
., > 0 such thai F(x) £ B(O; a -e- I) and G(:i.) ~ B(O; Cl'+ I) whenever 11:i: - x0 1i < 8. Then H(x) ~ 8(0; 2a + 2) 
for such JC. Renee, by Theorem 14.1.3 it suffices to prove thac H(:,:) has a closed graph atx0• Lc1 x. -+ :i'. h •• -,. b, 
h. €' H(~). Toenh0 = r. + g. for some f.,. in F(x.) and g. in G(x.). A ~ubsequence (f.

1
, g.,;) c,Hwcrge.s to some 

point (f, g) £, F(rJ) x G('x0). Then h = f + g tc H~)-

6. Use the char.ict,:rization of l.b.c. in (14.l.8). See SM fo.rdetails. 

7. The 6':X}llence propetty described in [lie, problem imJJlies that /i has a closed graph al x0 . Thus by'.fheorem 14.1.2, 
it suffic.:es 10 show that F(x) is k,cally bom,dcd oear r!l. If it is 11ot, lhen for every k tlicre i~ a pair .t', y1 ,ruch thar. 
ilr' - x0 tl < I/ k, Ht II > k. and y1 e f(xk). llut f.l/J c:ootains no convergent ~ubscqucoce. (It is also true !hat if 
F is compact-valued and upper bemico11tinuous at 1°. rhen rhe ~equence property in the proolem holds.) 

8. For each i we have g,(x, y) -< b; and gi(x,y') .::. b;, so for every>.. in (0, l) we gel g1(x, )..y + (l - ).)y') ~ 
).f;(x, y) + (1 - )..)g;(x, y') -< i,.b, + (I - :...)b; "' /J,. It follows th:n ;.y + (l - .l)y' Es 5'0 (x) for all},. in (0, 1). 
Therefore y' = lim~_0(1,,y + (l - /,.)y') e .1'"(11). and by Example 14.1.5, .1' is I.b.c. 

9. Fora point (x.y) with x EX andy e .?"(x), let A= {ag;(x,y)/axj};.,. where I= fi: g;(x,y} '"'b;). Thell 
Az = 1 has a solution z. Hence, for all o > 0 1hat are small enough, g; (x - ,5z. y) < 0 for all i in I, and also for 
the other i's, soy E :J'°(X). 

10. SeeSM. 11. Use Problem 13.5.7. See SM. 

14.2 

1. V(.t) == xZ/4 -x if .x e (0, 2), Y'(x}-= l···./xTJ., v'i/21 if .x E (0. 2]. {

-x if, SO { {O) if.t =, 0 

-I ifx >2 (-l. l) if.x > 2 

2. It is easily s.:en lh«t ~(p, m) is con1inuous form~ 0, p » 0. If some p; = 0, jl(p, m) becomes unho\Jn<led. 

3. For p » 0, m > o. the d,:mand correspondence is upper hcmicontinuous ancl the intlirect utility function is 
continuous. Quasiconcavity entails convexity of each set f(p. m). 

14.4 
1. }(x• + l) = x• would imply:<'= I. The interval (0, l) is not closed, so Brouwer's theorem does not apply. 

2. Both E and B ·a{C compact. TR ha5 the origin ns its only Jix.ed poiut. whereas TO has no fu.ed point. (Co111pai:c I.he 
sheep example il\u~tmed in Figs. 14.4.3 and 14.4.4.) 

3. Suppose x E c,.•-1. Then the ith component of the vector Ax is equal to LJ=I a,JXJ, which is~ 0 oecause all 

the XJ and all the a,; are nonnegative. Moreover. the sum of all the components of Ax is I:7=1(:[;=1 a;ixi)"' 

r:,;_ 1 xi Li~, a;i = LJ=> xi ,. l. Tbus lhe linear, and therefore continuou&, llansformation ,i >-+ A,c ,naps /.\"- 1 

into it5e\f. ~y Brouwer's theorem !here e..usts an x• in S such that Ax• = x•. 'Thus ;., "" I is an eigenvalue for A. 
and Jr" is an eigenvector. 

4, F b>tS the. closed graph property, hut has no fixed poinl. Kakutani's theorem doc., n<>L apply b..'Cause F(l) is not 
convex. See Fig. A]4.4.4. 

-~····~ .. , .... ,--......... 
2 X 

Figure A14.4.4 

,: 



)() ANSWERS 

;. We shall show that x • i~ a fixed point for f. 
( I) If r• > 0, then for ,:v,,'Ty n,1mra/ number n, we ran fi.ud a.u .t., in A wilh r• - 1 j11 < x0 .::: x•. Since f (.,.) :::_ x., 
we gel f(x') :c:_ lim, ..•• •- f(s)::: fmi. /(x.) ~ lim. x. ,.,,. x·. 
(2) If.,• < I, the.n j(s) < s for every .1 > .t", and so f(x•) ~ liin,_,., /(,<) $ lim<-+,•+ s "" x•. . 
Cl) It follows from (I) and (2) rh.!11. if O < x· < I, then f(t").::: x• ~ f(x"). so j(x') ,, .. x•. 
(4) J1alsofollowsthat,if.<' =0,thcuO:;: /(0) = /(:,,') :sx' =0,andi(.<'"' l,tbe.n I,: f(x') ~ x• = I. 
Hence, iu every case, we get. /(x"} = x'. 

4.5 
L. The budget set does not change if p i< replaced by J..p, with ,. > 0. 

~ppendix A 

.1 

:. Suppose that {la}, \a, b)l = {le},{,:,,/}}. The.re are two cases to consider: a = band a f. b. If o ~~ b, then 
{a.bl= {a}, and so [/cl, {c, d}] = {{a}. {a, b}I ,,, r{aJJ. But lbeci {c.dJ = {c} = {a). soc"" d =a"~ b. lf 
a -I b, then {a,//} i.~ a two-element sc,r. aud we must have \c/ = (al and {c, d) = /a, b}. This shows !hate=• a, 
and 1hetcforc d , .. , b. 

J. dom(w··1)"" range(R) because b E dom(R-1 J <==> blr1a for an a in ,t -(:=.-.} aRb for an a in .'4 <===> b E 

rangc(R). If we now apply the equation range.(R) = dom(R-1) u., R-1 in~read of R, we gel rnnge(R-1) = 
do.n((R·"1}' 1) ~·dom(R)bccau&e(R .. 1r·1 "'R. 

I. DJ.-, /0, I), f(O) = 0. f(l) = 0, S1 ~, {O}. S2 = \I). 

I. A relation is a line~r ordering if and only if it is (i.l rcllexivc, (ii) transi.tive, (iii) anti-symmetric, and (iv) complete. 
For eacb of these four propertie~ it is easy to see that if a re[a1iou R ha.~ 1hat property, then so bas R-1. 

•. The inclusio11s S !'.:. f · 1(/(S)) and /(f-1(Ti) ST foll.ow immediately from the definitions of din:ctat1d inverse 
imag~s. If x E f° 1(T), then /(x) E T and x E ranr.c;(f), and it follows that r• (T) S J-1 (T n range(!)). 
The opposite inclusion is obvious, since T n range(/) ~ T. To show that the first two inclusions cannot alwavs 
be replaced by c;qoaliry sigos, define f : st -+ R by f(x) = x2 , and let S = f0,2] and T =(-I.I]. Th~n 
r 1(f(S)) = r 1((0,4l) = [-2, 2] t S, and f(r 1(T)) = fl[-l. l]) = £0, I] i' T. 

.2 

. sup A = 7, inf A = -3; ~up fl "' 1, inf B "' O; sup C =co.inf C = ../3. 

·, It follows from r= > 2 cha:.,., (2 + r 2)(:.r < (r1 + r 2)/2r = r. Moreover. s1· -- 2 = (4 + 4ri + ,')/4r2 - 2 = 
(4 •.. 4,2 + ,•);4,1 = (2 - , 2 }2 f4,z :> o. 

,. sup S = ?O = S is riot bounded above = for .:very real number b there is an x in S with x > b . 

. 3 
. x, ... · I <. 4, and if x, < 4, Ihm x, ,.1 = 2./x,· < 2./4 = 4. By induction x, < 4 for all k. Mcreover. x, > O 

for all k and X.+1 ,~ 2 ..,Ix; = A,::;- :, ,/ x; = x1 • Beoce \xt J is increa.,ing. Uy TI,eorem A.3.1 the se,quence is 

couvergem. ut its limit be x. Ii) taking the limit ask · ·> oo in .:ct-,-1 ·., .. 2jx,, we obtain x ···. 2./x, or x1 
:., 4x, 

and1husx ,·.4. 

' L 
l 
I 
l 
) 
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:cf.;-l - 41 ~ Xt, - 2 ~ 
2. Since all the lerms in lhe sequence are posiliv~. so X1+1 + 2 > 2 a.11d l.lN', - 21 = · ; · < 

Xk,;+2 -,Xt+1·i··2\ 

Ix,; 21 for l ::,: 1. A straigh1forward induction argument now shows that ix, ··· 21 :;'. i.t1 - 2112•-1 for all k ~ 1. 

amt it follO\\-S that limH.,., •t = z. 
3. According to Tileore,11 A.2. l(b), fo(cach naru,-alnur,1ber 11, !x,-cause l/n ,. 0, there exi~IS a numbe.t· iu A, <:<ill it x •• 

such thal x. > b' - I/ n. Bccau.sc ..r, .$. b", we have l..t. -· b'; < I/ n. lt follows thal x .. -+ b' as 11 __. x;. 

4. See SM. 

5. (a) Note; 1ha1 x, + Yt ·'" land x,y.- , .. , ~(l - (-·lf') , .• 0 for all k. The required limits are: limt_.x,x, = I. 
lim,_,,.,y, = l,limk_,,c(Xl+Yl) "' l,f;,n,-+..,,(Xt)t} =0. Jim, ..• "'x, ,,-0,lli!!,_..,y, =0,ll!!4_,,,(x,+y,) = I, 
fu!!t. , ., (xi )'I) = 0. (b) See SM. 

6. SeeSM. 

7. Suppose lhat x f. y. Lets= lx - yJ. Since s/2 > 0, there exist numbers N and M such tllat Ix. - x] < s(l for 
all n > N and Ix. - YI< s/2 for all n > M. Toon for n > m.ax{N, Ml, we get Ix - )';=Ix-.,.+ x, - yl ~ 
Ix. - x! + l,rn - YI <. e/2 + s/2 = li. a commdiction. 

8. (a)a1 = 2, a,.= 2.25,a.; •• 2.3704, a~"" 2.4414; b 1 = 4, b2 ,,.- 3.375, />j :s: 3.1605, b.1.,,, 3.0518. 
(b} The inequali1y is valid torn= 1. Suppo$c (l +x)" ?.: l +nx forx 2:: -1. Then (I+ x)•+1 = (1 +.t}"(l +x) ~ 
(1 + 11.t)(l-!- x) = 1 + (n + I )x + nx2 =~ J + (11 + I )x. The.last ine.quality is strict if x ;6 0. 
(c) Wilh x = -l/n2 ,f, 0, the inequality yields(! - l/112)• > l - 1/n. Multiplying by (n/(11 - ll)" yields 
(J + lin)" > (1 + l/(n - l))•-1. (d) Lef110 !he reader. (e) The sc11uei)ce {a.) is increasing and bounded above 
(by any b,). The $,:quence (b. J is decmisint: ai,d bowided below (by any a,.). Thus both sequ~nc,·s converge. 

?. let {.t1 } be a sequence of real numbers. For any natural number k, let us ca\l lhekili term of the sequence a rail p~ak 
if r" > x

1 
for all j > k. (A) If {x.J contains an infinite number of tail peaks, they form a (strictly) decreasing 

subsequence of fx1 }. (B) If {xi I cont.uns only finitely many tail p-,aks (r11aybe none al all), let k 1 be die index of 
a tern) after the last t.~il peal<. There is then• k2 > k1 wi1h x,, ~ x,1 • a k3 > ki with Xt, :::: X.iJ, etc. Thi~ proce&s 
yields ao increasing subsequence of (11}. 

Appendix B 

B.1 
l. See Fig. AB.J.L OB = 81' = !../2 by Pythagoras's theorem Hence, sin45° = sin ,rj4 .-,. BP iO P = !../2:: 

ros:t/4, wberca.~ tan45° "" tan,r/4 = sin(:ri4)/cos(n/4) = l. 

2, Look at Fig. All. l.2. If the coonli11atcs of P., are (11, vJ, then P-, ha~ coordinates (11, -u), so sin(--x.) = -ll .-.:. 
-si,t.t, ru1d nl!i(-.t) "., u = ~:osx. Then by definition, can(-x) = sin(-x)/cos(····x) = -<in.t/cosx = -taox . 

Figure AB.1.1 Figure AB.1.2 



ANSW~RS 

cos(x - y) :, cos(x + (-_v)} <<cos.< cos(-y) - sinx sin(-y) = cosx cosy i· sinx sin y 

cos(y- rr/2) = ,iny follows directly from (10). !:'or the rest se,e SM. 

sin(.r+,r) sin.rcos1t +cosxsin;r -sinx 
tan(.r + n) = cos(.r + ;r) = cos.t cos,r - !!inx sin 1t "'~ = tanx 

sin(x + 4n) "'sin.r cos }:r + cosx sin !n = (sinx) · 0 + (cos .r). t = oos.r 
cos{x + f,r) = cos.~ coo !ir - sin.r sin i" = -$iu x 

(a) 112. (Draw~ figure similar to F~re B.J .3 ifl the ICAt, or use die fonnula for siu(.r - y) in Problem 4.J 
(b) -../3/2 (C) -J2./2 (d) -._/2/2 (c) ./3/3 . 
(f)$in(iri12) = sin(:r/3 - :tr/4)-= sin(n/3)cos(n/4) - cos(n/3)sin(n/4) = {(.,/6- ./2.). · 

(a) ./2.sin(x + :r/4) - cosx = h(s.inxcos,r/4 + cosxsinn/4) ·• cosx 
= ,/2(sin.r · 1/.J2+cosx · l/../2)-cou ==sinx (b)tan(a+ /3) (c)-cosa/sina 

Note. lhatx + y = A and x - y = B imply x = !<A+ B) and y = !<A - 8). The desired fonnula theu follows 
easily from the hint. 

sin(.r + y) sin(.r - y) = {sinx cosy+ cos.t siny)(sin x cosy -cosx siny) = 
~iu2 x cos2 y - cos2 x sin2 y = sin2 x(l - sin~ y) - (1 - sin2 x)s'in2 y = sin2 x - sin2 y 

M See Fig. AB.l.lO(a). Period n, amplitude l. (b) See Fig. AB.l.10/b). Period 4rr, amplirude 3. 
(c) See Fig. AB.l.lO(c). Period 2.."!'/3, amplitude 2. 

y y 

,r 4,t 

X X 

igure AB.1.10{a) Figure AB.1.10(b) Figure AB.1.10(c) 

(a) B~cause ,/(.r)l"" 1(1/2)' sin xi 5 (l/2)' for all x, and (l./2)' --> 0 as., ... oo, the o~cillations die our. 
(b) Because 2' -+ oo as x ... x, the o~illations explode. 

(a) y = 2sin}x (h) y = 2+cosx (c) y = 2e-•i" cos.r 

(AC)2 •• (BD)2 yiekls (cosx - cos y)2 + (sinx -(- sin yl)I '" (cos(x + y) -1)2 + sin2(x + y). Expanding ant.I 
using equation (2) three times eventllillly gives fonnula (8). 

(a) y' = ! cos !.r 
"'t 

{b)y·=co~x-·xsin.r (c)y'w~ (J)y'=e''(2cosx-~inx) 
COS X 

si1u . , cosx cosx - sinx(-sin .x) cos2 x + &in2 x . . 
y = tan x = ·- gives y = . ·---· a·.. = I +111n2 x. Smee cos2 , +sm2 ., :, 

cou cos• x cos2 x 
l, we get y' = I./ cos 2 .r a., an alternative answer. 

(a)cosx - sinx (b) 5.t4 sin.r + x5 cos x + (l/2.Jx)cosx ·• ./i sinx 

E.c) -. -.-- -···· - -- CO$.% - vX I+ x· SIDX . I [(' l 3x/;) ~( ') . ] 
lX' + J)l 2./x 2 
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4. (a)asinax (h)a~it,bt +abrcosbr (c)-a,~>S(cosfsiu(a, +b)Jjsin[sin(al +b)]cos(ar+b) 

5. (a) 2 (b) m/n (c) 112 

6. Maximum at x =· 0, minimurn at.r = 3H:i2. (f'(.t) = 3(sinx ·- x - 1)2(<'l1S.r - 1).) 

7. p'(t} :o. -l.C1s.inJ.1 + J.C2cos.l.1 and p·'(r) =· -.l.2C1c,;1,;).r - i.2C2sinJ.1. so p"(1) + ).2p(t) c0.1.2. 
Tim.~. K = C0l.2 . 

8. (a);r/4 (b),r/2 (c),r/6 (d);r/3. 2 2x l 
9 (a) --- (b) · le) --- ...... .. . Jt·:.·;ix! I + (x2 + 1)2 · 2./i .Jf='i 

10. (a} - cou + C (b) J;12 
cos x dx "' i~i! sin x = sin(ir/2)-0 = I (c) lnEcgr.ilingby parts, I :e f siil x dx "' 

sin.c(-cosx)-f.:os.r(-coo.t)Jx == -sinxcosx+fcos1 xdx ,,- -sinxcosx +/(1-sin2 x)dx.Hence, 
I= -sinxcosx + x -·I+ C. Solving for J giv~ le. }(x - sinxcos.,) + C1• 

(d) J; x cosxdx = l~x sinx - J; sinx d.x =0 + I~ cos~= C08 ;r - cosO = -2. 

11. (a)-lntcosxt+C (b)e';"'+C (c)-!cos6.r+C 

12. For small h, [sin(.c + h) -sinx]/ h ""cosx, and passing to the limit ash ..... 0 we get (sio.r)' = cosx. 

B.3 
I, (a)z + w ""5-2i (b)iw =21-9i (c) .. /10 = (-3 -7i)/6 (d) lzl =/22 +(-5)2 = v'29 
2. See Fig. AB.3.2. 3 (aHo + Si) (b) -3 -4i (c) (31 + 27i)/26 (d) i 

4. (a) 2../3(cos(,r /3) + i siD(,r/3)) (b) cos ;r + i sin rr (c) 4(cos(4,r /3) + i sin(4;r/3)) 
(d) h(cosnn/4)+ i sin(7JT/4)) 

Imaginary a.,.i., 

4i · 

3i 

2i 
I/ 

i! ,' ,, ·., 

Figure AB.3.2 

w = 1 +3i ,• ... 
/ '· .. 

',, 

',/i + w = 3 + i 

2 /' f"- Re.al a1is 
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