0. NOTATION

0.0.1 The Greek Alphabet

```
N, \nu
                                                                                  T, \tau
          alpha
                          H, \eta
                                     eta
A, \alpha
                                                                                                tau
                                                                                  Y, v
                                                    \Xi, \xi
          beta
                          \Theta, \theta
                                     theta
                                                                                                upsilon
B, \beta
                                                                 xi
                                                                                  \Phi,\phi,arphi
\Gamma, \gamma
          gamma
                         I,\iota
                                     iota
                                                    O, o
                                                                  omicron
                                                                                                phi
\Delta, \delta
          delta
                          K, \kappa
                                    kappa
                                                    \Pi,\pi
                                                                                  X, \chi
                                                                                                chi
                                                                  pi
E,\epsilon
                          \Lambda, \lambda
                                                    P, \rho, \varrho
                                                                 rho
                                                                                   \Psi,\psi
                                                                                                psi
          epsilon
                                     lambda
Z,\zeta
                          M, \mu
                                                    \Sigma, \sigma, \varsigma
                                                                                  \Omega, \omega
                                                                                                omega
          zeta
                                     mu
                                                                  sigma
```

0.0.2 Set Theory and Functions

```
the set of real numbers;
R
C
                             the set of complex numbers;
Q
                             the set of rational numbers — i.e. the fractions,
\mathbb{Z}
                             the set of integers — i.e. the whole numbers;
N
                             the set of natural numbers — i.e. the non-negative whole numbers;
\mathbb{R}^n
                             n-dimensional real space — i.e. the set of all real n-tuples (x_1, x_2, \ldots, x_n);
                             the set of polynomials in x with real coefficients;
\mathbb{R}[x]
                             is an element of — e.g. \sqrt{2} \in \mathbb{R} and \pi \notin \mathbb{Q};
\in
                             is a subset of — e.g. \mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C};
\subset,\subseteq
                             the cardinality (size) of the set X;
|X|
X \cup Y
                             the union of two sets — read 'cup' — \{s: s \in X \text{ or } s \in Y\};
X \cap Y
                             the intersection of two sets — read 'cap' — \{s: s \in X \text{ and } s \in Y\};
                             the Cartesian product of X and Y - \{(x,y) : x \in X \text{ and } y \in Y\};
X \times Y
                             the complement of Y in X - \{s : s \in X \text{ and } s \notin Y\};
X - Y or X \setminus Y
                             the empty set.
                             f is a function, map, mapping from a set X to a set Y;
f:X\to Y
                             X is called the domain and Y is called the codomain;
f(X) or f[X]
                             the image or range of the function f — i.e. the set \{f(x): x \in X\};
                             the composition of the maps g and f – do f first then g;
                             if f(x) = f(y) then x = y;
f is injective or 1-1
                             for each y \in Y there exists x \in X such that f(x) = y;
f is surjective or onto
                             f is 1-1 and onto;
f is bijective
                             there exists a function f^{-1}: Y \to X s.t. f \circ f^{-1} = id_Y and f^{-1} \circ f = id_X;
f is invertible
```