New methods and the importance of monitoring global biodiversity

Environmental Impacts on Health and Disease Multidisciplinary theme summer school Dr Joanne Littlefair

Session outline

- The importance of global biodiversity
- Biodiversity loss
- Monitoring goals and methods
- Challenges and emerging novel solutions
- Case study 1: Environmental DNA (eDNA)
- Case study 2: Camera traps and machine learning

Molecular biodiversity monitoring

Human-mediated ecological change Bioinformatics methods development and validation

What is biodiversity?

The diversity of all life forms: animals, plants, fungi and microorganisms, and all their interactions

The importance of global biodiversity

- Take five minutes with the person next to you to discuss any conclusions about the importance of biodiversity that you have taken away from the course so far.
- Include your own background knowledge if you are able to.

Follow on:

• Can the reasons for importance ever be ranked? How would different groups assign importance to biodiversity?

The importance of global biodiversity

Utilitarian/ instrumental Value

Ecosystem Services

Benefits provided by nature to humans
Provisioning (food, water, medicine,...)
Regulating (water purification, climate regulation,...)
Cultural (aesthetic, education, science,...)

Livelihoods

Nature and biodiversity viewed as:
Prerequisite for survival
Basis for development
Tool for poverty reduction

Work and income

Direct employment (e.g. ecotourism, protected area management, primary industries)
Indirect employment (jobs supported by ecosystem services)

Non-Utilitarian/ inherent Value

Religious/Spiritual/Cultural • Nature as a whole with transcendental value → obligation for humans to protect • Biocentric and non-utilitarian value • Value can be assigned to a specific element of nature or site

Identity

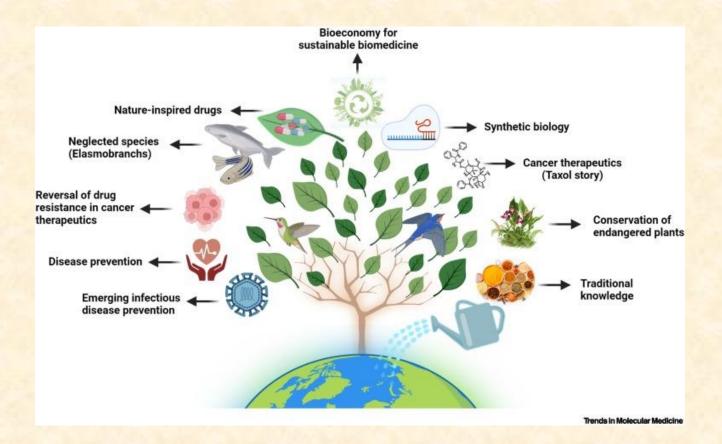
Individual's connection to land
Sense of self associated with nature
Strong connection with gender and roles within communities/society

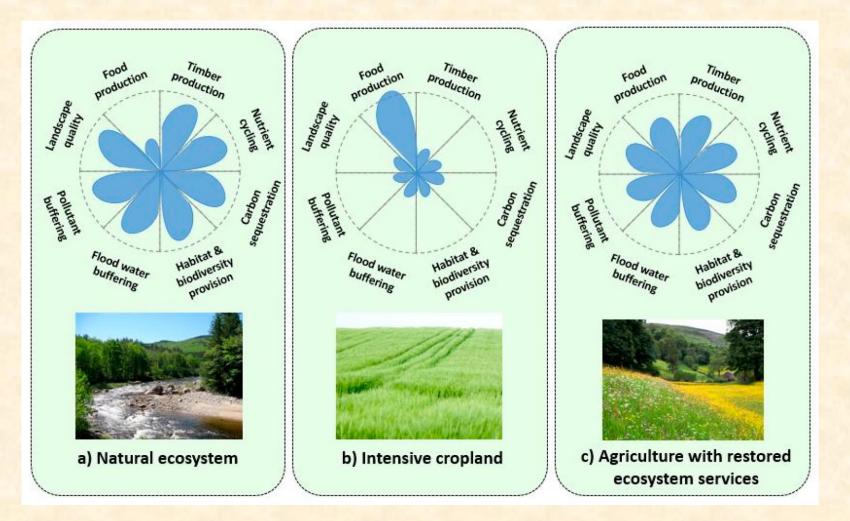
Intrinsic

- Nature or parts of nature has a value in itself, independent from any usefulness for humans
 Ethical, rights-based protection of nature and biodiversity
- Figure 1: Dominant narratives of biodiversity and human wellbeing

- Bioethicists describe **intrinsic** and **instrumental** values of biodiversity.
- Intrinsic: organisms have an inherent value in and of themselves
- Instrumental: values received by humans that are a means to an end. Nature provides ecosystem services and natural resources.

Seddon et al. (2016) Biodiversity in the Anthropocene: Prospects and policy *PRSB* Ecologic Institute (2015) Addressing multiple values of biodiversity in development cooperation *Policy brief*


Biodiversity & ecosystem services


Benefits to humans are known as ecosystem services. On land, these encompass:

- Nutrient cycling
- Photosynthesis
- Food production
- Carbon sequestration
- Clean air
- Etc etc!

The importance of global biodiversity

More biodiversity is linked to greater function

Stosch et al. (2017) Managing Multiple Catchment Demands for Sustainable Water Use and Ecosystem Service Provision Water

Ecocentric view

"These things [species] count, whether or not there is anybody to do the counting" (Rolston 1986).

"Species have value in themselves, a value neither conferred nor revocable, but springing from a species' long evolutionary heritage and potential" (Soule 1985).

"[Species] may not be valuable in themselves but they certainly may be valued for themselves. According to this...account, value is, to be sure, humanly conferred, but not necessarily homocentric" (Callicott 1989).

"[E]very species counts as having the same value in the sense that, regardless of what species a living thing belongs to, it is deemed to be prima facie deserving of equal concern and consideration...[Its good is] worthy of being preserved and protected as an end in itself and for the sake of the entity whose good it is" (Taylor 1986).

"[E]ndangered species are objectively valuable kinds, good in themselves; they do have their own welfare. Respect for life ought to be directly based on this value" (Rolston 1986). Ecocentricist would consider intrinsic values:

- Wildness & beauty
- Spiritual significance
- Evolutionary history
- Evolutionary potential
- Inherently deserving

Biodiversity loss

The WWF Living Planet Report describes global population losses of 69%.

Freshwater ecosystems are the most heavily impacted with 83% population loss since 1970.

We need to "bend the curve" of biodiversity loss.

Biodiversity monitoring

Many different actors engage in biological monitoring:

- International agreements
- National laws
- NGOs
- Citizen scientists
- Commercial applications

Biodiversity & governance

Figure 1: Timeline of the Convention on Biological Diversity

<u>Jun 1992</u> CBD open for signatures		<u>Nov 1994</u> COP1, Bahamas	P	Sep 2003 Cartagen rotocol en into forco	na nters		Oct 20 Nago Protocol into fo	oya Lenters		CC Sha	<u>v 2018</u> DP14, rm El- h, Egy		N	fontreal, Cana	ina presides in ada sity Framework	
1992		:	200	0		2010						2020	2021	2022		
Dec 1993 CBD enters into force	;	May 199 COP4, Brati Global Taxo Initiativ	slava nom	y s	COi Strategic P	Oct 2010 P10, Nagoy lan for Bio and Aichi 1	diversity		Dec 2 COP Canc Mexi	13, un,		COP15 par Ch	2021 rt 1, virtual, ina Declaration			

Source: CBD, HSBC

Current approaches to biomonitoring

- Broad surveys (government led). Indicator species.
- Citizen science (apps)
- In reaction to new development (commercial EIA)
- Some taxa or habitats are targeted through specialist directives: e.g., Water Framework Directive, bats, large mammals

Are we monitoring well?

The inability to detect species and measure population dynamics rapidly and accurately is a fundamental challenge to our ability to meet biodiversity and conservation targets

A UN Sustainable Development Goal

National Parks

Areas of Outstanding Natural Beauty (En, Wa, NI)

National Scenic Areas (Sc)

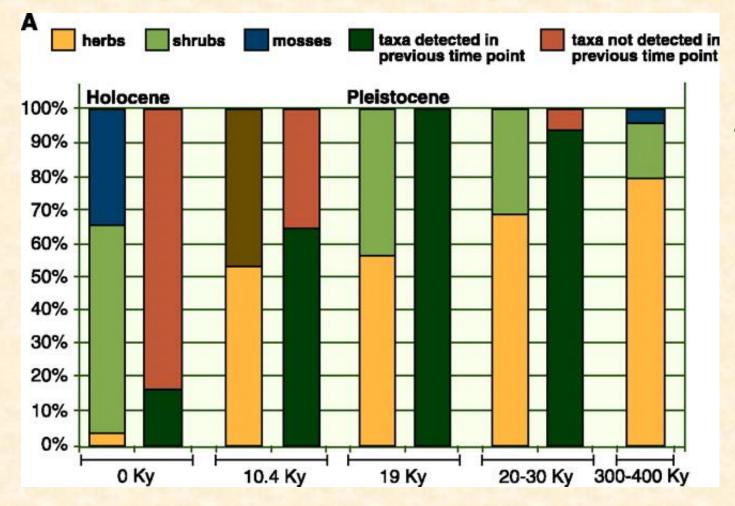
Sites of Special Scientific Interest (En, Wa, Sc)

> **Areas of Special** Scientific Interest (NI)

In the UK

Commons 2021.

"an alarming lack of knowledge about the current state of the sites and the most vulnerable species in the UK"


Biodiversity in the UK: bloom or bust? House of Commons Environmental Audit Committee First Report of Session 2021–22. Parliamentary Copyright House of

Map by @carlbaker

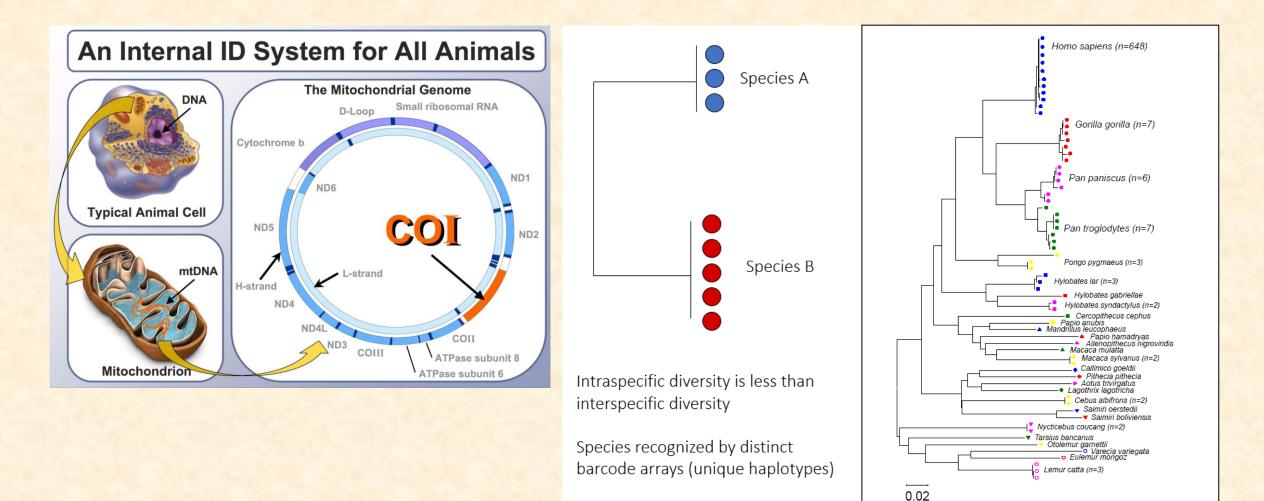
Novel technologies for monitoring

If we were going to design an ideal method for collecting information on biodiversity, what would our requirements be?

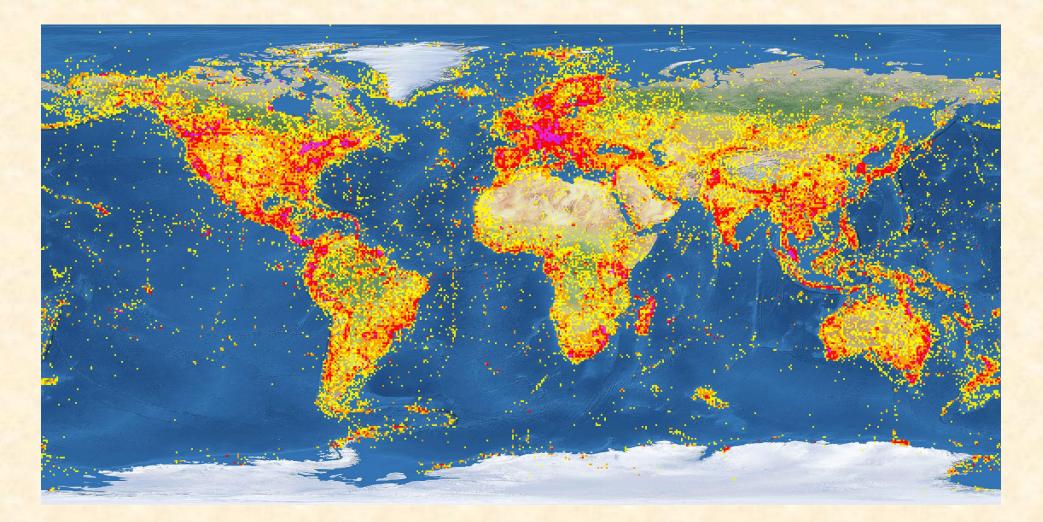
Case study 1: Environmental DNA (eDNA)

• Change in plant composition and diversity through time in permafrost core samples

Willerslev, E., Hansen, A. J., Binladen, J., Brand, T. B., Gilbert, M. T. P., Shapiro, B., ... Cooper, A. (2003). Diverse Plant and Animal Genetic Records from Holocene and Pleistocene Sediments. *Science*, 300(5620), 791–795. doi:10.1126/science.1084114

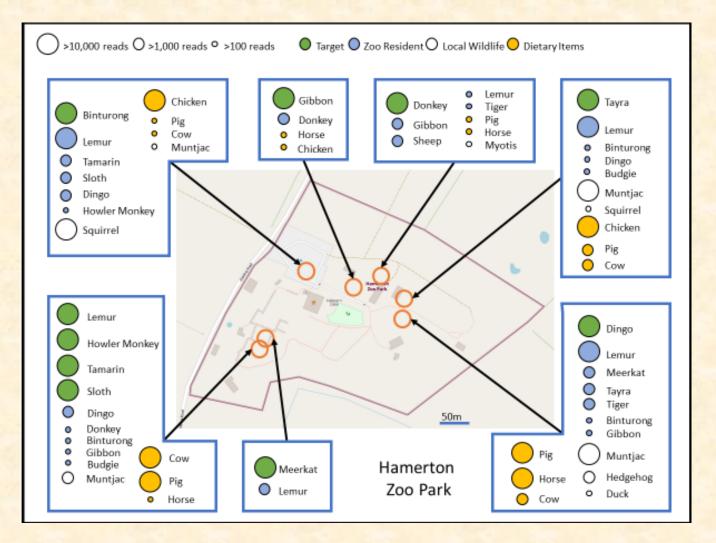


Environmental DNA (eDNA)



How can we read DNA?

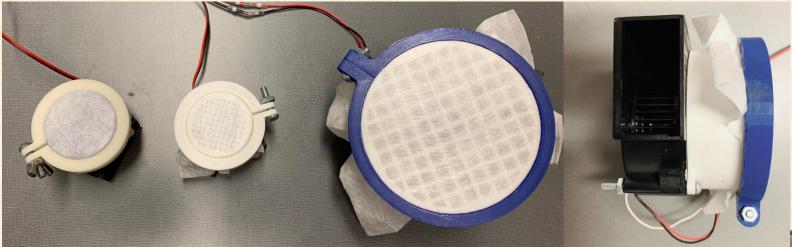
The DNA library: 16.2m sequences



New research: airborne eDNA

- Approaches for aquatic habitats have been well developed since 2010s. Now widely used.
- Yet no approaches developed for the terrestrial biome.
- We developed a new approach sampling DNA from the air.

New research: airborne eDNA



Application to species-at-risk

- Protected species under UK and international legislation
- COVID-19 and other EIDs
- Structural stability of roosts
- Morphological ID can be challenging
- Airborne DNA worked best in enclosed spaces

Enclosed spaces: roosts and caves

Work led by Nina Garrett, York University Canada

Enclosed spaces: roosts and caves

L S 5v

From the "roost"

Emballonuridae	Saccopteryx	Saccopteryx bilineata (Greater white-lined bat)
	Artibeus	Artibeus jamaicensis (Jamaican fruit-eating bat)
Phyllostomidae		Artibeus lituratus/intermedius (Great fruit-eating bat)
	Carollia	Carollia perspicillata (Seba's short-tailed bat)
	Dermanura	Dermanura phaeotis (Pygmy fruit-eating bat)
	Desmodus	Desmodus rotundus (Common vampire bat)
	Glossophaga	Glossophaga mutica (Common long-tongued bat)
	Lophostoma	Lophostoma evotis (Davis' round-eared bat)
	Phyllostomus	Phyllostomus discolor (Pale spear-nosed bat)
	Strunira	Sturnira parvadens (Little yellow-shouldered bat)
	Trachops	Trachops cirrhosis (Fringe-lipped bat)
	Uroderma	Uroderma convexum (Common tent-making bat)
	Vampyressa	Vampyressa thyone (Little yellow-eared bat)
	Eumops	Eumops spp. (Bonneted bats)
Molossidae	Molossus	Molossus spp. (Mastiff bats)
	Mormoops	Mormoops megalophylla (Ghost-faced bat)
Mormoopidae	Pteronotus	Pteronotus fulvus (Dacy's naked-backed bat)
		Pteronotus mesoamericanus (Common mustached bat)
	Natulus	Natalus mexicanus (Mexican funnel-eared bat)
Natalidae	Noctillo	Noctilio (leporinus) (Greater bulldog bat)
Noctilionidae	Bauerus	Bauerus dubiaquercus (Van gelder's bat)
Vespertilionidae	Eptesicus	Eptesicus (furinalis) (Argentine brown bat)
	Lasiurus	Lasiurus ega (Southern yellow bat)
	Myotis	Myotis spp. (Myotis bats)
	Rhogeessa	Rhogeessa aeneus (Yucatán yellow bat)

From the outside

Phyllostomidae	Chrotopterus	Chrotopterus auratus (Whooly False Vampire Bat)	
Emballonuridae	Rhynchonycteris	Rhynchonycteris naso (Proboscis Bat)	-
Bufonidae Catelidae	Bufo Alouatta	Bufo bufo (Common toad) Alouatta palliata (Mantled howler monkey)	
Cricetidae	Ototylomys	Ototylomys phyllotis (Big-eared climbing rat)	
Procyonidae	Pottos	Potos flavus (Kinkajou)	
Sciuridae	Sciurus	Sciurus yucatanensis (Yucatan squirrel)	
Tayassuidae	Pecari	Pecari tajacu (Collared peccary)	
Bovidae	Bos	Bos taurus (Cattle)	211
t	Capra	Capra hircus (Goat)	1.0
Canidae	Canis	(Dog or related species)	
Equidae	Equus	Equus caballus (Horse)	
Felidae	Felis	(Cat or related species)	
Bovidae	Ovis	Ovis aries (Sheep)	
Suidae	Sus	Sus scrofa (Pig)	
Phasianidae	Gallus	Gallus gallus (Chicken)	

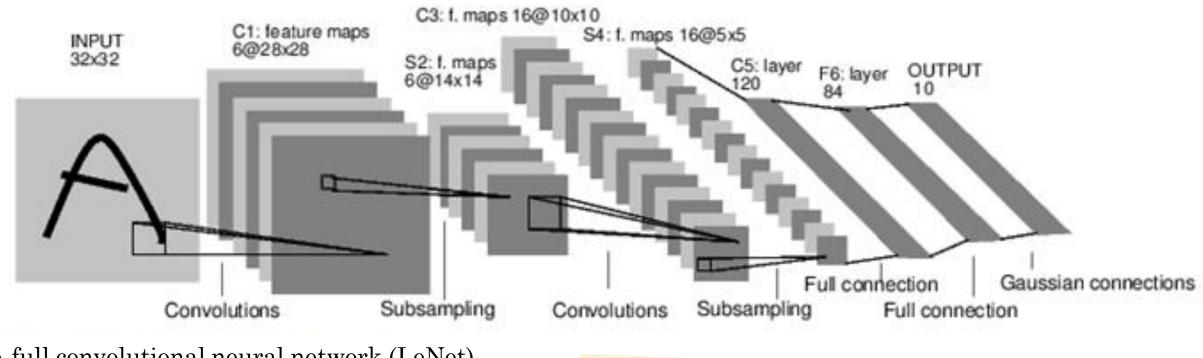
Legend

Yellow = high quality detections Green = Low quality detections Grey = very low sequence counts White = not detected

Garrett, N., ..., Littlefair J.E., Clare E.L. Airborne eDNA documents a diverse and ecologically complex tropical mammal community Environmental DNA

Work with the Bat Conservation Trust

Can we detect UK bat species inside hibernacula?



Case study 2: camera traps and machine learning

The need for image analysis

- Chinko Conservation area, Central African Republic
- 100 camera traps generate 100,000-200,000 images per season

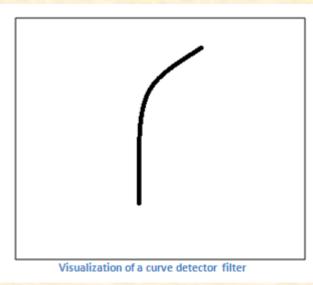
A full convolutional neural network (LeNet)

Convolutional neural networks

- Images contain vast and complex information
- Information is spatially correlated
- Neural networks use examples to automatically infer rules for recognizing images

CNNs look for key image properties

Malay civet, camera trap data collected from QM field trip to Borneo


"Edges" usually display useful information in image data

Groups of neurons fire when we see edges of a certain orientation Hubel & Wiesel 1962

This information is encoded in pixels

Identifying key features

What does a "curve detector" look like computationally?

0	0	0	0	0	30	0	
0	0	0	0	30	0	0	
0	0	0	30	0	0	0	
0	0	0	30	0	0	0	
0	0	0	30	0	0	0	
0	0	0	30	0	0	0	
0	0	0	0	0	0	0	
Pixel representation of filter							

Different filters detect different shapes and lines

Image adapted from: "Neural networks and deep learning" Michael Nielsen

Convolutional layer

Receptive field

Activation map

input neurons

Visualization of 5 x 5 filter convolving around an input volume and producing an activation map

first hidden layer

The **filter** is **convolving** (sliding) around the **receptive field** (input image)

Stride is the number of units the filter moves

The array of numbers in the filter is multiplied by the original pixel values in receptive field.

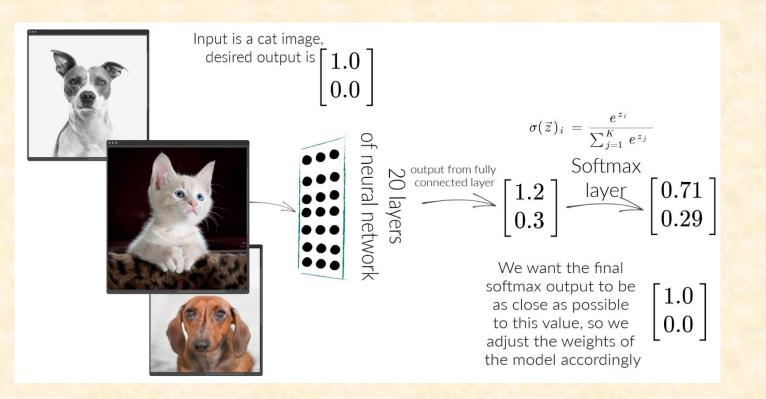
These are summed

Image adapted from: "Neural networks and deep learning" Michael Nielsen


Multiple layers

- The second, third, fourth etc. layers look for higher order features.
- Filters have a larger receptive field in subsequent layers

ReLU layers


- Rectified Linear Units
- Introduce non-linearity after linear computations
- Applies function f(x) = max(0, x) to all values of input

Visualisation of filters in a fully trained CNN Zeiler & Fergus 2014

Fully connected layer

- Uses the final layer as the input volume
- Outputs an N dimensional vector (softmax)
- N = number of classes that are available for the programme to choose from (e.g., bat, cat, dog etc.)
- Each number in the vector is a probability

Training through backward propagation

- Before training begins, CNN does not know what features are important or which filters to apply.
- A training dataset composed of 10000s of labelled images is required.
- Backpropagation:
 - Forward pass
 - Loss function
 - Backward pass
 - Weights update

Issues with CNNs and image analysis

- Animals which are difficult to see
- Different image frame
- Multiple animals
- Background bias during training

Summary

- Biodiversity is central to all life and health but is disappearing at an unprecedented rate.
- The human resources burden of monitoring is extremely high, resulting in patchy data or focused only on key indicator species.
- Technologies that can develop into semi- or fully-autonomous solutions for sampling the whole community will widen our understand.