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Question 1 [19 marks]

a) For a sequence a,, define what means that a, has a finite limit a.
[7 marks]

b) Suppose that a sequence a,, has a finite limit a. Thus, a,, — a. Suppose also that a,, > 0 for all
n. Show that a > 0.

Hint: you can start by assuming, towards a contradiction, that a < 0. What would this imply for the
values of a,, for large enough n?
[7 marks]

c) Suppose two sequences ¢, and b, have finite limits ¢, b correspondingly. Thus, ¢, — ¢ and
b, — b. Suppose also that ¢, > b, for all n. Use the result from problem (b) to show that ¢ > b.

Hint: consider a sequence a,, = ¢, — by,.
[5 marks]

Question 2 [25 marks]

a) Suppose (one-variable) function f is defined on some open interval that includes point x. Define
what means that f has a derivative at point z.
[7 marks]

Use the rules of differentiation and known derivatives (no need to prove anything) to solve the following
problems.

b) Calculate the derivative of the function g : (0,00) — R at point x = 1, where

3
g(z) = 7 + 4z
[5 marks]
c) Calculate the derivative of the function h : R — R at point z = 1, where
h(zx) = 5%
[6 marks]

d) Calculate the derivative of the function w : R\{0} — R at point = —1, where

w(z) = In <1 - :;;21+1>

Hint: You can simplify the function w using the known properties of the logarithm before taking the
derivative of w.
[7 marks]
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Question 3 [34 marks]
Let a € R be a parameter. Consider function h : (6 — v/5,6 +v/5) — R given by

h(z) = a-In (W)

a) Find all values of the parameter a for which the function h is continuous on its domain.

[3 marks]
b) Maximize the function h over the interval [5, 8]. That is, find
max h(x), arg max h(z).
$€[5,8} 276[5,8]
Your answer should depend on the value of the parameter a.
Hint: consider 3 cases: a > 0,a =0, a < 0.
[9 marks]
¢) Minimize the function h over the interval [5, 8]. That is, find
min h(x), arg min h(z).
z€[5,8] 2€[5,8]
Your answer should depend on the value of the parameter a.
Hint: consider 3 cases: a > 0,a = 0, a < 0.
[9 marks]

Consider the function f : (—00,6 + v/5) — R given by the following formula:
—lz—2]+1 if <5

flz) = a'1n<—(x—6)2+5

5 ) if ©>5

where the notation |z — 2| denotes the absolute value of z — 2.

d) Find all values of the parameter a for which the function f is continuous on its domain.
[3 marks]

e) Use your results from problem (b) to maximize the function f over the interval [0, 8]. That is, find

max f(z),  argmax f(x).
z€[0,8] z€[0,8]

Your answer should depend on the value of the parameter a.
[10 marks]
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Question 4 [22 marks]
Let parameters a, b be such that a > 0,0 > 1.

a) Find all x > 0 such that e < e,

[3 marks]
b) Find all z > 0 such that o < ret®’,
[3 marks]
c) Using your results from problems (a), (b), show that
/b 9% dg < —eab® iea 1
0 2 2a a
[11 marks]

d) Suppose now that the parameter c is such that ¢ > 1. Use the expression from problem (c) to
provide an upper bound on the value of the definite integral

b 2
/ e dx
—C

[5 marks]

End of Paper



