Social determinants of health and infection rates

G. Galanis¹

QMUL Summer School on Environmental impacts on Health and Disease

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ りへぐ

 $^{^1}g.galanis@qmul.ac.uk$

Introduction

- Epidemiological models are used to understand infection dynamics
- The recent pandemic highlighted the importance of such models
 - Policy design regarding measures
 - Timing of measures
- As measures are costly it is important to take into account how people react to measures and in absence of these measures
- Decisions are influenced by socioeconomic factors influencing decisions
- Incorporate insights from the Social Determinants of Health (SDH) literature on epidemiological models

A D F A 目 F A E F A E F A Q Q

Lecture overview

- Introduce most used epidemiological models
 - SIR
 - Extensions: SIRD; SEIR; SEIRD
 - Other types
- Extend these to incorporate insights from relevant SDH

A D F A 目 F A E F A E F A Q Q

- Socioeconomic compartmental model
- Applications related to COVID-19
- Political Economy of Health

Compartmental Models

- Based on seminal work of Kermack and McKendrick (1927)
- Split the population in health compartments
- Analyse the dynamics of people moving from one compartment to the next

- The most standard compartments are
 - Susceptible (S): can get infected
 - Infected (I) and also infectious
 - **Removed** (R): after infection not susceptible
- Model: $S \to I \to R$

SIR model setup

- Population of N individuals
- Study the evolution across compartments over time t
- At each point in time a person can be S, I or R
 - S_t : susceptible at t
 - I_t : infected at t
 - R_t : removed at t
 - $S_t + I_t + R_t = N$
- We are interested in the evolution of each of the states (S_t, I_t, R_t) from one period to the next
 - ie. from t to t+1
 - for example what is S_{t+1} depending on S_t, I_t, R_t

Infection Dynamics 1

- Susceptible individuals get infected if they meet an infected person with some probability
- The number of susceptible at t + 1 is

$$S_{t+1} = S_t - \frac{\beta S_t I_t}{N},\tag{1}$$

- This captures two things regarding the evolution of susceptible
- Depends positively
 - How many people are susceptible
 - How many people are infected
- β captures the probability of a person in S getting infected for a given I_t

うして ふゆ く は く は く む く し く

• Note that β is fixed- more on this later

Infection Dynamics 2

- Infected individuals stay infected for some time before becoming removed
- The number of infected at t + 1, I_{t+1} is

$$I_{t+1} = I_t + \frac{\beta S_t I_t}{N} - \gamma I_t, \tag{2}$$

- This captures
 - $\bullet\,$ inflow from S
 - outflow to R: γ is the average daily probability that an infected individual becomes removed.
- Based on the previous, the evolution of R_t is

$$R_{t+1} = R_t + \gamma I_t, \tag{3}$$

うしゃ ふゆ きょう きょう うくの

Infection growth rate

- A key way to summarise the evolution of an epidemic is by looking how quickly *I_t* grows
- Compare the outflow rate with the inflow rate
- From equation (2), we get the growth rate of infections $\frac{I_{t+1}-I_t}{I_t}$:

$$\frac{I_{t+1} - I_t}{I_t} = \frac{\beta S_t}{N} - \gamma \tag{4}$$

• The growth rate of infections is positive if

$$\frac{\beta S_t}{N} - \gamma > 0 \tag{5}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Note that this depends on S_t

Basic reproduction number

- At the beginning of the epidemic where every one is assumed to be ${\cal S}$
- $S_t \equiv N$, then (5) is equivalent to

$$\beta - \gamma > 0, \ or,$$

 $\frac{\beta}{\gamma} > 1$ (6)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- $\frac{\beta}{\gamma}$ is known as the *basic reproduction number* and expressed as R_0
- If $R_0 > 1$ infections grow
- If $R_0 < 1$ infections die out
- $R_0 = 1$ captures an *endemic equilibrium*

Non Pharmaceutical Interventions

- The possibility of getting infected (β) is presented as a constant
- However it is not a constant as it is possible for people to reduce contacts
- Non Pharmaceutical Interventions (NPIs) aim to increase physical distancing
 - $\bullet~$ Reduce β
 - Reduce the (basic) reproduction number to values less than 1

- Slow down infection dynamics
- This highlights that β is a variable which can be influenced by policies

Infection dynamics Graph from US CDC

Infection dynamics for different values of β

Other compartmental models: SIRD

Similar as the SIR model but R stands for recovered and D for deceased

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Other compartmental models: SEIR

Similar as the SIR model but susceptible first become Exposed before being Infectious

The ${\cal E}$ compartment captures the state of infected individuals during the virus' incubation period

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Depending on the period and characteristics it may be important to:

- Include other compartments
 - SEIRD: takes into account both deaths and incubation period
 - SIRS: allows for removed to become again susceptible
- Split existing compartments into smaller ones
 - influences of factors leading to differential infection rates
 - influences of factors leading to differential mortality rates

Going back to β

- The probability of getting infected (β) is not constant but is a variable
- Is it an exogenous or endogenous variable?
 - exogenous: the policy maker can control this (to some extent)
 - endogenous: it is influenced by other variables in the model

Going back to β

- The probability of getting infected (β) is not constant but is a variable
- Is it an exogenous or endogenous variable?
 - exogenous: the policy maker can control this (to some extent)
 - endogenous: it is influenced by other variables in the model

• What do you think?

People react Graph: Galanis et al. (2021, PLoS One)

COVID-19 has shown that people react themselves

Physical Distancing is endogenous

- We see that β is a decreasing function of I_t
- Hence as long as I_t is changing, so is $\beta(I_t)$

This implies two important things for policies

- In absence of measures the increase of infections may not be as rapid as expected
 - Still a high rate of infections but may take some days longer to reach the peak

- **2** NPIs may not be as efficient
 - Especially when infections fall \rightarrow increase in $\beta(I_t)$

A Behavioural SEIR model

• Use Machine Learning methods to approximate $\beta(E_t)$ Note that in a SEIR model the 'new cases' are Exposed

$$\beta(E_t) = aE_{t-2} + b$$

- It takes two periods to influence decisions
 - get infected (exposed) at t
 - the results of the test are out at t+1
 - this has an impact on physical distancing decision at t

BeSEIR insights

- Even if β is endogenous, timing of NPIs matters
- Lower intensity NPIs earlier on are more effective than the opposite
- Lifting measures early (when cases/deaths fall) may not be desirable
- While people act over and above NPIs they do not all act uniformly

- Decisions are constrained
 - Economically
 - Socially

Socioeconomic conditions are key

- Socioeconomic conditions matter for decisions
- Not everyone can take the same measures
- UK example
 - University lecturers
 - Bus drivers, doctors, nurses ...
- Worse socioe conomic conditions imply higher β

うして ふゆ く は く は く む く し く

• Also imply higher death rates

Social Determinants of Health

- The fact that socioeconomic conditions have direct and indirect effects on health is well known
- This is the basis of a growing literature on Social Determinants of Health (SDH)
- With respect to compartmental models, SDH influence
 - contagion dynamics
 - mortality
- For example
 - poverty \rightarrow more difficult to take measures
 - housing conditions, sanitation etc. have similar effects

- worse infrastructures
 - contagion
 - mortality

A Socioeconomic Compartmental model

Standard SIRDS model where parameters are socioe conomically determined

$$S_{t+1} = S_t + \epsilon R_t - \beta (S_t + \epsilon R_t) I_t / N, \tag{7}$$

where $0 \le \epsilon \le 1$ capturing immunity

$$I_{t+1} = I_t + \beta (S_t + \epsilon R_t) I_t / N - \gamma I_t,$$
(8)

$$R_{t+1} = (1-\epsilon)R_t + \gamma(1-\delta)I_t, \tag{9}$$

$$D_{t+1} = D_t + \gamma \delta I_t \tag{10}$$

うしゃ ふゆ きょう きょう うくの

where δ is the case fatality ratio (CFR)

Social Determinants' impacts on β and δ

SD1: Conditions of employment (c_1)

- physical distancing and isolation, informal work, possibility to work from home etc.
- SD2: Conditions of housing (c_2)
 - obstacles for physical distancing and isolation, substandard infrastructures including water, sewage and sanitation

SD3: Access to and quality of health infrastructure (c_3)

• both between and within inequalities matter

We can write β and δ as

$$\beta = \beta_0 + a_1 c_1 + a_2 c_2 - a_3 c_3$$
(11)
$$\delta = \delta_0 + b_1 c_1 + b_2 c_2 - b_3 c_3$$
(12)

Long run effects on socioeconomic conditions

- What are the factors which impact socioeconomic conditions
- This is a long list of variables which to some extent differ across countries
- However there are some key global trends identified in political economy literatures
- Globalisation: opening of boarders for move of capital across countries
 - Captured by trade openness
 - Influence on variables related to SDH
- Financiallisation: growth of financial sector and operations
 - Captured by different measures of debt
 - Influence on key SDH related to housing, work and others

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@