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Question 1 [16 marks]
Let A, B be sets.

a) Explain/define the notion of set difference A\B.
[5 marks]

b) Are there non-empty sets of natural numbers A, B such that A\B = A? If yes, give an example of
such sets A and B; if no, argue why.

[3 marks]

c) Are there non-empty sets of natural numbers A, B such that A\B = B? If yes, give an example of
such sets A and B; if no, argue why.

[3 marks]

d) Find all sets of natural numbers D that satisfy the following condition:

{1, 2} ∪D = {1, 2, 3}
[5 marks]

Question 2 [17 marks]
Consider the sequences an, cn given by

an =
n− 1

n2 + 1
, cn =

n2 − 1

n2 + 1
.

Assume that bn is a sequence that satisfies

an ≤ bn ≤ cn (1)

for all n = 1, 2, ....

a) Find the limits of sequences an, cn if they exist.
[6 marks]

b) Does there exist a sequence bn that satisfies eq. (1) and has a finite limit? If yes, provide an example
of such sequence, if no, explain why.

[5 marks]

c) Is it true that any sequence bn that satisfies eq. (1) has a finite limit? If yes, show why it is true (for
instance, refer to a result from the class), if no, provide a (counter) example.

[6 marks]

Question 3 [32 marks]
Consider function f : R\{0} → R given by

f(x) =
1

x
+ ax+ x3

where a ∈ R is a parameter.

a) Calculate the derivative of the function f .
[4 marks]
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b) Find the values of x for which f ′(x) = 0, for which f ′(x) < 0, and for which f ′(x) > 0. You
answer should depend on the parameter a.

Hint: to solve this question, express the derivative of the function f as a fraction of two polynomials;

thus, f ′(x) =
P (x)

Q(x)
. Then, find when each of the polynomials P , Q takes positive, negative, and zero

values. You can introduce an auxiliary variable y such that P becomes a quadratic polynomial with
respect to y.

[15 marks]

c) Let c > 0 be a parameter. Is it true that for all values of the parameters a ∈ R and c ∈ (0,∞),
there exists a minimum of the function f over the set (0, c]? Can you use the Weierstrass theorem
in your analysis?

[6 marks]

d) Using your analysis in (b), (c), find the minimum of the function f over the interval (0, c] when it
exists and points at which it is attained. In other words, find

min
x∈(0,c]

f(x), arg min
x∈(0,c]

f(x).

Your answer should, in general, depend on the parameters a ∈ R and c ∈ (0,∞). There is no need
to simplify your answer if the expression is bulky.

[7 marks]

Question 4 [23 marks]
Consider function f : [0,∞) → R given by

f(x) =

{ √
x if 0 ≤ x ≤ 4

xα if x > 4

where α ∈ R is a parameter.

a) Find all values of the parameter α for which the function f is continuous. Provide a short explana-
tion.

[3 marks]

b) Calculate the following definite (Riemann) integral:∫ b

0
f(x)dx

where b > 0 is a parameter. You can take as given that the integral exists for all considered values
of the parameters α and b. Your answer should depend on the parameters α and b.

[15 marks]

Turn Over
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c) Use your answer from (b) to find all values of the parameter α for which the following improper
integral converges and calculate it when it converges (your answer should depend on the parameter
α): ∫ ∞

0
f(x)dx

[5 marks]

Question 5 [12 marks]
Let f, g be functions of the two variables x, y with the domain R2 given by the formulas below. Find
partial derivatives of these functions with respect to variables x, y at point (x, y) = (1,−2).

a) f(x, y) = 3 + x.
[4 marks]

b) g(x, y) = exy
2
.

[8 marks]

End of Paper


