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‘Epidemiological Epigenetics’

o How the Epigenomic Marker of

DNA methylation

= = A powerful Biomarker in Human Epidemiology about

Environmental

} Informative
Factors & Health

» = Potential Functional insights to pathophysiology




\@_s’ Queen Mary

University of London

Outline

o What is Epigenetics?
o What is the Epigenome?

= DNA Methylation

o DNA methylation Signatures

= Environmental Exposures
= Biomarkers of Disease
= ‘Biological’ Age
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Nucleus A‘ \
w Chromosome

o All cells
~ Same Genome

© The National Human Genome Research Institute
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GENOME

EPIGENOMES




Packaging

Chemical

Modifications of
DNA

= Influences &/or
Informs about
Gene Expression

= Molecular Insight
to Cell & Organ-
Specific Activity

()

\:c,_@_s’ Queen Mary

University of London

Epigenetic Mechanisms

DNA methylation O O Epigenetic factor

DNA

Nucleosome
Open chromatin

23 pairs of
chromosomes packed
into the nucleus

Histone tails
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Chromatin State Influences Gene Expression

Closed Chromatin CENE

L& ><, REPRESSION

inactivating O
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activating o
marks

GENE
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Open Chromatin
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Epigenetics Definition

o “Stable heritable information transfer that does NOT require Mutagenic Change of the
underlying nucleotide sequence”

= Histone

/ @\ modification

.... _\\\- ) | (‘
A @ N

DNA l_ § J
methylation — § o
.-'— ~ N / .")') £
= >
Ao " 23 \, "0‘2&, e @
U SO 8

Baker (2010) Nature Methods
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The Epigenome

o The ‘Genome-Wide' ‘ ot
Epigenetic State - 2

o All of the Epigenetic
Modifications within the
Cell's Genome

Sciencemag.org
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Modifications of DNA

o DNA methylation

= Methylcytosine (5mC)
o Addition of Methyl group
onto 5 Carbon of Cytosine
. Highly Stable Mark
. Most Common
. Most Studied

o Additional Rarer DNA Modifications

= Hydroxymethylcytosine(5hmC)
» Formylcytosine (5fC)

= Carboxylcytosine (5¢C)
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DNA methylation

Cytosine 5-methylCytosine

DNA Methyltransferase (DNMT) Enzyme 13
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DNA Methylation
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o Occurs usually at a Cytosine followed by Guanine base
o Palindromic Motif

s Cthen G from 5 to 3' on both strands
» = CpG dinucleotide



Methyl groups added
to DNA base cytosine
(“C”) at CpG sites
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Establishment & Inheritance

of DNA methylation
Replication

De novo

and

Maintenance

Establishment

m Preference for Hemimethylated Sites

Jones & Liang (2009) Nature Reviews Genetics




\@_s’ Queen Mary

University of London

Potential Pathways of DNA demethylation

5mC 5hmC 5fC 5caC C

NH, OH NH, (l) NH, O  NH, NH,

] (] ] | ]
N /gO N /gO N /&O N /go N /go
S S 3 S
Hydroxymethylcytosine  Formylcytosine Carboxylcytosine

Active Removal
Oxidised to 5hmC (TET Enzyme)
5hmC further oxidised to 5fC & 5caC
Base Excision Repair Machinery — Unmodified Cytosine
Deformation Or TDG cleaves
Passive Removal
Hemimethylated DNA is not methylated by DNMT1 during replication

Branco & Reik (2012) Nature Reviews Genetics
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DNA methylation Cycle

De novo methylation:
Maintenance Dnmt3a, Dnmt3b

of methylation:
Dnmt1

O
LB:‘ Cytosine
O

DNMT
Tet L
@J '

&
8

OH
Tet

19
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DNA Methylation Repressive in Promoters

(O unmethylated

© Methylated

m I_) Gene Expression

/1 CpGIsland Gene ]

I+) Gene Expression Repressed

C————1CpG Island Gene _

Suzuki & Bird. (2008) DNA methylation landscapes: provocative insights from epigenomics. Nature Reviews Genetics
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CpG Dinucleotide Signalling Molecule

ACTIVATING REPRESSIVE

CFP1 MBD1
MLL1

MBD
MLL2 MBD2

MeCP2
KDM2A and B M;m

TET1 and 3

Schubeler (2015) Function and information content of DNA methylation. Nature
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X Inactivation

o Epigenetic Dosage Males Females
Compensation Mechanism A X T A X T
= As Females have A Y A A v

2 X Chromosomes —

= Males only 1 Femae ek GENE COPY
= Random Switch-Off —
Hypermethylation of 1 X H *

chromosome in Female e
B EXPRESSION
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X Inactivation

o Epigenetic Dosage Males Females
Compensation Mechanism

s As Females have A A
2 X Chromosomes X X
« Males only 1 A Y A X |T

= Random Switch-Off

Matemal X chromosome O allele

Hypermethylation of 1 X T~

chromosome in Female D
I | 5\ ’l,\ v \/,7

Random X inactivation 23




male female ey, Queen Mary

XY [ Xy | XX (XX xXX

Random X-Inactivation
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Waddington's Epigenetic Landscape

5

B P L e
0 ’.": » ' [ ! |

W?“N

\\\ | ,'/ I Il, , \ /,'//W} 3 , f
\.\ UL AL /el,jf;ff,’fi},f/.f"f'r."".'./if't/*.""';;,~,.‘ B if.'f/v/,n:'l i

fl |

|

In 1957, Conrad Waddington proposed the concept of

an Epigenetic Landscape to represent the process of
cellular decision-making during Development

ﬂ
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Haematopoiesis: Haematopoietic Stem Cell —

e

L .

Common N — TR Common

Lymphoid Myeloid
g Progenitor Bie © EMP Progenitor
2 / \
) HSC @
&
T \
g Immature T Cell Progranulocyte Monocyte
: 63

Neutrophll
— SR Mast Cell
O :@ Eosinophi

o B lymphocyte CD4+ helper  CD8+ cytotoxic  nayyral Killer (NK Granulocyte Macrophage Dendritic Cell
S ymphocyt TCell (Th)  TCell (Tc) HE) ! (MAC) (DC)

de la Calle-Fabregat et al. (2020) Understanding the Relevance of DNA Methylation Changes in Immune Differentiation and Disease. Genes
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Heterogeneous Blood Tissue = Meta-Epigenome

o Meta-Epigenome @__,__,@ @

u M ix e d S i g n a | Corr;T:gne:\]/R/;arloid Granulosry;ggl\:l‘?t(c;ophage | Myeloblast]| Comggg%_ry‘/i:r;;r)hoid
o from all the cell-types that ooy Y v - MRy
. A\ ( (
comprise sample @ @ @ Q
Monocyte |Neutrophil][ Eosinophil| [Basophil| Lymphoid Progemtor
» Blood DNA = Leukocytes A/l PR Bcle"
Pre-TCR
o Mature Red Cells @
)
' NUCleUS expunged IIELS] |Double Negative (DN)| Marglnal -zone Mature
Macrophage CD4 CD8& B Cell B Cell
¢ TCR
» Use Epigenomic Information

<_/ N
\\ > /
INKTCeIII |Double Positlve (DP)] Tiia
C

i D4-CD8* - -
Positive selection Negative selection
Plasmgcytmd Conventional ™ o it ] | ™ g e oo
Dendritic Cell Dendritic Cell bind to MHC/antigen to antigen-presenting cells

- Deconvolution Leukocyte Cell Types ot @ @ o

Single
¢ Positive (SP)
A [Cyfotoxic] Helper (Th)
/ (CD8") (CD4+)
g L4, IL-5,

CD4*CD8a CD4CD8a* CD4-CD8a [aFr:\(lj—"{l'r\Illl_f-zﬁ —>» IL-10,

- and IL-13
Hel [Helper (Th1)| Helper (Th2)

(CDa+) (CD4+)

- Constituent cell type proportions

Houseman et al., (2012) BMC Bioinformatics;
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DNA modifications = Extremely Stable

Cell Type Proportions

DNA from Mixed Cells
= DECONVOLUTE

Methyl —
group

e. g B|OOd DNA (Houseman et al.)

©000

MONOCYTE NEUTROPHIL EOSINOPHIL BASOPHIL B CELL NK CELL TCELL

Histones —

Histone —
Tails

29

Houseman et al. (2010) DNA methylation arrays as surrogate measures of cell mixture distribution BMC Bioinformatics
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Analysing the Epigenome

. Histone

: A )\ modification
I. / ) \ ‘
I.I.’I./.,‘l,;n \ ﬂ

. \\\ % \
DNA | ¢ T\
methylation - § V) =
Y Ve L s 0 "0‘ g =
N/ ( ) "Q’ OGS 'g
IS 8

30
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Assessing the DNA methylome

DNA Methylome
= Total set of DNA methylation modifications in an organism's genome

or in a particular cell

o Predominately at CpG dinucleotides
= ~32 million CpGs in Human genome sequence (Gershman et al.)

o Although low level non-CpG Cytosine methylation occurs
= Particularly In Developmental and Brain tissue

31

Gershman et al. (2022) Epigenetic patterns in a complete human genome. Science
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High-Throughput DNA methylation Array Analysis

o BiSulphite Reaction

= Convert Cytosine in CpG
= — Pseudo-SNP = C/T SNP
= Reflecting Methylation State

o lllumina Arrays

= Adapted SNP array technology
o 27k, then 450k, 850k (EPIC)
o Now: 900k (EPIC v2)

= Stringent Quality Control

o Probe; BiS Conversion;
Batch: Normalisation; Cell
Type Heterogeneity;
Genetic Confounders

Bisulphite treatment

- -Mg- - - -Egl- - -
1 Bisulphite
- -gle- - - -Eg- - -
- -M[G|- - - -MG|- - -
1 PCR
_ _EE_ - _E@_ _ illumina
- __ - __ - »LllllllllllllllllII|IIIIIN|

32
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Analysing the Epigenome

FUNCTION

* Gene Activity &/or
* Informative of Function
« Cell-Type Specific

Breitling et al. (2011); Horvath (2013)
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Hallmarks of Environmental Insults

o Hallmarks of environmental insults

= Cellular & Molecular processes
involved in:
o Essential cellular mechanisms & activities

o Linking environmental exposures to
chronic diseases
Cancer
Respiratory
Cardiovascular
Metabolic diseases
Nervous system

Peters et al. (2021) Hallmarks of environmental insults. Cell
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Organ-specific impacts based on Hallmarks of Environmental Insults

Systemic responses

e Altered chemokine signaling,
inflammation

e Circulating extracellular
vesicles

e Circulating RNA species

¢ Altered metabolites

Brain

e Neuroinflammation

e Neurotoxicity

e Stress hormone release

e Endocrine disruption

e Circadian rhythm disruption
¢ Altered nervous system

Circulating peripheral

white blood cells function
e Altered composition and states

e Epigenetic changes

e Mitochondrial dysfunction Heart

e Telomere attrition
e Inflammation, cell death

e Epigenetic changes

¢ Mitochondrial dysfunction

e Altered autonomous
nervous system function

Lung
¢ Inflammation, cell death
e Epigenetic changes

e Immune cell interactions
e Altered lung microbiome
e Virus activation

Gut
e Altered gut microbiome
e Altered metabolites

Skin

¢ Inflammation

e Epigenetic changes

e Immune cell interactions
e Altered skin microbiome

Reproductive organs
¢ Inflammation

® Epigenetic changes

e Mitochondrial dysfunction
* Telomere attrition

e Endocrine disruption

Peters et al. (2021) Hallmarks of environmental insults. Cell
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External Exposures

Table 1 | Chemicals and pollutants:

Compound Species

O Any OUtSide StimU|US Tobacco smoke Human
» That body can Detected

= Potential to cause Epigenetic Ferticulateairpelution - Thman.
Modrﬂcahons Asbestos Human
Bisphenol A (BPA) Mouse
Diethylstilbestrol (DES) Mouse
H Wh | Ch Expos u reS? Metalions (such as Multiple
. . . chromium, cadmiun, nickel,  species
= Affect which epigenetic marks? arsenic and methylmercury)
Vinclozolin Mouse,
= What are the mechanisms and rat
downstream effeCtS'? Methoxychlor Mouse
Silica Human
Benzene Human

Di- and trichloroacetic acid, Mouse
trichloroethvlene

Feil & Fraga (2012) Nat Rev Genet
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The Exposome

4 -

[5) <) i ol
Lifestyle Physical Ecosystem Social Chemical
’ C ) VAN

% <
Genome Epigenome Transcriptome Proteome Metabolome
¢ S MIRNA mRNA @ Metabolites
N M ~.7 P
S &) ¢S o e
N N\ Protein { )
) Histone
DNA circRNA
Transcription Translation
Expression Function
Phenotype

= Cumulative measure of environmental influences over the lifespan

Wu et al. (2023) Molecular mechanisms of environmental exposures and human disease. Nat Rev Geneti
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Gene-Environment Interaction — Impact on Disease Risk

‘//¢ ‘//' ‘//¢ GSTM1

gene variation \/ ‘// ‘//

GSTM1
functional

GSTM1
null

!

}

VAVA

Encodes functional GST enzymes

VAVA

Lacks functional GST enzymes

!

!

- Air pollution + Air pollution

! !
£ AN\

Low-to-moderate

Low asthma risk asthma risk

- Air pollution + Air pollution

1 1
N AN

Low asthmarisk  High asthma risk

GST encodes glutathione S-transferase
= Detoxifying Enzyme

= Protects against pollution-related oxidative
stress

Carriers GST null genotypes
= > susceptibility indoor air pollution
= 7 risk of asthma

Wu et al. (2023) Molecular mechanisms of environmental exposures and human disease. Nat Rev Genetics
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Agouti Mouse




\a_é_s’ Queen Mary

University of London

Metastable Epialleles

a

Ectopic agouti expression

L

IAP

a

Developmental agouti expression

Y Sl

IAP

a

o Dietary Influence on Agouti Locus
= Intracisternal A particle ~ Variable methylation

o Influences Agouti Promoter
= Ectopic Agouti Expression — Yellow Coat = Controlled expression — Brown Coat
o Also Obesogenic » Methylation late/partial - Mottled Coat

Jirtle & Skinner. (2007) Nat Rev Genet
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Maternal Dietary Influence

Diet-associated methylation changes

Maternal supplementation with

Maternal exposure to endocrine
methyl donors and cofactors

disruptors and toxic
compounds

Normal conditions

V

Ecto[.)ic expression . =» Ectopic expression Yellow _ .
EAYIId—type expression (T(T( — z Wild-type expression* AnyVlld-type expression
LAY | IAP —

| |
IAP IAP

Most of the Most of the
offspring »=p Ectopic expression Mottled offspring are
are yellow . T b r s pseudo-agouti
or slightly mL‘ type exp or heavily
mottled IAP LAY | mottled
Pseudo-agouti * Developmentally requlated gene

expression

’ Methylated CpG
Q Unmethylated CpG

m: Wild-type expression®

Feil & Fraga (2012) Nat Rev Genet
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Tobacco Smoking

o — Significant Change
in the Blood DNA methylome

3
™
‘~ »

4

« Maternal = In utero effects

= Passive Effects

s Ex-smoker Effects

Joubert et al. (2012) EHP
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Environmental Exposure: Tobacco Smoke

AHRR_cg05575921
o DNA methylation = Quantitative Sia

Biomarker of Tobacco Exposure *
= Smokers 90- ' * * |
= Ex-smokers - | ! i
= Passive Smoking _g
= Prenatal exposure Infants (Jorbert et al.) © 0 °°
£60{ el i
. En
o Strong signal 1 locus Syl e 1
= AHRR X 20 ,
o Aryl Hydrocarbon Receptor Repressor
o Detoxification process of Tobacco 30 r l T
oroductions Never Ex Current
Smoking

de Vries et al. (2018)

\3»
43

Jorbert et al. (2016) DNA methylation in Newborns and Maternal Smoking in Pregnancy: Genome-Wide Consortium Meta-analysis. AJHG; de Vries et al. (2018) Respir Res




AHRR Scale 20 kb | hg19
chr5: | 325,000 330,000 335,000 340,000 345,000/ 350,000 355,000 360,000 365,000 370,000/ 375,000/ 380,000]
Cg 05575921 UCSC Genes (RefSeq, GenBank, CCDS, Rfam, tRNAs & Comparative Genomics) [
PDCD6-AHRR 1
PDCD6-AHRR H
PDCD6-AHRR ; il
AHRR] | | 1 I
CpG Islands (Islands < 300 Bases are Light Green) ::
crG:213 R CcpG: 1171 CpG: 274 CpG: 24 il
cpG: 71l
llumina 850k EPIC Methylation Array H
cg00300637 | cg05758931| cg17668415| cg24688690| cg14690983 cg15179499| ¢g04202140| 'qi 01097768|
cg14453201 | cg11763982| cg03891523|  ¢g24081180| cg00629928| cg12806681 | cg2pr03534|
cg11554391 | cg05934812| cg09078014|  cg07943658| cg23916896| 06035956
cg09634134 | cg02356223| 909338136 cg05655106 | cg11902777| I £g24256039 |
cg09470163 | cg16995193| cg11827403| cg12202185| h
cg16896326 | cg14714797| cg26487191]| cg01899089| : :
cg07137034 | cg16371648| 902088390 cg20310920| 1}
cg26987759 | cg08858540| cg14219121| cg03491025| h
cg04369835 | cg09084391| cg14744022| ! :
cg09454315 | cg13023972| 0923576855||'
cg06802630 | cg04135110| 090557592ﬁh
cg12961784 | cg00731338| cg221 037sp.'l
cg01970407 | €g24980413| cg087141a{|
cg08606254 | cg041418Q6|
cg20433154| c2235658Y |
092413]459|
CpG Methylation by Methyl 450K Bead Arrays from ENCODE/HAIB
ami2s7s | [IIIIT] | | | | I T II.III i
Transcription Factor ChlP-seq Clusters (338 factors 130 cell types) from ENCODE 3
Tun Facte CriP ESNIEEE 0 1 1 1 WA T i i * Pl |

Genome Se mentatlons from ENCODE
K562 Combined |l _ |

|
HUVEC Combined [l IIIIIIII- I oot IIII BN S S e 'I-II [ W]
I /D I

HepG2 Combined | Il | I
HeLa-S3 Combined IS B~ B | 0 N N I Il 110 l- | Bl |
H1-hESC Combined [l [N [N N | S e i HE 1 1 -
GM12878 Combined | INNEEEE WE 00 EET 0 1HE N HIiNEE - N
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Aryl Hydrocarbon Receptor Repressor (AHRR) CpG

100
|

E Never Smoker
B Current Smoker

European South Asian

Ethnic Group

60 80

40

20

DNA Methylation (%) cg05575921

Elliot et al. (2014) Clinical Epigenetics
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DNA methylome Signatures of Cigarette Smoking

o 15,907 blood DNA samples (16 cohorts)
s 2,433 current

- 6 51 8 former Smoke rS (Joehanes et al ) Current vs. Never Smokers Former vs. Never Smokers
, .
s 6,956 never
wepaRE :
s Current versus Never smokers & 1
o 2,623 CpGS at Bonferroni p<1x10~/ T &7 . £
annotated to 1405 genes N TR 8 g
18,760 CpGs at FDR < 0.05 ]
= Former versus Never smokers T ]
o 185 of the current v never CpGs, p<1x10~ | | | I e
-0.15 -0.10 -0.05 0.00 0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02
2'623 CpGS at FDR <005 Regression coefficients Regression coefficients

Pattern of persistent altered methylation

Joehanes et al. (2016) Epigenetic Signatures of Cigarette Smoking Circ Cardiovasc Genet
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Long term maintenance of Smoking DNAmM changes

Cessation effect of 'long-term’ genes

15

o Majority of differentially methylated CpGs

= Observed in Current versus Never smokers PRRT1
= Returned to the level of never smokers © - %

within 5 years of smoking cessation

10

£ o
o However, Trajectories of 36 CpGs (19 genes) S Bl
= Did Not Return to Never-Smoker Levels S | ~AHRR
o 30 years After Smoking Cessation in the o
Framingham Heart Study (n=2648) i
e.g. PRRT1, TIAM2, AHRR , I , , , , ,
Current >5 >10 >15 >20 >25 >30

Years after quitting

Joehanes et al. (2016) Epigenetic Signatures of Cigarette Smoking Circ Cardiovasc Genet
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AHRR DNA Methylation — Future Lung Cancer Risk

o AHRR CpG Biomarker Lung cancer, methylation 6-year cumulative
45 cumulative incidence, % Quintile Extent incidence, %
» cg055/75921 4th 51 3.7
B : . 5th 46 3.5
o = Marker of smoking behaviour i e e o G
= Future Lung Cancer Risk
o ~2k High Risk smokers
o Adults mean ~60 years
o Cumulative incidence o 56 1.7
Lung cancer 2nd 62 1.3
Predicted 6-year risk by AHRR
DNA methylation Quintiles
1st 68 0.0

Time since blood sampling, years

Bojesen et al. (2017) AHRR (cg05575921) hypomethylation marks smoking behaviour, morbidity and mortality. Thorax
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In Utero Smoking Exposure — Newborn DNA methylation

o Meta Epigenome Wide
Association Study
s 13 cohort (~6.5k individuals)

o Newborn Blood S
= ~6,000 CpG DNAmM As
o Methylation Variation Relevant to 3 |
Diseases influenced by Maternal T
Smoking 2
Incl. Asthma and Orofacial Clefts S =
. . . i H
o & Can persist into childhood g =
7
8 o L
RES Significance
I T T I T 7| T I T T T T T I T 7|7 I T | I O | ThreShO|d
- N o % we ~ o 29 o o 2FRO-CRW
Chromosome

Joubert et al. (2016) DNA methylation in Newborns and Maternal Smoking in Pregnancy: Genome-Wide Consortium Meta-analysis. AJHG
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Able to Distinguish Smoking Exposure Periods

o DNA methylation patterns/ scores

|

‘(. .
J
—

= Accurate biomarker past exposure

o — Environmental & Gene- -
environment interaction studies in @ A

existing banked samples

A 4

Prenatal  Birth Infancy Ch:slzrhIZod Childhood Adulthood

Adolescence
s 7 Types Of exposures Define methylation classifier sets (a): Set 1: 568 loci Set 2: 19 loci
Aaterna renatal sr King DID:I:D EEI:D
o Prenatal & Personal exposure S Set 3: 2623 o
isolated (Richmond et al.)
DNA llected at 30 Timing of DNA measurement (b): methylation score using DNA at age 30
collected at age

Timing of exposure of interest (c): Prenatal

o Predict Prenatal exposure to
smoking with ~72% accuracy

Ability of methylation score using DNA at age 30 (b) to predict prenatal smoking exposure (c) using various classifier sets (a):

AUC=0.69 < CIETITTTITET] Set 1: Birth signature
o Postnatal personal Smoklng AUC=0.72 « CIT11] Set 2: Childhood signature
H AUC=0.57 <= (I Set 3: Personal active
NOt gOOd predICtOI’ Of Pl’enata| = S— smoking signature
smoking exposure (AUC=0.57) uesoTt L e
g p : adjusted for personal
Suggesting Methylation patterns g Senetise

differ by exposure window

Ladd-Acosta & Fallin (2019) DNA Methylation Signatures as Biomarkers of Prior Environmental Exposures Genetic Epidemiology
Richmond R, et al. (2018) DNA methylation as a marker for prenatal smoke exposure in adults. Int J Epidemiol.
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AHRR CpG (cg05575921) correlation with Cotinine & CO

Serum Cotinine Exhaled Carbon Monoxide Levels
Control & Smoking (n = 366, adj-R2 = 0.68) (n = 368, adj-R2 = 0.60)
e Control e Control
° ® Smoker ® Smoker
150- 150-
i§,100* ’:5:100-
50- 50-
0- 01
20 40 60 80 0 10 20 30 40 50

cg05575921 Methylation (%) Carbon Monoxide (ppm)

Andersen et al. DNA methylation differentiates smoking from vaping and non-combustible tobacco use Epigenetics




Nl Quoen Mery
DNA methylation at cg05575921 Specific Biomarker

of Combusted Tobacco Smoke Exposure

100

o DNA methylation

at AHRR cg05575921 75
s Biomarker of Combusted Tobacco
— 0§ DNAm 501

» Can differentiates exposure to

combusted tobacco smoking 251

cg05575921 Methylation (%)

» From vaping (e-cigarettes) & non-
combustible tobacco use 01

Control Smoker Vaber Smokeless

Andersen et al. DNA methylation differentiates smoking from vaping and non-combustible tobacco use Epigenetics
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Pollution — DNA methylation — Atherosclerosis

o Air pollution effect on atherosclerosis SDHAP3

» Epigenome-wide association study (EWAS)
o In CD14+ Monocytes

Cell Type critical in atherosclerosis pathology

m]

Long-term ambient air pollution exposure
Adults: Multi-Ethnic Study of Atherosclerosis (MESA) -
n=1,207
1-year average concentrations outdoor

Fine particulate matter (PM2.5)
Oxides of nitrogen (NOX)

Estimated at participants’ homes

Transcripts

o PM2.5 = 4 differentially methylated regions (DMRs)
within/near SDHAP3, ZFP57, HOXA5, & PRM1

o NOX =2DMRs
at SDHAP3 & ZFP57

o Some DMRs associated with gene expression

e.g. HOXA5 DMR with HOXA5, HOXA9, & HOXA10
Novel insights air pollution — cardiovascular disease

c
S
5
>
£
2
=
o
-]
c
&
=
o

Chi et al. (2021) Epigenome-wide analysis of long-term air pollution exposure and DNA methylation in monocytes: results from the Multi-Ethnic Study of Atherosclerosis. Epigenetics
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Arsenic Exposure associated DNA methylation Changes

o Arsenic related to multiple health outcomes

= Even at low exposure levels in water & food =

AsS o~

= Including: i * @
E€SA
o Atherosclerotic Cardiovascular Disease (CVD) l & )ZW
o Coronary Heart Disease \ \@ ﬁ
o Stroke ;

o Peripheral Arterial Disease
o Overall CVD mortality

= Also prospectively
o Changes in Blood Pressure Offspring

o Carotid Atherosclerosis

Diabetes

‘ q -
Created with

BioRender.com

Domingo-Relloso et al. (2022) Arsenic Exposure, Blood DNA Methylation, and Cardiovascular Disease. Circ Res
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Arsenic Exposure associated DNA methylation Changes

o Arsenic induces epigenetic modifications in
experimental models

=  DNA methylation

o Proposed as intermediate mechanism between AAS
environmental exposures and disease

33

o Blood DNA methylation analysed
» 2,321 participants
o Strong Heart Study:

o American Indian prospective cohort
o Mean age 56.2, 58.6% @

W7
-

e

‘L )
A /
80
Diabetes
S <> 2
(g )
L.}
(<]

Offspring

» Urinary arsenic species were measured

o Using high-performance liquid chromatography coupled
to inductively coupled plasma mass spectrometry

I
° o ©
° °
= —

Created with
BioRender.com

Domingo-Relloso et al. (2022) Arsenic Exposure, Blood DNA Methylation, and Cardiovascular Disease. Circ Res



Arsenic Exposure associated DNA methylation Changes
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o Arsenic DNA methylation changes

20 & 13 Differentially Methylated Positions
(DMPs) were potential mediators for CVD
incidence & mortality, respectively,

o Several in/near genes related to Diabetes

o 11 of these DMPs associated with incident CVD
in 3 diverse prospective cohorts

Framingham Heart Study, Women'’s Health
Initiative, & Multi-Ethnic Study of Atherosclerosis

Mouse model arsenic-induced atherosclerosis

o Differential liver DNA methylation following
early-life arsenic exposure

o DMPsin 10 genes overlap

Possible biological link b/t arsenic & CVD

o Gene functions support that diabetes & redox
signalling are involved in arsenic-induced CVD

Table 2. HRs (95% Cls) of the Common Differentially Methylated Positions for Cardiovascular Disease Incidence and Mortality

Comparing the 90th vs the 10th Percentile of Methylation Obtained From the Cox ISIS-Aenet

in mice

CVD incidence CVD mortality
CpG Chr Gene Function Location HR (95% CI) HR (95% CI)
cg13251119 1 EPS8L3 Unknown function Body 0.51 (0.29-1.00) 0.18 (0.06-0.63)
cg00841849 2 D2 Cellular growth, senescence, differentiation, apop- | Intergenic 0.57 (0.40-0.84) 0.63 (0.32-1.01)
tosis, angiogenesis, neoplastic transformation
cg14066163 17 Unknown Intergenic 0.63 (0.39-1.00) 0.67 (0.31-1.17)
cg25371036 11 AMOTL 1 Endothelial cell migration, capillary formation TSS1500 0.71 (0.54-0.92) 0.42 (0.27-0.73)
cg03362418 22 TYMP Angiogenesis and endothelial cell growth. Pro- Body 0.73 (0.50-1.02) 0.51 (0.29-0.94)
posed as therapeutic target for CVD
cg25452273 15 PPCDC Biosynthesis of coenzyme A. Metabolism of water- | Body 1.25 (0.96-1.81) 1.80 (1.00-3.42)
soluble vitamins
cg18130370 22 NCF4 Arterial remodeling and advanced atherosclerosis | Body 0.79 (0.48-1.12) 0.44 (0.19-0.99)
cg00451635 16 EMP2 Blood vessel endothelial cell migration and angio- | TSS1500 1.11 (0.86-1.33) 0.68 (0.46-1.00)
genesis
cg06970472 4 APBB2 Beta-cell function, insulin secretion impairment Body 1.22 (0.93-1.61) 0.69 (0.43-1.05)

Domingo-Relloso et al. (2022) Arsenic Exposure, Blood DNA Methylation, and Cardiovascular Disease. Circ Res
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Integrating Genetic & Epigenetic Risk

Genetic Variants

J0g:e(P)
o

v T T v T T Y T v P ———————r—y
o~ ™ - w o N ® O 2 = N Y DONDOO=N
- e e o e e

Chromosome

GWAS Risk DISEASE RISK
Loci

Environmental Risk Factors

Bl 7

Virolainen et al. (2023) Genes & Immunity
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DNA methylation + Polygenic Predictors of Trait & Lifestyle

— Score

60 [ ]Polygenic
DDNAm
D Polygenic + DNAm
BMiI .

, .  Prediction of Complex Traits
Polygenic ~10.1% «  Combining Genetic Risk
DNAmM ~12.5% . (Polygenic Risk Score) +

] Epigenetic predictors
= Proportion of Phenotype
Variance Explained ol

U _I_HH—HWr oo U

1 1 L} L} 1 1 1 1
BMI Smoking Alcohol Education TC HDL LDL TC:HDL

Phenotype
58

McCartney et al. (2018) Epigenetic prediction of complex traits and death. Genome Biology
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Ageing: Multisystemic Changes

Biological Measures change with Age

1.0
1 pléink4e tissue levels .
. . e BMI
1 Circulating CRP s | s
s Hemoglobin Alc
1 Creatinine 0.4 - Leptin

@ Mean arterial pressure
s VO,Max (rev)

== FEV,/FVC (rev)

e FEV, (rev)

=== Total cholesterol

1 Fasting Glucose 02 -

| Telomere Length

=== Triglycerides

Biomarker z-score
o
o
1

=0.2 w=== HDL cholesterol (rev)
s |ipoprotein(a)

-0.4 - e ApoB100/ApoA1

« eGFR (rev)
— Blood urea nitrogen
g hsCRP

s White blood cell count

-0.8 s Mean periodontal attachment loss
=== Dental caries experience

-1.0 T T T T

26 32 38 45
! Age (years)

60

Elliot et al. (2021) Nature Aging
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Burden of Age-related Disease

Agemg IS @ major risk factor for and diseases
Cancer s
. cartilage, |
Heart Disease 'm;ﬂh:c&m
Dementia
) Gain of
Type 2 Diabetes etc. S
o Y Alterad

hormone levals

o~ 1 Understanding Pathological changes 4

occurring with Ageing Mechanical and
structural changes
— 1 'Healthspan’ (Partridge et al.)
Multimorbidity
Frailty

61

Partridge et al. (2018) Facing up to the Global Challenges of Ageing Nature



\Q_s’ Queen Mary

University of London

Burden of Age-related Disease

9 Hallmarks of Ageing

. . . . Age-related phenotypes
Ageing is a major risk factor for and diseases
Cancer = Loss of bone,
: omere  Genomic cartilags, muscl
Heart Disease attrition instability 'm:‘u‘fg;m
Dementia
. Epigenstic Loss of Gain of
Type 2 Diabetes etc. alterations proteostasis abdominal fat
Hallmarks — Altered
i : Stem-cell of ageing Cellular 7 hormone levels
o -~ 1 Unplerstgnolmg .Pathologlcal changes : =
occurring with Ageing Mechanical and
structural changes
— 1 'Healthspan’ (Partridge et al.) Dereguiated MEochondisl
nutrient sensing — dysfunction Multimorbidity
intercellular
communication
Frailty
62

Partridge et al. (2018) Facing up to the Global Challenges of Ageing Nature
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Individual Variation in Rates of ‘Biological’ Ageing

o=
s \
Aging outcomes
Neuroimaging measures Cognitive difficulties Sensorimotor functional capacny Perceptions of aging ’
+ Gray matter measures « Tests of cognitive functioning + Tests of functional fitness « Attitudes toward aging
+ White matter measures « Cognitive decline + Tests of vision and hearing \ « Perceived health I
« Informant-reported cognitive difficulties + Self-reported physical limitations + Age appearance
\ \, - Facial aging
\ / \ A / ‘

\

\ J Cardiovascular /7

Metabolic

Renal Immune Dental

Pulmonary

N
~

-

7

Elliot et al. (2021) Nature Aging

Centenarians and
supercentenarians
. Normally aging individuals
%
& ," Individuals with unhealthy lifestyle and/or
~§ / family history of cardiovascular disease 4

) ¢ '
<
8 Patients with type 2 diabetes, chronic kidney
3 disease, autoimmune diseases, human
e immunodeficiency virus infection J
§ y Slow Average Fast 2 I
£= [ Tha & s »
o . P~ '_ ) l' ® ..

Patients with genetic diseases (familial ispved g POA'. % PR 4 o

dyslipidemias, progerias and inherited arterial individual differences in rate of change k4 3 'sk t?' Y,

calcification syndromes) in system integrity el ki ".;“" l‘ ™ :

=
3
Biological Age - — =~
d -~ Multiple -2
1 A e W
| & .
| | | R R —
PoA 2645
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‘Biological’ versus Chronologic Ageing

o Early Life Biomarkers

= High Risk Vascular Ageing Centenarians and
supercentenarians

Normally aging individuals
o Chronological Age

= Suboptimal for Estimating Vascular
Ageing

Individuals with unhealthy lifestyle and/or
family history of cardiovascular disease

Patients with type 2 diabetes, chronic kidney
disease, autoimmune diseases, human
immunodeficiency virus infection

‘Biological’ Ageing
Functional/Physiological Ageing
Loss of Function

Chronological Age

Patients with genetic diseases (familial
dyslipidemias, progerias and inherited arterial
calcification syndromes)

Biological Age

64

Hamczyk et al.(2020) Biological versus Chronological Ageing JACC
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Ditterences arising during ldentical Twins Lifetimes

90 . Landmark Paper
% 80 = Fraga et al. (2005)
g 70 L
s T Variation in DNA
= 60 methylation levels between
'02 50 Old MZ twins
o 40 cf. Young MZ Twins
g Amplification of
A 30 intermethylated sites
S 20
Z 10

o

3-year-old 50-year-old
twins twins

Fraga et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins PNAS
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Monozygotic Twins: Environmental Change with Age

SHARED SHARED

UNIQUE a UNIQUE a
Mill & Heijmans (2013) Nat Rev Genet
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Monozygotic versus Dizygotic Twins Disease Concordance

Probandwise concordance*

(%)
MZ twins DZ twins
Type 1 diabetes 42.9 7.4
Type 2 diabetes 34 16
Multiple sclerosis 25.3 5.4
Crohn’s disease 38 2
Ulcerative colitis 15 8
Alzheimer’s disease 32.2 8.7 T MZ cc?nc.ordance
Parkinson’s disease 15.5 11.1 T Genetic influence
Schizophrenia 40.8 5.3
Major depression 31.1%or 47.6% 25.1%* or 42.6%
Attention-deficit hyperactivity disorder  82.4 37.9
Autism spectrum disorders 93.7 46.7
Colorectal cancer 11 5
Breast cancer 138 98
Prostate cancer 18 3

*Concordance in male twin pairs. 5Concordance in female

Van Dongen et al. (2012) Nat Rev Genet.
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‘Epigenetic Drift’ with Age

Epigenetic drift Intrinsic factors

m -----------I
i \ Environmental factors

Somatic
maintenance

4-----

hiiaInInIRR RS

:

Altered chromatin function

l - @ Methylated CpG
CP Unmethylated CpG

Altered phenotype

Feil & Fraga. (2012) Nat Rev Genetics
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DNA methylome Ageing Changes

c@a
METHYLATED UNMETHYLATED
Early Life T ﬁ)
— > —
PROMOTERS ?PW? ﬁj ﬂmjﬁ
badasada G ey
REPETITIVE ELEMENTS { s l J

70

Adapted from Amenyah et al. (2020) Curr Dev Nut
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Detect Ageing from Whole Organism to Cell

Level

Organism @ TP ﬁ@

Organ

Tissue

Cell @ Stem cell @ Progenitor cell @ Committed cell @ Senescent cell

DNA

Continuous readout: DNAm age

Development Maintenance Decline

. qne___________________________
71

Horvath & Raj. et al. (2018) Nat Reviews Genetics




DNA methylation Changes with Age
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Cellular Proportion Young

Enhancer

Genomic

Housekeeping gene

P TS(\;TTT JL?TTT HHHEE o

AGEING

|
IPromoter

Repeat
elements

r T?T?H?T?T mmg
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Horvath & Raj (2018) Nat Rev Genet; Michalak et al. (2019) Nat Rev Mol Cell Biol ; Field et al. (2018) Mol Cell; Zhang et al. . (2020) Nat Rev Mol Cell Biol
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Chronological Clock

Methylation age

Chronological age

73

Field et al.. (2018) Mol Cell



1st Epigenetic Clocks
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: The Horvath Clock

. Epigenetic DNA methylation ‘Clock’

. To predict Age across all Tissues
. with High Accuracy

. = 'Pan-Tissue’ Predictor
. Horvath (2013)

. Trained across

. 51 Healthy Tissue/Cell Types

. Used Elastic Net Regression

s Penalized regression model

. Selected 353 CpGs for this ‘clock’
. Correlation = 0.96; Error 3.6 years

Methylation value

I
()

©c o =
o ® ©o
[}

I
~

o
=)

Horvath (2013)
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= 08 =

>
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S 02 m
O e B B e e R
20 40 60 80 100 0 20 40 60 80 100

Age Age
Field et al. (2018) Mol Cell
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Horvath (2013) DNA methylation age of human tissues and cell types. Genome Biology
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" // Age Prediction
% //, . Accelerated Methylation Age
g ' ,’/ Deaccelerated Methylation Age
o.; /,/ .
S0 #7
-+ “ 100years>
% ,
O a1t hhe
,// 100years>

Chronological age
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Field et al.. (2018) Mol Cell
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Predict Mortality Risk

Accelerated ‘Biological’ Age

&
DNA methylation Age
Versus
Actual Chronological Age N
g
=
. e}
= Risk factor g
- o
All-Cause Mortality £ 2
in later life 3
: £
Accounting for 3
Known Risk Factors 3 -
B Quartile 1: low methylation age acceleration
2 -| B Quartile 4: high methylation age acceleration

| | |
80 85 90

Chronological Age (years)

Marioni et al. (2015) DNA methylation age of blood predicts all-cause mortality in later life. Genome Biology



Epigenetic clock is correlated with Physical &
Cognitive Fitness in the Lothian Birth Cohort 1936
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Fluid Type
General Intelligence

Forced expiratory
volume in 1 second

Marioni et al. (2015) The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. Int J Epidemiol.

Table 2. Associations between age acceleration at wave 1
and fitness variables adjusted for age and sex

Age acceleration

Beta® SE P
gf ~0.07 0.03 0.024
Grip strength (kg) —0.05 0.02 9.7x107°
FEV; (1) —0.06 0.02 64x1073
6 -m walk time (s) 0.03 0.03 0.45

SE, standard error.



Epigenetic Age ‘Acceleration’
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Conclusions

There is continued interest in identifying new risk fac-
tors, environmental, genetic, and epigenetic that can im-
prove our ability to predict disease and mortality.
Epidemiological studies have identified numerous mea-
sures from across the human life-course that are associ-
ated with an increased risk of mortality. These include
health factors such as cardiovascular disease, diabetes,
and hypertension [27], genetic factors such as presence
of the APOE e4 allele [29], lifestyle variables such as
smoking [30] and education [31], behavioral traits such
as gognitive ability [31,32], the personality trait of con-
scientiousness [33], and candidate biomarkers of age
such as telomere length [34,35]. Here, we report on an
epigenetic biomarker that is predictive of human mortal-
ity, after accounting for known risk factors. We found
that two heritable DNA methylation-based measures of
the difference between epigenetic age and chronological
age are significant predictors of mortality in our meta-
analysis of four independent cohorts of older people.

*But Potential Influence of
Minor Cell Type Fractions

- j.e. senescent T cells
(CD8tCD28)
*  Yang et al. (2019) Genome Med

Marioni et al. (2015) Genome Biology



Epigenetically Predicted ‘Biological” Age
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Epigenetic age Epigenetic age
deceleration acceleration
90 C
(’4 ,//' ‘,/‘ C %
High-quality diet \“ ’ < Fossil fuel combustion
C ‘ \ AN / VA C
-
S Z5-C iﬂ
y — S
S >
Increased income ( / \) Organochloride pesticides
! \Q '
. [ P
-7 ! \
k. o ’
Cc °
Advanced education Tobacco smoking

Wu et al. (2023) Molecular mechanisms of environmental exposures and human disease. Nat Rev Genetics
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PhenoAge Clock

. To improve capture of ‘Biological Age’ co— oo Weight
Prediction of a Surrogate Measure of . Liver oL 00336
" Pheno _t iC A e " Creatinine Kidney umol/L 0.0095

yp g Glucose. serum Metabolic mmol/L 0.1953
Instead of training on Ch rono|ogiCa| Age C-reactive protein (log) Inflammation mg/dL 0.0954
From clinical data from National Health Nutrition Lymphocyte percent Immune % -0.0120
Examination Survey (N HAN ES) Mean (red) cell volume Immune fL 0.0268
Red cell distribution width Immune % 0.3306
Alkaline phosphatase Liver U/L 0.0019
‘White blood cell count Immune 1000 cells/uL 0.0554
PhenoAge strongly outperforms 1st Clocks Ase eurs 0.0804
Predictions for Ageing outcomes, including:
All-cause Mortality, Cancers, Healthspan, Physical
functioning & Alzheimer's disease
Blood derived but correlates strongly with age in PhenoAge Clock
every tissue/cell tested 513 CpGs

* + PhenoAge Acceleration associated with:
* 1 Activation of Pro-Inflammatory & Interferon Pathways

* | Activation of transcriptional/translational machinery
» | DNA damage response & mitochondrial signatures.

Levine et al.. (2018) 'An epigenetic biomarker of aging for lifespan and healthspan’ Aging
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Associations of annual ambient PM2.5 components
with DNAmM PhenoAge acceleration in elderly men

o 683 elderly men (Normative Aging Study)

o Daily concentrations of PM2.5 species
= Measured at a fixed air-quality monitoring site
» 1-year moving averages were computed

o DNA methylation (DNAmM) array analysis DNAm PhenoAge |

» PhenoAge calculated

Chronological age | | | 1 l .
45 50 55 60 65 70 75 80 8 9 95 100

Years

Wang et al. (2020) Associations of annual ambient PM2.5 components with DNAm PhenoAge acceleration in elderly men: The Normative Aging Study Environmental Pollution
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Associations of annual ambient PM2.5 components
with DNAmM PhenoAge acceleration in elderly men

o Interquartile Range (IQR) 1 in PM, 5 levels able 2

s 2.0 mg/m3 Summary of one-year moving average of PM5s mass, and its species from the

Normative Aging Study, 1999—2013.
» — 10.16 years DNAm PhenoAge

Min Mean Median Max IQR SD

PMys (pg/m3) 6.2 10.1 104 12.6 20 1.7

o Lead (Pb) component of I:)M2,5 BC (ng/m>) 0.54 0.73 0.73 0.89 0.18 0.10

2— 3

_— 3 S03~ (ug/m3) 140 2.94 3.06 3.54 0.40 053

= 11QRin 1-year 0.0011 mg/m Na (pg/m?3) 00878 0.1941 02025 02231 00128  0.0232
3

« — 1 1.45-year DNAmPhenoAccel Mg (pg/m?3) 00058 00511 00526 00622 00051 00088
. Al (ug/m3) 00174 0.0487 0.0480 00672 00099 00107
o 95% Cl: 0.46, 2.46 Si (ug/m?3) 00363 0.0713 00653 0.1065 0.0236 0.0185
S (pg/m>) 04680 1.0513 11207 13019 01057 02094
i Cl (pg/m?) 00038 0.0135 00102 00405 00074 0.0095
o Calcium (Ca) component K (pg/m3) 0.0350 0.0404 0.0400 0.0524 0.0029 0.0019
_— 3 Ca (ug/m?) 00192 0.0303 00290 00425 00073  0.0060
« T1QRin 1-year 0.0073 mg/m Ti (ug/m?) 00017 00034 00032 00044 00009 0.0006
« — 1 0.62-year DNAmMPhenoAccel V (ng/m?) 00004 0.0038 00038 00062 00017 00015
. Fe (ug/m>) 00417 0.0658 0.0628 00896 00128 00125
o 95% Cl: 0.19, 1.06 Ni (ug/m3) 00006 0.0034 00035 00060 00012 00015
Zn (pg/m?) 00063 0.0120 00120 00166 00047 00028
_ Sb (pg/m?3) 00001 0.0049 0.0051 00059 00006 0.009
o .. Annual ambient PM2.5 Components Pb (ng/m?) 00021 0.0056 0.0057 0.0068 00011 00010

» — 7 DNAmM PhenoAge acceleration in elderly &

Wang et al. (2020) Associations of annual ambient PM2.5 components with DNAm PhenoAge acceleration in elderly men: The Normative Aging Study Environmental Pollution
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GrimAge Clock

Predictor of lifespan: DNAmM GrimAge (units of years) Tissue inhibitor metalloproteinase 1
Accelerated DNAm GrimAge cf. Actual Chronological Plasminogen activation inhibitor 1
1,030 CpGs (PAI-1)

Smoking (PackYears)

More Powerful Predictive ‘Biological’ Clock Le Adrenom,edu”'n LeYe'S
, . 2. Beta-2 microglobulin
Strongly predicts Lifespan & Healthspan 3. Cystatin C
Includes 7 Plasma protein levels + Smoking (PackYears) 4. Growth differentiation factor 15
Estimated using DNA methylation levels 5. Leptin
6.
7.

=

. Predict

. Time-to-death
Even in Never-smokers

. Time-to-Coronary Heart Disease
. Time-to-Cancer

. Outperforms other Clocks (McCory et al.)

Lu et al.. (2019) 'DNA methylation GrimAge strongly predicts lifespan and healthspan’ Aging.
McCory et al. (2020) GrimAge Outperforms Other Epigenetic Clocks in the Prediction of Age-Related Clinical Phenotypes and All-Cause Mortality The Journals of Gerontology
Lu et al.. (2022) 'DNA methylation GrimAge version 2' Aging
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Type 2 Diabetes — GrimAge Acceleration

o Age-related conditions include
= Type 2 Diabetes (T2D)

o GrimAge + incident T2D investigated in
» Coronary Artery Risk Development in Young
Adults (CARDIA) study (n=1,057)

o Stratified: Normal weight, Overweight, & Obese.

= Each 1-year of GrimAge associated with
o Higher 10-year (study years 15-25) incidence of T2D
o OR 1.06 (95% CI 1.01-1.11)

» Accelerated GrimAge (> Chronological Age)
o Higher odds of 10-year incidence of T2D
o Inobese=0R 257 (95% Cl 1.61-4.11)

Gender

o .. Epigenetic DNA methylation ‘clock’

» = biomarker of T2D development.

Kim et al. (2021) DNA Methylation GrimAge and Incident Diabetes: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Diabetes
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Conclusion

o DNA methylation
= Stable & Robust Tool for Epidemiology

o Biomarker of Disease
o Potential Insights to Pathology

= Environmental Exposures
o Strong Data to Date with Smoking
Including In Utero Exposure

o Other Contaminates
Arsenic

PM, s and components

= Environmental effect on ‘Biological’ Age

o Assess with DNA methylation ‘Clocks’
Capture Multisystemic Ageing Effects
1 Age Related Disease Risk
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