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Question 1 [19 marks]

a) For a sequence an, define what means that an has a finite limit a.
[7 marks]

b) Suppose that a sequence an has a finite limit a. Thus, an −→ a. Suppose also that an ≥ 0 for all
n. Show that a ≥ 0.

Hint: you can start by assuming, towards a contradiction, that a < 0. What would this imply for the
values of an for large enough n?

[7 marks]

c) Suppose two sequences cn and bn have finite limits c, b correspondingly. Thus, cn −→ c and
bn −→ b. Suppose also that cn ≥ bn for all n. Use the result from problem (b) to show that c ≥ b.

Hint: consider a sequence an = cn − bn.
[5 marks]

Question 2 [25 marks]

a) Suppose (one-variable) function f is defined on some open interval that includes point x. Define
what means that f has a derivative at point x.

[7 marks]

Use the rules of differentiation and known derivatives (no need to prove anything) to solve the following
problems.

b) Calculate the derivative of the function g : (0,∞) → R at point x = 1, where

g(x) =
3√
x
+ 4

√
x

[5 marks]

c) Calculate the derivative of the function h : R→ R at point x = 1, where

h(x) = 52x

[6 marks]

d) Calculate the derivative of the function w : R\{0} → R at point x = −1, where

w(x) = ln

(
1− 1

x2 + 1

)
Hint: You can simplify the function w using the known properties of the logarithm before taking the
derivative of w.

[7 marks]
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Question 3 [34 marks]
Let a ∈ R be a parameter. Consider function h : (6−

√
5, 6 +

√
5) → R given by

h(x) = a · ln
(
−(x− 6)2 + 5

2

)
a) Find all values of the parameter a for which the function h is continuous on its domain.

[3 marks]

b) Maximize the function h over the interval [5, 8]. That is, find

max
x∈[5,8]

h(x), arg max
x∈[5,8]

h(x).

Your answer should depend on the value of the parameter a.

Hint: consider 3 cases: a > 0, a = 0, a < 0.
[9 marks]

c) Minimize the function h over the interval [5, 8]. That is, find

min
x∈[5,8]

h(x), arg min
x∈[5,8]

h(x).

Your answer should depend on the value of the parameter a.

Hint: consider 3 cases: a > 0, a = 0, a < 0.
[9 marks]

Consider the function f : (−∞, 6 +
√
5) → R given by the following formula:

f(x) =


−|x− 2|+ 1 if x < 5

a · ln
(
−(x− 6)2 + 5

2

)
if x ≥ 5

where the notation |x− 2| denotes the absolute value of x− 2.

d) Find all values of the parameter a for which the function f is continuous on its domain.
[3 marks]

e) Use your results from problem (b) to maximize the function f over the interval [0, 8]. That is, find

max
x∈[0,8]

f(x), arg max
x∈[0,8]

f(x).

Your answer should depend on the value of the parameter a.
[10 marks]
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Question 4 [22 marks]
Let parameters a, b be such that a > 0, b ≥ 1.

a) Find all x ≥ 0 such that eax
2 ≤ eax.

[3 marks]

b) Find all x ≥ 0 such that eax
2 ≤ xeax

2
.

[3 marks]

c) Using your results from problems (a), (b), show that∫ b

0
eax

2
dx ≤ 1

2a
eab

2
+

1

2a
ea − 1

a
[11 marks]

d) Suppose now that the parameter c is such that c ≥ 1. Use the expression from problem (c) to
provide an upper bound on the value of the definite integral∫ b

−c
eax

2
dx

[5 marks]

End of Paper


