

Medicine and Dentistry

The exposome concept: the totality of exposures as an integrated environmental health factor

Stavroula Kanoni, PhD, PGCAP, FHEA

Reader (Associate Professor) in Nutrigenetics and Cardiovascular Health Academic Lead (Dep) Environment & Health Multi-Disciplinary Theme Fellow Digital Environment Research Institute (DERI) s.kanoni@qmul.ac.uk

Outline

- What is the exposome
- How can we model the exposome and analyse it
- Exposome-wide association studies
- The role of AI
- Sensors and wearables
- The Health Digital Twin

The exposome concept

- First defined in 2005
- All environmental exposures through the lifetime that could cause or contribute to disease
 - Lifelong exposure and co-exposures
 - Factors to be measured:
 - General external environment (urban–rural environment, climate factors, social capital or education)
 - Specific external environment (diet, physical activity, tobacco, infection, occupation)
 - Internal environment (biological factors, metabolic factors, gut microbioflora, inflammation, oxidative stress or ageing)

Exposome-wide association studies

- Exposome-wide association studies (ExWAS) -> agnostic, untargeted and hypothesis-generating approach -> identification of associations between environmental factors and diseases outcomes
- Simultaneously consider multiple exposures and prioritize outcome-associated risk factors
- Inclusivity of environmental factors assessed
- Validity of the measurements
- Statistical models applied

Assessment of the exposome

Air pollution exposure	maps	PM _{2.5} levels in Euro
Satellite systems	Map scale	an an
Geostationary satellite	-36,000 km	2. A.
Polar satellite	700-900 km	1
Aerial vehicles	Map scale	Large C
Aerial photography	1–3 km	Franks and
Drone	0.5 km	NO ₂ levels in Londo
Ground instruments	Map scale	Contraction of the
Volume sampler	Surface	a serve
Digital sensor	Surface	7 AM
		dhe was

Transportation noise exposure maps by land-use regression models

Artifical light at night exposure maps by satellite-based measurements

 Evaluate the exposome in real-time

Münzel T, et al. Nat Rev Cardiol, 2023 doi.org/10.1038/s41569-023-00873-3

Medicine and Dentistry

Biomarkers of the exposome - Omics

• Internal exposome environment

Methodologies	
Transcriptomics	RNA sequencing ^{103,104}
	Single-nucleotide polymorphism-based arrays (metabochip, immunochip)103,104
Epigenomics	DNA methylation (EPIC, BeadChip, bisulfate sequencing) ¹²³⁻¹²⁵
	Hydroxymethylation (5hmC)
	Histone modifications
	MicroRNAs ¹²⁶
	Long non-coding RNAs
Proteomics	Protein expression ^{103,104}
	Post-translational protein modifications (oxidation: 3-nitrotyrosine, S-oxo-Met, carbonylation; reactive aldehyde adducts: malondialdehyde, 4-hydroxynonenal) ^{54,114}
	Redox and phospho-proteome ^{106,107}
Lipidomics	Fatty acid composition of lipid membranes (saturated versus unsaturated fatty acids) ^{103,104,118,185}
	Oxidized lipids (oxidized LDL, isoprostanes) ¹¹⁴
Metabolomics	Lipid metabolism ^{103,104,131}
	Glucose metabolism ¹³¹
	Stress hormones (cortisol) ^{109,110}
	Cytokines ^{35,116,123,125,129,130}
	Vasoconstrictors and vasodilators (angiotensin II, endothelin 1) ^{35,182}

Biomarkers of the exposome – Present and Future

Туре	Biomarker	Type of exposome study		
Pathways and functions				
Circadian rhythm	Melatonin ¹¹¹	Large human cohort		
	Circadian rhythm-related genes and proteins (PER1, CRY, CLOCK, BMAL, NPAS) ^{112,113}	Field study in humans		
	Diurnal rhythms of expression and levels of genes, proteins and metabolites that are controlled by the circadian clock ^{112,113}	Animal models		
Neurohormonal	Cortisol, precursors and regulators (adrenocorticotropic hormone, corticotrophin-releasing hormone) ¹¹⁰	Large human cohort		
pathways	Catecholamines (adrenaline, noradrenaline), urine stable metabolites (3-methoxy-4-hydroxyphenylglycol) ¹⁰⁹	Large human cohort		
	Molecules downstream of catecholamine signalling (angiotensin II, endothelin 1) ^{35,182}	Large human cohort		
Inflammation	Lipid peroxidation products (malondialdehyde, 4-hydroxynonenal, 8-isoprostane) ^{54,114}	Field study in humans and mice		
	Products of direct oxidation of proteins, nucleic acids and lipids (3-nitrotyrosine, 8-oxoguanine, oxidized LDL) ^{30,54,112,114}	Field study in humans and mice		
	Inflammation markers (C-reactive protein, interleukins) ^{35,116,123,125,129,130}	Large human cohort		
	Mitochondrial DNA copy number and mutations	Large human cohort		
DNA damage	DNA oxidation (8-oxoguanine) ^{38,112}	Large human cohort		
	DNA methylation (O6-methylguanine)	Large human cohort		
	Mutations	Large human cohort		
	Micronuclei formation	Large human cohort		
	Single-strand and double-strand breaks	Large human cohort		
Toxic compounds	Heavy metals (mercury, lead, cadmium), metalloids (arsenic) ^{34,35,89}	Large human cohort		
	Pesticides ^{67,89,152-155}	Large human cohort		
	Phthalates, bisphenols, polychlorinated aromatic compounds ⁶²⁽⁵²⁻¹⁵⁵	Large human cohort		
	DNA adducts (chemicals) ¹³²⁻¹³⁴	Large human cohort		
	Protein adducts (malondialdehyde, 4-hydroxynonenal, chemicals) ^{115,132-134}	Large human cohort		
Other pathways	Receptor activity assays (androgen receptor, oestrogen receptor, G protein signalling, aryl hydrocarbon) ¹⁰⁴	Large human cohort		
and processes	Stress-responsive genes (NRF2, HMOX1) by reporter cell assays ^{108,183,184}	Animal models		
	Functional assays (endothelial function, heart rate variability, arterial stiffness) ^{117(135,137-140}	Field study in humans		
	Autophagy, senescence, telomere length	Animal models		

Exposome-wide association studies – Functional links

- EXPOsOMICS consortium:
 - oxidative stress and inflammation markers are associated via DNA methylation with the adverse effects of air pollution on cardiovascular and cerebrovascular disease
 - association between air pollution and cardiovascular disease via dysregulation of metabolic pathways using metabolomics
- Exposure to air pollution -> ↑ plasma C-reactive protein levels
- HELIX cohort -> prenatal exposure to mercury is associated with an increased risk of non-alcoholic fatty liver disease and inflammation in childhood
- SAPALDIA study -> association between arterial stiffness and night-time noise exposure
- The European Human Exposome Network
 - Initiated in 2020 with a € 106 million grant from the EU
 - 9 large-scale research projects
 - 4 of them -> investigate the effects of the exposome on CVD (external and internal exposures over the life course)

Exposome-wide association studies and CVD

Exposome-wide association studies and CVD

- Questionnaire-based ExWAS study for CVD outcomes
- Part of the National Health Information Survey and the National Health and Nutrition Examination Survey (NHANES)
- The Personalized Environmental and Genetics Study (PEGS) in North Carolina
- 19,672 individuals

B. Definition of cases and controls for PEGS participants for specific cardiovascular-related outcome

Lee EY et al. Environ Res. 2022 doi: 10.1016/j.envres.2022.113463

Exposome-wide association studies and CVD

Lee EY et al. Environ Res. 2022 doi: 10.1016/j.envres.2022.113463

The human early life exposome

- Multi-centre cohort of 1301 mother-child pairs
- Individual exposomes consisting of >100 chemical, outdoor, social and lifestyle exposures assessed in pregnancy and childhood
- Multi-omics profiles (methylome, transcriptome, proteins and metabolites) in childhood
- 1170 unique associations between exposures and molecular features
 - 249 relating to pregnancy

Queen Mary

Medicine and Dentistry

University of London

- 921 to childhood exposures

Maitre L., et al. Nat Commun (2022

doi:. 10.1038/s41467-022-34422-2

The human early life exposome

Maitre L., *et al. Nat Commun* (2022 doi:. 10.1038/s41467-022-34422-2

Mortality and aging exposome

Extended Data Table 1 | Types and dates of data collection in UK Biobank

	Type of data	Date of data	Number of
		collection	participants
			Anticipated
Questionnaire	Sociodemographic data	Recruitment:	500,000
and interview	Family history and early life	2006-2010 ^a	500,000
	Psychosocial factors		500,000
	Lifestyle		500,000
	Medical history		500,000
	Cognitive function		500,000
Physical	Blood pressure	Recruitment:	500,000
measures	Hand grip strength	2006-2010	500,000
	Anthropometry		500,000
	Spirometry		500,000
	Heel bone density		500,000
	Arterial stiffness		200,000
	Hearing test		200,000
	Cardiorespiratory fitness plus ECG		100,000
	Eye measures		100,000
Web-based	Diet	2011-2012	210,000 ^b
questionnaires	Cognitive function	2014	120,000
	Occupational history	2015	120,000
	Mental health	2016	150,000
	Irritable bowel syndrome	2017	150,000
Enhancements	Physical activity monitor	2013-2014 ^c	100,000
	Biochemistry markers ^d	2006-2010	500,000
	Genotyping	2006-2010	500,000
	Multi-modal imaging ^e	2014-2022	100,000 ^f
Electronic	Death registry	2006-current	14,000
medical records	Cancer registry	1971-current	79,000
	Hospital inpatient data	1996-current	400,000
	Primary care data	Birth-current	pending

Bycroft et al. *Nature*. 2018 <u>https://doi.org/10.1038/s41586-018-0579-z</u>

University of London Medicine and Dentistry

Quee

Mortality and aging exposome

- Exposome-wide analysis using data from the UK Biobank (n=492,567) -> systematically identify exposures associated with mortality and multiple stages of the aging process
- Exposures that associate with the most critical outcome of all age-related diseases mortality:
 - Incidence of age-related diseases that are either major causes of death or highly prevalent in aging populations (25 total)
 - Cross-sectional patterns of all age-related blood biomarkers available in the UK Biobank (25 total)
 - Prevalence of three major cardiometabolic risk factors (obesity, hypertension, dyslipidemia)

Mortality and aging exposome

log₂ hazard ratio (fold change)

- 110 exposures significant associated with mortality
- Exposures associated with ↓ mortality risk -> associated with ↓ risk of obesity, dyslipidemia, and hypertension & ↑ levels of biomarkers indicating better health & ↓ levels of detrimental biomarkers
- Exposures associated with ↑ mortality risk -> associated with opposite patterns of these same diseases, risk factors, and biological mechanisms

Al analytical approaches

Queen Mary University of London Medicine and Dentistry

Kirk et al. Advances in Nutrition, 2022 doi: 10.1093/advances/nmac103

Al and precision nutrition

Queen Mary

Medicine and Dentistry

University of London

/alidation

cohort 100 participar

for 1 week) -> significant improvement in glucose metabolism

> Zeevi et al. *Cell*, 2015 10.1016/j.cell.2015.11.001

Use predictor to predict meal responses

Predicted Measured

?

Al and precision nutrition

Zeevi et al. Cell, 2015 10.1016/j.cell.2015.11.001

Wearables and sensors measuring the exposome

Specific External **Exposures**

Physical activity Sleep behaviour Diet Drug Use Smoking Alcohol use

Lifestyle

Physical-Chemical

Temperature/ humidity Electrometric fields Ambient light Noise Air pollution Agricultural activities Pollen/mold/fungus Pesticides Fragrances Flame Retardants (PDBEs) Persistent Organic Pollutants (POPs) Plastics, plasticizers Food contaminants (water, soil, food) Occupational exposures

Passive Samplers

Personal Environmental Modelling

Biosensors and health care

Ates HC *et al. Nat Rev Mater* 2022 doi:10.1038/s41578-022-00460-x

b Building blocks of wearable sensors

Materials Substrates Natural materials Synthetic polymers Hydrogels Inorganics	Electrodes Metals Carbon-based materials Hydrogels	Sensing unitBiorecognition elementsSignal amplificaEnzymesChemicalAffinity proteins PeptidesDigitalAptamers CRISPRCRISPR	Sampling tion Sampled ISF	Microfluidic Wicked channels sweat	Breath	Urine
Decision-making unit Data conversion Data processing Data transmission Data storage	Power unit Energy harvesting Energy storage	Signal transduction Electromechanical Electrical Optical Electrochemical	Microneedle Interstitium ISF	Sweat gland duct Sweat	Tear	Saliva

Biosensors and health care

Ates HC *et al. Nat Rev Mater* 2022 doi:10.1038/s41578-022-00460-x

Queen Mary University of London Medicine and Dentistry

Biosensors and precision nutrition

- NutriTrek
- Continuous measurement of metabolites (9 amino acids, vitamins and lipids) in the sweat
- Personalised, non-invasive metabolic and dietary monitoring -> lifestyle and dietary intervention
- Validation in small pilot studies
- Users are empowered -> responsible of their health and wellbeing -> self-monitoring -> lifestyle changes

Wang M et al. , *Nat Biomed*, 2022 10.1038/s41551-022-00916-z

Digital Twins

- Digital twins -> virtual representation of a physical object or process
- BIG DATA:
 - Vast volumes of structured, semi-structured, International unstructured data generated from various sources
 - 3 V's: volume, velocity, and variety
- Cloud computing: Large-scale computational infrastructure on demand
- IoT Internet of Things: a network of physical objects, devices, and sensors that are interconnected and embedded with software, enabling them to collect and exchange data over the internet

Sun T, et al. DIGITAL HEALTH. 2023 doi:10.1177/20552076221149651

- Health digital twins -> virtual representations "digital twin" of patients "physical twin"
- Generated from:
 - multimodal patient data
 - population data
 - real-time updates on patient
 - environmental variables
- Gain insight into the expected behaviour of the physical twin:
 - Precision medicine
 - Clinical trials
 - Public health

Sun T, et al. DIGITAL HEALTH. 2023 doi:10.1177/20552076221149651

 \cdot

• Studies on medical digital twins

Sun T, et al. DIGITAL HEALTH. 2023 doi:10.1177/20552076221149651

 Real-time information interchange between physical and virtual copy of the patient/object/environment

 Use of data to predict individual patient -specific evolutions Armeni P, et al. J Pers Med. 2022 doi: 10.3390/jpm12081255

30

Target Organ/Disease	Reference (Company, Journal etc.)	Description	
Heart [1]	Living Heart Project, Dassault Systèmes	The Living Heart Project is the first DT organ considering all aspects of the heart's functionality, such as blood flow, mechanics, and electrical impulses. The 3D model of the organ has built with a 2D scan of the heart. The Living Heart Model on the 3DEXPERIENCE platform can be used to create new ways to design and test new devices and drug treatments. For instance, physicians can run hypothetical scenarios like adding a pacemaker or reversing the heart chambers to predict the outcome of treatment on the patient.	
Heart [12]	CardioInsight, Medtronic	The CardioInsight Noninvasive 3D Mapping System collects chest electrocardiogram (ECG) signals and combines these signals with computerized tomography (CT) scan data to produce and display simultaneous 3-D cardiac maps. The mapping system enables physicians to characterize abnormal rhythms of the heart through a personalized heart model.	
Heart [1]	Siemens Healthineers	Another heart DT has been developed by Siemens Healthineers and used for research purposes by Cardiologists of the Heidelberg University Hospital (HUH) in Germany. Although the first study is still in the data evaluation process, preliminary results are promising. Siemens Healthineers developed the DT model by exploiting a massive database containing more than 250 million annotated images, reports, and operational	
		data. The AI-based DT model enables digital heart design based on patient data with the same conditions of the given patient (size, ejection fraction, and muscle contraction).	Arme doi: 1

Armeni P, et al. J Pers Med. 2022 doi: 10.3390/jpm12081255

Brain [17]	Blue Brain Project, EPFL and Hewlett Packard Enterprise	Hewlett Packard Enterprise, partnering with Ecole Polytechnique Fédérale de Lausannes (EPFL), builds a DT of brain called the Blue Brain Project. The project is one of the sub-projects of the Human Brain Project and aims to build biologically detailed digital reconstructions (computer models) and simulations of the mouse brain. In 2018, researchers published the first 3D cell atlas for the entire mouse brain [22].
Human air-way system [1]	Oklahoma State University's Computational Biofluidics and Biomechanics Laboratory	Researchers developed a prototype of human DT, named "virtual human V1.0", with the high-resolution human respiratory system covering the entire conducting and respiratory zones, lung lobes, and body shell. The project aims to study and increase the success rate of cancer-destroying drugs in targeting tumor-only locations.

Armeni P, et al. J Pers Med. 2022 doi: 10.3390/jpm12081255

	Target Organ/Disease	Reference (Company, Journal etc.)	Description
	Brain aneurysm and surrounding blood vessels [1]	Sim&Cure	Sim&Cure developed a DT to treat aneurysms, which are enlarged blood vessels that can result in clots or strokes. DT of the aneurysm and the surrounding blood vessels (represented by a 3D model) allow brain surgeons to run simulations and understand the interactive relationship between the implant and the aneurysm. Although preliminary trials have shown promising results, further evaluation is required.
	Multiple Sclerosis (MS) [9]	Frontiers in Immunology (journal)	Multiple sclerosis, also called the 'disease of a thousand faces', has high complexity, multidimensionality, and heterogeneity in disease progression and treatment options among patients. This results in extensive data to study the disease. Human DTs are promising in the case of precision medicine for people with MS (pwMS), allowing healthcare professionals to handle this big data, monitor the patient effectively, and provide more personalized treatment and care.
	Viral Infection [23]	Science (journal)	Human DTs can predict the viral infection or immune response of a patient infected with a virus by integrating known human physiology and immunology with population and individual clinical data into AI-based models.
	Trauma Management [24]	Journal of Medical Systems (journal)	Trauma management is highly critical among time-dependent pathologies. DTs can participate from the pre-hospital phase, where the physician provides the patient first aid and transfers them to the hospital emergency department, to the operative phase, where the trauma team assists the patient in hospital emergency. Although there is no real implementation yet, a system prototype has been developed.
Queen Mary University of London	Diabetes [25]	Diabetes (journal)	Human DT can also participate in diabetes management. California-based start-up Twin Health has applied DTs by modeling patient metabolism. The DT model tracks nutrition, sleep, and step changes and monitors patients' blood sugar levels, liver function, weight, and more. Ongoing clinical trials show that daily precision nutrition guidance based on a continuous glucose monitoring system (CGM), food intake data, and machine learning algorithms can benefit patients with type 2 diabetes.
University of London Medicine and Dentistry			intake data, and machine learning algorithms can benefit patients with type 2 diabetes.

rmeni P, et al. J Pers Med. 2022 oi: 10.3390/jpm12081255

Further reading

- Ding, E., Wang, Y., Liu, J. *et al.* A review on the application of the exposome paradigm to unveil the environmental determinants of age-related diseases. *Hum Genomics* 16, 54 (2022). <u>https://doi.org/10.1186/s40246-022-00428-6</u>
- Münzel, T., Sørensen, M., Hahad, O. *et al.* The contribution of the exposome to the burden of cardiovascular disease. *Nat Rev Cardiol* (2023). <u>https://doi.org/10.1038/s41569-023-00873-3</u>
- Armeni P, Polat I, De Rossi LM, Diaferia L, Meregalli S, Gatti A. Digital Twins in Healthcare: Is It the Beginning of a New Era of Evidence-Based Medicine? A Critical Review. J Pers Med. 2022 Jul 30;12(8):1255. <u>https://doi.org/10.3390/jpm12081255</u>
- Ates, H.C., Nguyen, P.Q., Gonzalez-Macia, L. *et al.* End-to-end design of wearable sensors. *Nat Rev Mater* 7, 887–907 (2022). <u>https://doi.org/10.1038/s41578-022-00460-x</u>

Thank you

