THEORY OF LOGARITHMS.

Introduction.

Let a be any real number, and ¢ any rational number; then by the theory of indices, af is
well-defined, in that for each given value of a and ¢, it leads to either a unique real, or complex
number.

If we restrict a to being a positive number, it is clear that then, for all rational numbers ¢, a? is
always real and in particular, positive. '

In other words, for a given a € R’, there corresponds to each ¢ € Q, a unique real number
p € RY, such that:

p=a (1)

Except for the trivial case when a =1, which leads to p =1 for all values of g € Q, there is
generated in relation to each given positive value of a, as g takes on all possible rational values,
an infinite set of distinct values of p € R”.

It is important to realise however, that these positive values of p are only those positive
numbers which for a given a # 1, relate to ¢ being rational. That is to say, for any given
positive value of @ = 1, as g takes on all possible rational values, so the values of p form only a
particular infinite set of positive numbers.

The implication of this is that, given any positive number p and a positive value of a = 1, then
there does not necessarily exist a rational number q such that (1) holds.

However, as was noted in the theory of indices, later, elsewhere, the concept of a power of a
number is re-defined, and when a is positive, a meaning is attached to it being raised fo an
irrational, as well as rational power.

With this extension of the concept it is shown that for any given positive value of a = 1, and
real number r, a takes on distinctly, all possible positive numbers, as r takes on all possible
real values.

e

The implication now, is that given any positive number s, and a positive value of a # 1, then
there always exists a unique real number r such that:

s=a 2)

It is upon (1) that the theory of logarithms is based in algebra, and by acceptance of (2),
extended so as to apply more generally to all positive numbers.

The Algebraic Definition Of A L ogarithm.

Let a = 1 be a given positive number, and let g be any rational number; then as stated in the
introduction, there corresponds to each value of g a positive number p such that:

p=a (1
1 P.JKAY. *




We in algebra, define the rational number g to be the logarithm of the positive number p, in
respect of the given positive number @ # 1, referred to as the base a.

To express this fact we write that:
g =log,p )

We immediately note that on this basis of definition, the logarithm of a number is only defined
for positive numbers p, and then very restrictively, only for those positive numbers which for a
given base a = 1, give rise to the logarithm ¢ being rational.

The Extension Of The Definition.

By accepting the fact that when a = 1 is a given positive number, and r is any real number, then
a” takes on distinctly all possible positive numbers as r takes on all possible real values, we
have on taking » to be the logarithm of s to the base g in s = d’, a definition of a logarithm
which applies to all positive numbers s, rather than a restricted set of such numbers.

We note that even on the basis of the extended definition, the concept of the logarithm of a
number, no matter what the positive number base a = 1, applies only to positive numbers s. All
negative numbers and zero, are excluded from the definition.

We also note that the concept only applies to a positive base a; with the exclusion of a = 1, for
the reason that this relates to only one positive number s, namely s = 1.

Clearly among all of the logarithms of s to the base a, are included the logarithms of p to the
same base, which have only rational values, the rational numbers being a sub-set of the real
numbers.

In summary then; given that
s=d 0

we define the real number index » when a is positive and not equal to unity, to be the logarithm
of the positive number s to the base a, and indicate this fact by writing:

r=log, s . " (2)
The justification for the extension, as already mentioned, will be dealt with later elsewhere.

The theory which follows will be based on the extended definition, and further, on the
acceptance of the fact that the laws of indices can be shown to apply, not only to the case when
the index is rational, but also when it is a real number, provided that then, the number which is
being raised to the power is positive.

Some First Results.
A question which we may ask, and which may possibly determine the logarithm of a given

positive number s to a given positive number base a # 1, is: fo what power r do we have to
raise the base a, in order that it equals the number s7'
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Applying this question to the case where a# 1 is any given positive base, and s=1, we
immediately have the answer that » = 0 i.e. for any base a:

log,1=10 (1)

Likewise, on posing the question for the particular case when s = g, we see that, no matter what
the positive base a,

log,a=1 )

As will be found, only in simple cases can the asking of the question determine the logarithm of
a number. More often than not, we can only readily ascertain the value by recourse to standard
tables, or through the use of a suitable calculator. Both of these however, are restricted to two
given bases, and for other bases we need to first apply what is known as the change of base
Jormula, with which we shall deal later.

The values of the logarithms of numbers to the two given bases, as held in the tables and
calculator, are determined by way of power series, that can be structured to represent the
logarithms of the numbers to the given bases. Suffice it to say here, that aspects of such series
are dealt with later in the course.

As an instance of the construction of a logarithmic table by posing the basic question given
above, we have the following results in relation to logarithms to the base 2, for some of the
numbers to which the question is applicable.

number s log,s numbers | log,s numbers | log,s
+1/64 -6 +1/4 -2 +4 +2
+1/32 -5 +1/2 -1 +8 +3
+1/16 -4 +1 0 +16 +4
+1/8 -3 +2 +1 +32 +5

From the table it is clear that for all 1 <.s <0, log,s > 0; and for all 0 <s <1, log,s < 0. This
is so for all bases @ > 1. On the other hand, the converse is true when 0 < g < 1.

It is left as an exercise to demonstrate this latter fact, by finding the logarithms of the same
numbers as above, to the base '/,

Returning to the case of logarithms to the base 2, we see that even for whole numbers such as 3,
5, 6,..., we cannot determine their logarithms to the given base by asking the question. Here we
need to apply the change of base formula, and make use of the calculator. As can be confirmed
later, it follows on this basis that to 5 decimal places:

log,3=1.58496,  log,5=2.32193,  log,6=2.58496

These values are in the order of what might be expected on referring to the table, where it is
seen that for a = 2, the values r of the logarithm, increase for increasing values of the number s.

This is characteristic for all bases a > 1, with the converse being so for all bases 0 < a < 1.
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Fundamental when dealing with the basic aspects of logarithms, other than the posing of the
aforementioned question, is the fact that if we are given that s and « are positive numbers, a = 1,
then by definition we may change between the statements:

s=d (3)
and

r=log,s €
as required.

In other words, given (3) we may write (4), and vice versa. This interchange will in particular
be applied in developing the laws of logarithms. '

Firstly however, we note that by (3) and (4) we may write that
s = a8’ (%)

The writing of s in terms of a power of a number « i.e. as what is called an exponent of a, can
prove useful on occasion when manipulating expressions that also involve other exponents of a.

Raising both sides of (5) to the power ¢ (say), where f is any real number, we also see by the
extended laws of indices that:

si= atlogas (6)

a result which again can prove useful from time to time.

The Logarithmic Laws.

We now establish three important laws in connection with logarithms.

Throughout we take it that @ # 1 is a positive number, that the indicated values of s are also
positive numbers, and that those of r are real numbers.

On this basis let:

r,=log,s,, r,=log,s,

then by definition we have that

s1=a”, sy=an

It follows that

§1.57 = a1t

on applying the extended laws of indices.
But again by the definition, this implies that:
r, +r,=log, (s,.s,)

In other words we have that
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log, (s,.5,) =log, s, +log,s, (1)
Likewise by the extended laws of indices, we have that

S_l e a(rl_PZ)
$2

and hence by definition that

s
ri—ry= loga(éj
giving
loga(%) = log s1 —log s2 | (2)

Now suppose that
r=log,s

then by definition we have that

r

s=a
and given that ¢ is any real number, by the extended laws of indices that

St — art

From this we have, once again by definition, that:

rt =log, (s

i.e. we have that

log, (sY=tlog, s (3)

Results (1), (2) and (3) represent the three fundamental laws of logarithms, and are of great
importance in respect of their manipulation.

They also give rise to methods where by the multiplication, division, and raising to a power of
numbers, can be carried out through the use of logarithms, though somewhat redundant these
days, in the age of the calculator!

Nevertheless it is worth mentioning that for example to multiply two numbers s, and s,, we can
simply take the logarithms of the numbers to a given base, add one logarithm to the other, to
determine the logarithm of the product s,.s,, and then from this, in a process known as finding
the antilogarithm, determine s,.s, itself. We see that in effect, multiplication becomes a matter
of addition.

In a similar way, division is reduced to the more simple operation of subtraction; and that of
raising a power to the operation of multiplication. Actually, before the advent of the calculator,
it was to these latter two aspects of numerical calculation that the logarithmic methods were

most applicable.

As a basic example in relation to the manipulation of logarithms, consider the finding, without
the use of a calculator, of:
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log,, 5 + log,, 20 (4)
By (1) we immediately have that we may write that

log,, 5 +log,, 20 = log,, (5 x 20)

and hence have that

log,, 5 + log,, 20 = log,, 100

Now clearly we must raise 10 to the power of 2 in order that it equals 100, and hence
log,; 100 =2 i.e. '

log,,5 + log,,20 =2 ~ (5)

As another example consider

log, 20 - log, 5 6)
Here by (2) we have that

log,20-1log,5 = logz%Q = log,4

Le. ‘

log,20 ~log,5=2 (7)

Now suppose that we require to find, without recourse to a calculator

%log327 (8)

Here, on applying (3) we have that

%Iog327 =log,(27 /*) =1log,3

ie.

L10g,27=1 9
—37 Og3 = e . ( )

In fact we may take an alternative approach in this case since clearly
log,27=3
and hence

1
3

1

log,27 = 5.3 =1

as before.

Laws (1), (2) and (3) can be used in combination with each other. As an instance of this
consider
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1
2

Applying (3) first, and then (1) and (2) we get that

log,,9 +log,250 —log,,75 (10)

% log,,9 + log,,250 ~ log ;75 = log,,9 2 + log 4,250 — log,, 75

oo 22 %250

=805
= log,, 10
ie.
T l0g,09 -+ 10g,;250~log,75 = 1 an

As a final example we find the value of

log 64

2
log 2 (12)
Here we have that
log 64 log 2% 6log 2
Oa — ga — ga — (13)

log,2 ~ log2 log2

Note that the laws (1), (2) and (3) only apply when the base is the same throughout.

Change Of Base.

Suppose that we require to find the logarithm of a number s to a base a, for which tables, or a
suitable calculator are not available; but on the other hand, are, in respect of the logarithm of s
to another base 5.

We establish a formula whereby we can change from one base to the other, and in consequence,
are then in a position to determine the logarithm of s to the base a.

Taking o
r=1log s
we have by definition that then

r

§S=a

Now clearly, for any equality we may take the logarithm of both sides, fo the same base, and
maintain the equality.

Doing so to the base b in respect of the latter equality we have that
log, s = log, (@) |
It follows from this that
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log,s =rlog,a

i.e. that
Io

r= gbs
log,a

In other words we have that

log,s

(1)

log s = fog,a

This is known as the change of base formula.

As an example of its application to the calculation of a logarithm consider the finding of

log, 3 )
Available on a calculator are logarithms of numbers to a base 10, and by (1) we may write that

log,,3
log, .2

log,3 =
10

Using the calculator we have that

2 _ 0.477121
log23 = 5301030
giving
log,3 = 1.58496 to 5 decimal places. (3)

as given earlier.
As another instance of the application of the formula consider the evaluation of:
log,20 — log, 25 (4)

Here we note, the bases being different, the laws of logarithms cannof be applied. However, by
using the change of base formula we have that :

log,25
log,4

[

log,20-1og,25 = log,20 -
giving

log,20-1og,25 = log,20 - %log225
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We are now in a position where the laws can be applied and have that
log,20 - log,25 = log,20 - log,25 2

= log, 20 - log, 5

= log2-25—0
=log, 4
ie.
log, 20 — log, 25 = 2 » (5)

The formula is also used in the general manipulation of logarithms where different bases are
involved, and in this respect a particular quotable version of it can prove useful. Taking s =
in (1) we obtain

log,b=

i.e. we have that

1
log b= iog,a (6)

This is sometimes referred to as the inverse rule in respect of bases.

Common And Natural Logarithms.

The logarithms that were primarily used for arithmetic calculations were those to a base 10.
Such logarithms are referred to as common logarithms, and were introduced by Briggs in 1615.

He was a contemporary of Napier, the inventor of logarithms, and whose name is associated
with logarithms to the very important base e, where e is an irrational number, and has value
2.71828 to 5 decimal places.

PR

Besides being known as Naperian logarithms, logarithms to the base e are also referred to as
Hyperbolic logarithms, but more often than not, they are now referred to as being natural
logarithms.

With regard to notation; based on a strictly algebraic definition, the common and natural
logarithms of a number s, are respectively denoted by:

log,, s, log, s (1)
However, in many of the older textbooks it will be found that simply:
log s @

is written, but it is usually clear from the context as to which of the two bases this refers.
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On the basis of the extended definition of a logarithm, which we are assuming to hold, common
and natural logarithms are currently respectively denoted by:

lg s, Ins 3)
Except where otherwise required, it is this notation that we shall adopt.

There are tables for common and natural logarithms, and usually these are the logarithms that
appear on most mathematical or scientific calculators.

Much more will be said at a later stage with regard to logarithms, in particular to the base e,
when we consider the theory swrrounding the idea of a logarithmic function.

Simple Exponential And Logarithmic Equations.

Any equation involving an unknown quantity as an index, is referred to as being an exponential
equation. Thus for example:

=32 (1)
is an exponential equation in the unknown x.

Clearly, by inspection, the solution to this simple equation is:

x=35 (2)
Now consider the exponential equation:

25¢=125 3)

Here it is not immediately clear by inspection as to what is the value of x. however, if we take
logarithms to the base 5 on both sides we have that

log 25" = log 125
which by the third law of logarithms gives:
x log,25 = log, 125

i.e. gives
_ log 125
*= log,25

We thus have, on applying the definition of a logarithm, that

3

== 4
r=2 @
as the required solution.

When taking logarithms of both sides, as above, any base can be used, provided of cowrse, that
the same base is used on either side of the equation.
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For the given example, 5 was the obvious choice of base; but more often than not, a particular
base is not immediately apparent, and when this is so we take logarithms to either base 10 or
base e; usually preferring the latter nowadays.

As an instance, consider the equation:
=5 (5)

Here we cannot see the answer by inspection, nor is there a base that allows us to find x without
resort to a calculator. This being the case we take logarithms to the base e, and have that on
applying the third law

xIln2=mIn5

We thus have that by this

_In5 _ 1.609438
2 0.693147

X

giving as solution:
x=2.32193 to 5 decimal places (6)

Note that in using the calculator, the division of In 5 by In2 can be carried out without having to
write down the individual values of these logarithms, and then again use the calculator to
perform the division.

Any equation involving the logarithm of an unknown quantity is referred to as a logarithmic
equation. As an example of a simple form of this type of equation consider:

log,x=3 (7)

To solve this, we have by definition that given (7), then

x=2?
1e.
x=8 (8)

a result that here, might have been seen by inspection. ™ ~

As another basic example, consider

Igx=1.5 %)
By definition we have that now

x=10"

Using the calculator to evaluate the right hand side we have that

x=31.62278 to 5 decimal places (10)
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We note that the solutions of (7) and (9) respectively amount to finding the antilogarithms of 3
to the base 2, and 1.5 to the base 10; the latter of which can be carried out directly, by using the
inverse, or shift facility on the calculator.

More complex versions of exponential and logarithmic equations will be dealt with later,
including the case where the unknown quantity may appear as the base of a logarithm.

For now we point out that no matter what the form of equation, at some stage the definition and
laws of logarithms will need to be applied, and great care should be taken in doing this,
especially in relation to the basic laws, which are often, through inexperience, mis-applied.
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LOGARITHMIC AND EXPONENTIAL EQUATIONS.

Logarithmic Equations.

Any equation involving the logarithm of an unknown quantity is referred fo as a logarithmic
equation. Thus as a very basic example:

log,x=>5 (1

is such an equation. By definition of a logarithm we have for this equation that:

x=25
i.e. that:
x =32 (2)

is the required solution.

In a similar manner we have that given the equation:

Inx=5 (3)
then by definition:

x=e

which from the tables, or by calculator, gives:

x = 148.41 to 2 decimal places (4)

Note that the solutions to (1) and (3) respectively amount to finding the antilogarithms of 5 to
the base 2 and 5 to the base e, the latter of which can be carried out directly by using the inverse
or shiff facility on a calculator.

Of a less simple nature is an equation of the form:

2lnx-In2x=1

Here we first apply the laws related to logarithms and have that we may write the equation as:
Inx? - In 2x =1 (5)

le. as:

2
x —
h=—=1

giving:

=
5=1
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We now have that by definition:

giving:

x = 5.437 to 3 decimal places. ‘ (6)
Now consider an equation of the form:

Inx+lgx=1 @)

Here we have the logarithms to a different base, and must first express the equation in terms of
one base only. Applying the change of base formula we have that we may write the equation
as:

]nsc1

lnx+h110 =

and hence have that:

2.3026In x + In x = 2.3026

giving:
23026

Inx= 13026

ie.

In x = 0.6972

Hence by definition we have that:

x = gt®72
ie.
x = 2.0081 to 4 decimal places. (8)

Again note, we may find the antilogarithm x of 0.6972 to the base e by using the inverse facility
on a calculator.

A variation on the type of equation with more than one base is that where the unknown itself
may be a base. Consider for instance the equation:

Inx-2loge=1 )

Here by the change of base formula we have that:

2
Inx—-—=-=1
> Inx
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We now have that, on rearranging: | 7

(nx)?-Inx-2=0 (10)
which is a quadratic equation in terms of In x. On factorising we have that:
(Inx+1)(Inx—-2)=0

giving:

hx=-I,Inx=2

from which we have that:

r=¢,x=¢

ie.

x=10.3679, x = 7.3891 to 4 decimal places (11)

As a final example, consider the simultaneous equations:

Inx+Iny=1

12
2lnx-Iny=-1 12)

Here we simply apply the usual techniques for such equations, regarding In x and In y as being
the unknowns. We have that on adding the equations:

3lInx=0

ie.

Inx=0 (13)
giving:

x =1 (14)

Substituting from (13) into the first of the equations in (12) we have that:
Iny=1

ot
and hence have t};;t-

y=e (15)

We note that we can take an alfernative approach to the solution of equation (12) by applying
the basic laws to each of them, giving In(xy)=1, and In(**/ »)=—1, which in turn gives xy =e,
and **/ , = !/, from which we can readily determine x and y.
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Exponential Equations.

Any equation involving an unknown quantity as an index, or exponent, is generally referred to
as being an exponential equation. Thus for example:

37=27 ' 1)

is an exponential equation. Clearly the solution to this equation is, by inspection:

x =3 (2
Now consider the equation:
=5 3)

Here the solution cannot be seen by inspection. We can however for this relatively simple type
of equation, take the logarithm of each side, to say, the base e i.e. we can write that:

n3*=mI5
and therefore that:
xin3=In5
We thus have that:

_In5
=3
giving:
x = 1.4650 to 4 decimal places. 4

Note that the logarithms can also be taken for equation (1), where the obvious base to choose is
3, giving:

xlog, 3 =log, 27
ie.

x=3

as before.

Generally when it is not clear as to a particular base being applicable, either logarithms to the
base e or 10 are used.

It is important fo realise however that exponential equations in general, do not lend themselves
to taking logarithms at the outset as a method of solution. A typical example of one that doesn't
is:

575 +4=90 (%)
Here it is a question of recognizing that the equation is quadratic in form, since we may write it

as:
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(552 -5(55)+4=0 B
and regard the unknown as being 5*. On factorising we have that:
(5*-1)5"-4)=0
giving:
F=1,5=4
Clearly the only solution to 5 =1 is:
x=0 ‘ 6)
For the second of the solutions i.e. for 5* = 4, we have on taking logarithms to the base 10, that:
xlg5=1g4
Le.

_lgd
r= g5

giving the other solution as:

x = 0.8613 to 4 decimal places (7)

As for the logarithmic equations, we may also have simultaneous exponential equations. As an
example consider the equations below in the two unknowns x and y:

30:43) = 9Q2)

9(x_4) el 3_}' (8)

Taking logarithms to a base 3 we have the equations:

(x+3)log,;3 =(2-y)log,9
(x—4)log,9 =-ylog,3

1.e. the equations:

x+3=202-y)
2Ax-4)=-y

giving the linear simultaneous equations:

The solutions to which are:

x=5y=-2 )

5 PJKAY. ..




