

May Examination Period 2025

ECN121 Statistical Methods in Economics Duration: 2 hours

YOU ARE NOT PERMITTED TO READ THE CONTENTS OF THIS QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY AN INVIGILATOR

Answer ALL questions

The exam paper consists of two sections. You should attempt all the questions in the two sections. Show any steps to reach your final answer. Cross out any answers that you do not wish to be marked. A four-page appendix with the z and t statistical tables is available at the end of the paper.

Only nonprogrammable calculators are permitted in this examination. Please state on your answer book the name and type of machine used.

Complete all rough workings in the answer book and cross through any work that is not to be assessed.

Possession of unauthorised material at any time when under examination conditions is an assessment offence and can lead to expulsion from QMUL. Check now to ensure you do not have any notes, mobile phones, smartwatches or unauthorised electronic devices on your person. If you do, raise your hand and give them to an invigilator immediately.

It is also an offence to have any writing of any kind on your person, including on your body. If you are found to have hidden unauthorised material elsewhere, including toilets and cloakrooms it will be treated as being found in your possession. Unauthorised material found on your mobile phone or other electronic device will be considered the same as being in possession of paper notes. A mobile phone that causes a disruption in the exam is also an assessment offence.

EXAM PAPERS MUST NOT BE REMOVED FROM THE EXAM ROOM

Examiner: Dr. Jinu Lee

Page 2 ECN121 (2025)

Section A - Knowledge, Understanding, and Application

Question 1

A tech company, InnovateTech, is recruiting software engineers in 2024. A candidate applies for two job roles: Front-End Developer and Back-End Developer. Based on company hiring statistics:

- The probability of receiving an offer for the Front-End Developer role is 0.25.
- If the candidate receives an offer for this role, the probability of also receiving an offer for the Back-End Developer role is 0.4.
- If the candidate does not receive an offer for the Front-End Developer role, the probability of receiving an offer for the Back-End Developer role is 0.15.
- a) Calculate the probability that the candidate receives offers for both roles. [3 marks]
- b) Calculate the probability that the candidate receives at least one offer. [3 marks]
- c) Are the events "receiving an offer for the Front-End Developer role" and "receiving an offer for the Back-End Developer role" independent? Justify your answer mathematically. [4 marks]

Question 2

A company is analysing the lifespan (in years) of a certain type of rechargeable battery used in electric vehicles. The lifespan of a randomly chosen battery, denoted as X, is modeled by the following probability density function (PDF):

$$f(x) = \begin{cases} \frac{1}{4}, & 0 \le x \le 4\\ 0, & \text{otherwise} \end{cases}$$

where X represents the number of years the battery lasts before it requires replacement.

a) Verify that f(x) is a valid probability density function by checking the necessary conditions.

[3 marks]

- b) Derive the cumulative distribution function (CDF), F(x), for all values of x. [3 marks]
- c) Compute the expected lifespan E(X) and the variance Var(X). [4 marks]

Question 3

A car service center in London is analyzing the time required for a routine vehicle inspection. Based on historical data, the inspection time (in minutes) follows a normal distribution with a mean of 45 minutes and a standard deviation of 8 minutes.

To maintain customer satisfaction and efficiency, the service center has set a promised service time for customers and is evaluating whether adjustments are needed.

- a) A customer arrives at the service center and asks how long the inspection will take. What is the probability that the inspection is completed in less than 30 minutes? [3 marks]
- b) The service manager informs customers that their car will be ready within 1 hour of drop-off. However, due to administrative tasks, the actual inspection begins 10 minutes after drop-off, leaving 50 minutes for the service itself. What is the probability that the inspection takes longer than 50 minutes, causing the center to miss the promised time? [3 marks]
- c) The manager wants to ensure that the inspection time meets the promised quality standards at least 90% of the time. What is the maximum service time that should be allotted to achieve this goal? Based on this result, should the manager revise the current service guarantee? [4 marks]

Question 4

A global health organization is conducting a study on adult human heights to analyze growth patterns and population health trends. Based on past studies, the height of a randomly selected adult follows a normal distribution with a mean of 170 cm and a standard deviation of 8 cm.

- a) What is the probability that a randomly selected adult is 178 cm or taller? [3 marks]
- b) A random sample of 25 adults is selected. What is the probability that the sample mean height is 178 cm or taller? [3 marks]
- c) If a random sample of 25 adults is selected, what is the probability that the sample mean height falls between 166 cm and 178 cm? [4 marks]

Question 5

A technology research firm conducted a nationwide survey to assess public concerns about online privacy and data security. The survey asked 1006 randomly selected adults whether they are concerned about how companies collect and use their personal data online. The results showed that 37% of respondents expressed concerns about online privacy.

- a) Construct a 98% confidence interval for the proportion of all adults who have concerns about online privacy and data security.
 [6 marks]
- b) Based on your confidence interval in (a), does the interval provide strong evidence to support the claim that fewer than 38% of adults are concerned about online privacy? Explain your reasoning.

 [4 marks]

Turn Over

Section B - Analysis, Evaluation, and Synthesis

Question 6

You are the CEO of a growing tech startup that has developed an AI-driven mobile app. You plan to expand by launching in six new cities, but your ability to launch in each city depends on securing partnerships with local investors.

Each potential investor agrees to fund the expansion in a city independently with a probability of 40%. Let X be the number of cities where expansion is successfully funded. The probability function of X is given by:

$$P(X = k) = \frac{6!}{k!(6-k)!} (0.40)^k (0.60)^{6-k}, \quad k = 0, 1, 2, \dots, 6.$$

The startup's net profit function (in millions of GBP) based on the number of successfully funded expansions is given by:

$$\Phi = 2.5X - 4 - 0.3X^2.$$

- a) Determine the expected number of cities where expansion will be successfully funded. [5 marks]
- b) Compute the expected profit given the profit function Φ . [5 marks]
- c) Find the probability that your startup will be profitable. Similarly, find the probability that your startup will incur a financial loss. [5 marks]

Question 7

A wealth management firm is evaluating the average daily return of a stock index to determine whether it aligns with their expected return of 0.15% per day. The firm is concerned that the index may be underperforming, affecting client investment strategies.

A random sample of 40 trading days shows a mean daily return of 0.12% with a standard deviation of 0.05%. Assume the population standard deviation is $\sigma = 0.05\%$ per day.

- a) Determine whether the stock index is underperforming by conducting a hypothesis test. Compute the p-value and assess at which significance levels ($\alpha=0.10,0.05,0.04,0.01$) the null hypothesis would be rejected. Based on the results, evaluate whether the firm should revise its investment strategy. [7 marks]
- b) Construct a 96% confidence interval for the mean daily return and compare it with the hypothesis test results. Assess whether the findings suggest that the firm should advise clients to reduce exposure to this index, providing justification based on both statistical evidence and financial considerations.
 [8 marks]

Question 8

A political research institute is conducting a study to compare voter turnout rates among men and women in a recent national election. The study randomly selects N_1 men and finds that X_1 of them voted. Similarly, it randomly selects N_2 women and finds that X_2 of them voted.

Let p_1 and p_2 denote the probabilities that a randomly selected man and a randomly selected woman, respectively, voted in the election.

To estimate the difference in voter turnout rates between men and women, the following estimator is proposed:

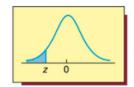
 $\hat{\Delta} = \frac{X_1}{N_1} - \frac{X_2}{N_2}$

a) Explain why this estimator is appropriate for comparing voter turnout rates.

[5 marks]

b) Is $\hat{\Delta}$ an unbiased estimator of $p_1 - p_2$? Justify your answer by computing its expectation. [5 marks]

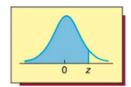
c) Derive the mean square error (MSE) of the estimator $\hat{\Delta}$.


[5 marks]

d) Explain how the MSE is influenced by sample sizes (N_1, N_2) . Discuss how this might impact policy recommendations based on survey results. [5 marks]

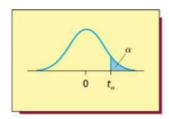
End of Paper - An Appendix of 5 pages follows

STATISTICAL TABLES


Cumulative areas under the standard normal curve

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.9	0.00005	0.00005	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00003	0.00003
-3.8	0.00007	0.00007	0.00007	0.00006	0.00006	0.00006	0.00006	0.00005	0.00005	0.00005
-3.7	0.00011	0.00010	0.00010	0.00010	0.00009	0.00009	0.00008	0.00008	0.00008	0.00008
-3.6	0.00016	0.00015	0.00015	0.00014	0.00014	0.00013	0.00013	0.00012	0.00012	0.00011
-3.5	0.00023	0.00022	0.00022	0.00021	0.00020	0.00019	0.00019	0.00018	0.00017	0.00017
-3.4	0.00034	0.00032	0.00031	0.00030	0.00029	0.00028	0.00027	0.00026	0.00025	0.00024
-3.3	0.00048	0.00047	0.00045	0.00043	0.00042	0.00040	0.00039	0.00038	0.00036	0.00035
-3.2	0.00069	0.00066	0.00064	0.00062	0.00060	0.00058	0.00056	0.00054	0.00052	0.00050
-3.1	0.00097	0.00094	0.00090	0.00087	0.00084	0.00082	0.00079	0.00076	0.00074	0.00071
-3.0	0.00135	0.00131	0.00126	0.00122	0.00118	0.00114	0.00111	0.00107	0.00103	0.00100
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2482	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

Note that if z is less than -3.99, you may approximate the probability as P(z<-3.99).


Cumulative areas under the standard normal curve (continued)

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7518	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99897	0.99900
3.1	0.99903	0.99906	0.99910	0.99913	0.99916	0.99918	0.99921	0.99924	0.99926	0.99929
3.2	0.99931	0.99934	0.99936	0.99938	0.99940	0.99942	0.99944	0.99946	0.99948	0.99950
3.3	0.99952	0.99953	0.99955	0.99957	0.99958	0.99960	0.99961	0.99962	0.99964	0.99965
3.4	0.99966	0.99968	0.99969	0.99970	0.99971	0.99972	0.99973	0.99974	0.99975	0.99976
3.5	0.99977	0.99978	0.99978	0.99979	0.99980	0.99981	0.99981	0.99982	0.99983	0.99983
3.6	0.99984	0.99985	0.99985	0.99986	0.99986	0.99987	0.99987	0.99988	0.99988	0.99989
3.7	0.99989	0.99990	0.99990	0.99990	0.99991	0.99991	0.99992	0.99992	0.99992	0.99992
3.8	0.99993	0.99993	0.99993	0.99994	0.99994	0.99994	0.99994	0.99995	0.99995	0.99995
3.9	0.99995	0.99995	0.99996	0.99996	0.99996	0.99996	0.99996	0.99996	0.99997	0.99997

Note that if z is greater than 3.99, you may approximate the probability as P(z<3.99).

t-table: values of t_{α} for df = 1 through 48

df	t _{.100}	t.05	t _{.025}	t _{.01}	t.005	t.001	t.0005
1	3.078	6.314	12.706	31.821	63.657	318.309	636.619
2	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646
31	1.309	1.696	2.040	2.453	2.744	3.375	3.633
32	1.309	1.694	2.037	2.449	2.738	3.365	3.622
33	1.308	1.692	2.035	2.445	2.733	3.356	3.611
34	1.307	1.691	2.032	2.441	2.728	3.348	3.601
35	1.306	1.690	2.030	2.438	2.724	3.340	3.591
36	1.306	1.688	2.028	2.434	2.719	3.333	3.582
37	1.305	1.687	2.026	2.431	2.715	3.326	3.574
38	1.304	1.686	2.024	2.429	2.712	3.319	3.566
39	1.304	1.685	2.023	2.426	2.708	3.313	3.558
40	1.304	1.684	2.023	2.423	2.704	3.307	3.551
41	1.303	1.683	2.021	2.423	2.704	3.301	3.544
42	1.303	1.682	2.020	2.421	2.698	3.296	3.544
43	1.302	1.681	2.018	2.416	2.695	3.296	3.538
44	1.302	1.680	2.017	2.416	2.693	3.291	3.532
45							
	1.301	1.679	2.014	2.412	2.690	3.281	3.520
46	1.300	1.679	2.013	2.410	2.687	3.277	3.515
47	1.300	1.678	2.012	2.408	2.685	3.273	3.510
48	1.299	1.677	2.011	2.407	2.682	3.269	3.505

Turn Over

ECN121 (2025)

t-table: values of t_{α} for df = 49 through 100, 120 and ∞

df	t.100	t.05	t _{.025}	t.01	t.005	t.001	t.0005
49	1.299	1.677	2.010	2.405	2.680	3.265	3.500
50	1.299	1.676	2.009	2.403	2.678	3.261	3.496
51	1.298	1.675	2.008	2.402	2.676	3.258	3.492
52	1.298	1.675	2.007	2.400	2.674	3.255	3.488
53	1.298	1.674	2.006	2.399	2.672	3.251	3.484
54	1.297	1.674	2.005	2.397	2.670	3.248	3.480
55	1.297	1.673	2.004	2.396	2.668	3.245	3.476
56	1.297	1.673	2.003	2.395	2.667	3.242	3.473
57	1.297	1.672	2.002	2.394	2.665	3.239	3.470
58	1.296	1.672	2.002	2.392	2.663	3.237	3.466
59	1.296	1.671	2.001	2.391	2.662	3.234	3.463
60	1.296	1.671	2.000	2.390	2.660	3.232	3.460
61	1.296	1.670	2.000	2.389	2.659	3.229	3.457
62	1.295	1.670	1.999	2.388	2.657	3.227	3.454
63	1.295	1.669	1.998	2.387	2.656	3.225	3.452
64	1.295	1.669	1.998	2.386	2.655	3.223	3.449
65	1.295	1.669	1.997	2.385	2.654	3.220	3.447
66	1.295	1.668	1.997	2.384	2.652	3.218	3.444
67	1.294	1.668	1.996	2.383	2.651	3.216	3.442
68	1.294	1.668	1.995	2.382	2.650	3.214	3.439
69	1.294	1.667	1.995	2.382	2.649	3.213	3.437
70	1.294	1.667	1.994	2.381	2.648	3.211	3.435
71	1.294	1.667	1.994	2.380	2.647	3.209	3.433
72	1.293	1.666	1.993	2.379	2.646	3.207	3.431
73	1.293	1.666	1.993	2.379	2.645	3.206	3.429
74	1.293	1.666	1.993	2.378	2.644	3.204	3.427
75	1.293	1.665	1.992	2.377	2.643	3.202	3.425
76	1.293	1.665	1.992	2.376	2.642	3.201	3.423
77	1.293	1.665	1.991	2.376	2.641	3.199	3.421
78	1.292	1.665	1.991	2.375	2.640	3.198	3.420
79	1.292	1.664	1.990	2.374	2.640	3.197	3.418
80	1.292	1.664	1.990	2.374	2.639	3.195	3.416
81	1.292	1.664	1.990	2.373	2.638	3.194	3.415
82	1.292	1.664	1.989	2.373	2.637	3.193	3.413
83	1.292	1.663	1.989	2.372	2.636	3.191	3.412
84	1.292	1.663	1.989	2.372	2.636	3.190	3.410
85	1.292	1.663	1.988	2.371	2.635	3.189	3.409
86	1.291	1.663	1.988	2.370	2.634	3.188	3.407
87	1.291	1.663	1.988	2.370	2.634	3.187	3.406
88	1.291	1.662	1.987	2.369	2.633	3.185	3.405
89	1.291	1.662	1.987	2.369	2.632	3.184	3.403
90	1.291	1.662	1.987	2.368	2.632	3.183	3.402
91	1.291	1.662	1.986	2.368	2.631	3.182	3.401
92	1.291	1.662	1.986	2.368	2.630	3.181	3.399
93	1.291	1.661	1.986	2.367	2.630	3.180	3.398
94	1.291	1.661	1.986	2.367	2.629	3.179	3.397
95	1.291	1.661	1.985	2.366	2.629	3.178	3.396
96	1.290	1.661	1.985	2.366	2.628	3.177	3.395
97	1.290	1.661	1.985	2.365	2.627	3.176	3.394
98	1.290	1.661	1.984	2.365	2.627	3.175	3.393
99	1.290	1.660	1.984	2.365	2.626	3.175	3.392
100	1.290	1.660	1.984	2.364	2.626	3.174	3.390
120	1.289	1.658	1.980	2.358	2.617	3.160	3.373
90	1.282	1.645	1.960	2.326	2.576	3.090	3.291

End of Appendix