SEJ014 Principles of Mathematics

Powers and Logarithms: Key Facts

NAME Exponentiation Logarithm MEANINGbase *a* is raised to power *x*the power of base *a* that gives argument *x*

REMEMBER

 a^x means "*a* to the power *x*" log_{*a*} *x* means "the power of *a* that is *x*"

Exponentiation is defined for **any power**. Logarithms are **not defined for non-positive arguments** (unless we go beyond the real numbers, and except for 'artificial' examples — see (2) below).

Here are the key facts about exponentiation and logarithms:

	Power	Log
1	$a^0 = 1$	$\log_a 1 = 0$
	$1^0 = (-1)^0 = 0^0 = 10000^0 = 1$	$\log_1 1 = \log_{-1} 1 = \log_{-100} 1 = 0$
2	$a^1 = a$	$\log_a a = 1$
	$1^1 = 1, \ 0^1 = 0, \ (-1)^1 = -1$	$\log_1 1 = 1$, $\log_{-1}(-1) = 1$ (or -1), $\log_{1/2} \frac{1}{2} = 1$
3	$a^{-1} = \frac{1}{a}$	$\log_a\left(\frac{1}{a}\right) = -1$
	$2^{-1} = \frac{1}{2}, \ \left(\frac{1}{3}\right)^{-1} = 3, \ (-1)^{-1} = -1$	$\log_2\left(\frac{1}{2}\right) = \log_{1/2} 2 = -1$
4	$a^{1/2} = \sqrt{a}$	$\log_a\left(\sqrt{a}\right) = \frac{1}{2}$
	$2^{1/2} = \sqrt{2}, \ 4^{1/2} = 2, \ 8^{1/2} = \sqrt{8} = 2\sqrt{2}$	$\log_{10}\left(\sqrt{10}\right) = \log_4 2 = \log_9 3 = \frac{1}{2}$
5	$a^{p/q} = \sqrt[q]{a^p}$	$\log_a\left(\sqrt[q]{a^p}\right) = \frac{p}{q}$
	$2^{4/3} = \sqrt[3]{2^4} = \sqrt[3]{16} = 2\sqrt[3]{2}, (-1)^{5/3} = \sqrt[3]{(-1)^5} = \sqrt[3]{-1} = -1$	$\log_2(\sqrt[3]{16}) = \frac{4}{3}, \ \log_{10}\sqrt[4]{\frac{1}{10}} = -\frac{1}{4}$
6	$a^m \times a^n = a^{m+n}$	$\log_a(xy) = \log_a x + \log_a y$
	$2^4 \times 2^5 = 2^{4+5} = 2^9, \ 2^4 \times 2^{-5} = 2^{4-5} = 2^{-1} = \frac{1}{2}$	$\log_{10} 40 = \log_{10} 10 + \log_{10} 4 = 1 + \log_{10} 4$
7	$a^m/a^n = a^{m-n}$	$\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y$
	$2^{4}/2^{5} = 2^{4-5} = 2^{-1} = \frac{1}{2}, \ 2^{1}/2^{-5} = 2^{1-(-5)} = 2^{6}$	$\log_{10}\left(\frac{x}{100}\right) = \log_{10} x - \log_{10} 100 = -2 + \log_{10} x$
8	$(a^m)^n = a^{mn}$	$\log_a \left(x^{y} \right) = y \log_a x$
	$(2^3)^4 = 2^{3 \times 4} = 2^{12}, \ (2^3)^{-2} = 2^{3 \times -2} = 2^{-6} = \frac{1}{2^6}$	$\log_5\left(25^k\right) = k \times \log_5 25 = k \times 2 = 2k$
9	$a^{\log_a x} = x$	$\log_a \left(a^x \right) = x$
	$2^{\log_2 4} = 2^2 = 4, \ 2^{\log_2(1/2)} = 2^{-1} = \frac{1}{2}$	$\log_5(5^k) = k \times \log_5 5 = k \times 1 = k$

Note: log_{10} is abbreviated to 'log' on most calculators.

The abbreviation 'ln' stands for \log_e , the **natural logarithm** where e = 2.71828 to 5 decimal places. This is also available on calculators. Taking logs to other bases is covered in Maths 1 (some calculators will handle any base).