Main Examination period 2023 - May/June - Semester B

MTH6142: Complex Networks

Duration: 2 hours

The exam is intended to be completed within 2 hours. However, you will have a period of 4 hours to complete the exam and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be handwritten and should include your student number. Only one attempt is allowed - once you have submitted your work, it is final.

In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

When you have finished:

- scan your work, convert it to a single PDF file, and submit this file using the tool below the link to the exam;
- e-mail a copy to maths@qmul.ac.uk with your student number and the module code in the subject line;

Examiners: V. Latora, G. Bianconi

Question 1 [50 marks].

Consider the undirected network $G=(V, E)$ with $N=15$ nodes described by the following set of links:

$$
\begin{aligned}
E=\{ & (1,2),(1,3),(2,4),(2,5),(3,6),(3,7),(4,8),(4,9), \\
& (5,10),(5,11),(6,12),(6,13),(7,14),(7,15)\} .
\end{aligned}
$$

(a) Calculate the number of links L in the network, and draw the network. Is the network connected? Which type of network is this? (Explain your answer).
(b) Write down the degree sequence, the degree distribution and the average degree of the network G.
(c) Compute the diameter D of the network G, and list all the pairs of nodes which are at distance D (Hint: it is not necessary to compute all the node distances to work out the diameter of the graph).
(d) Evaluate the betweenness centrality for all the nodes in the network G. Use the following definition of betweenness centrality of a node i :

$$
b_{i}=\sum_{r=1}^{N} \sum_{s=1}^{N} \frac{n_{r s}^{i}}{n_{r s}}
$$

where $n_{r s}$ is the number of shortest paths between node r and node s, while $n_{r s}^{i}$ is the number of shortest paths between node r and node s passing through node i. Hint: (Notice that, according to this definition, paths starting from node i or ending in node j are also counted).
(e) Which are the nodes with the largest possible values of betweenness centrality in the network, and which are those with the largest values of closeness centrality and of degree centrality?
(f) Suppose you can add a link to connect two nodes of the network G to obtain another network G^{\prime}. List one link choice that will create a triangle in the network G^{\prime}, one link choice that will create a cycle of length 4 , and link choice that will create a cycle of length 5 . How many are all the possible link choices that will guarantee that the network G^{\prime} has a cycle of length $\ell=7$.

Solutions:

(a) The network drawing is:

The network has $L=14$ links
Being a connected network with $N=15$ nodes and $L=N-1$ links it is therefore a tree
(b) Degree sequence: $\{2,3,3,3,3,3,3,1,1,1,1,1,1,1,1\}$

The graph G is a tree with $N=15$ nodes. There are 8 nodes that are leaves, i.e. have degree equal to 1 (namely $8 ; 9 ; 10 ; 11 ; 12 ; 13 ; 14 ; 15$), hence $p_{1}=\frac{8}{15}$. There is only one node with degree equal to 2 , i.e., node 1 , so $p_{2}=\frac{1}{15}$. Finally, there are 6 nodes with degree equal to 3 (namely, $2 ; 3 ; 4 ; 5 ; 6 ; 7$), hence $p_{3}=\frac{6}{15}$. In conclusion we have:

$$
p_{k}=\left\{\begin{array}{lll}
\frac{8}{15} & \text { for } & k=1 \\
\frac{1}{15} & \text { for } & k=2, \\
\frac{6}{15} & \text { for } & k=3 \\
0 & & \text { otherwise. }
\end{array}\right.
$$

The average degree is

$$
\begin{equation*}
\langle k\rangle=\frac{2 K}{N}=\frac{28}{15} \tag{2}
\end{equation*}
$$

Alternatively, the average degree can be computed using the node degree distribution p_{k} as:

$$
\langle k\rangle=\sum_{k=0}^{\infty} k \cdot p_{k}=\frac{8}{15}+2 \cdot \frac{1}{15}+3 \cdot \frac{6}{15}=\frac{28}{15} .
$$

(c) The diameter of the network is $D=6$. In fact, the largest distance between two nodes in the graph is equal to $D=6$, since, for instance, node 8 and node 15 are both at distance 3 from node 1 , and given that there is only one path connecting 8 to 15 (remember that in a tree there exists exactly one path among each pair of nodes), that path has to pass by node 1 , and its length will be equal to $D=6$.
The set of nodes which are at distance equal to $D=6$ is the Cartesian product of the two sets $V_{1}=(8 ; 9 ; 10 ; 11)$ and $V_{2}=(12 ; 13 ; 14 ; 15)$.
(d) In the case of a tree, since there is only one path among each pair of nodes, the definition of betweenness b_{i} of node i reads:

$$
\begin{equation*}
b_{i}=\sum_{r=1}^{N} \sum_{s=1}^{N} n_{r s}^{i} \tag{3}
\end{equation*}
$$

where $n_{r s}^{i}=1$ if the shortest path between node r and node s pass through node i, otherwise $n_{r s}^{i}=1$.
Now, it might be tempting to think that node 1 is the one with maximal betweenness, but this is not the case, as we will show. In fact, all the $7 \cdot 7=49$ undirected paths connecting each of the 7 nodes in the sub-tree rooted at node 2 to each of the 7 nodes in the sub-tree rooted at node 3 pass through node 1 . At the same time any shortest path connecting two nodes in the same sub-tree is not passing through node 1 . Moreover with this definition of betweenness of node b_{i} we have also to consider that all nodes starting or ending in i pass by node i, which makes a total of other $(2 N-1)=29$ contributions

Hence, the (unnormalised) betweenness centrality of node 1 is equal to:

$$
\begin{equation*}
c_{1}^{B}=2 \times 49+29=127 \tag{2}
\end{equation*}
$$

Node 2 and node 3 will obviously have equal betweenness centralities, due to the symmetry of the graph. In particular, we have:

$$
\begin{equation*}
c_{2}^{B}=c_{3}^{B}=2 \times[(6 \times 8)+3 \times 3]+29=2 \times 57+29=143 \tag{2}
\end{equation*}
$$

since e.g. node 2 mediates all the paths between the 6 nodes in the sub-tree rooted at 2 and the 8 remaining nodes, but it also mediates the paths between nodes $(4 ; 8 ; 9)$ and nodes $(5 ; 10 ; 11)$.

With a similar argument we have that nodes $(4 ; 5 ; 6 ; 7)$ have betweenness centrality equal to:

$$
\begin{equation*}
c_{4}^{B}=c_{5}^{B}=c_{6}^{B}=c_{7}^{B}=2 \times[2 \times 12+1 \times 1]+29=2 \times 25+29=79 \tag{2}
\end{equation*}
$$

since they mediate the $12 \times 2=24$ paths between the nodes in the sub-tree below them and the rest of the graph, plus the path between the two nodes in the sub-tree below them.

Nodes $(8 ; 9 ; 10 ; 11 ; 12 ; 13 ; 14 ; 15)$ have betweenness centrality equal to $2 N-1=29$, as any leaf of a tree.
(e) The nodes with the largest betweenness centrality are then nodes 2 and 4.

The nodes with the largest closeness centrality is node 1. E.g. $d_{1}<d_{2}$ where $d_{1}=2 \cdot 1+4 \cdot 2+8 \cdot 3=34$ and $d_{2}=3 \cdot 1+5 \cdot 2+2 \cdot 3+4 \cdot 4=35$.

The nodes with the largest degree centrality are the six nodes $2 ; 3 ; 4 ; 5 ; 6 ; 7$.
(f) E.g. adding link $(2,3)$ or link $(4,5)$ will create a triangle in the network G^{\prime}.
E.g. adding link $(2,6)$ will create a cycle of length 4
E.g. adding link $(5,6)$ will create a cycle of length 5 .

To create a cycle of length $\ell=7$ in the network G^{\prime} we need to add a link between a node in $V_{1}=(8 ; 9 ; 10 ; 11)$ and a node in $V_{2}=(12 ; 13 ; 14 ; 15)$. We thus have 16 different possibilities.

Question 2 [50 marks].

Consider the Erdös-Rènyi random graph ensemble $\mathbb{G}_{N, L}$ and assume that the number of links grows as a function of N, as $L(N)=\alpha N$, where α is a positive real constant (independent on N).
(a) Write down the general expression, as a function of N and α, for the probability of finding a given graph $G=(V, E)$ in the ensemble $\mathbb{G}_{N, L(N)}$.
(b) Fix now $N=5$ and consider the three cases $\alpha_{1}=0.8, \alpha_{2}=1$, and $\alpha_{3}=1.2$. Evaluate, in each of the three cases, the probability of finding a given graph $G=(V, E)$ with 5 nodes in the ensemble $\mathbb{G}_{N, L(N)}$.
(c) Find a general expression for the average node degree $\langle k\rangle$ in a graph of the ensemble $\mathbb{G}_{N, L(N)}$, and evaluate the average node degree $\langle k\rangle_{1},\langle k\rangle_{2}$ and $\langle k\rangle_{3}$ for the graphs in each of the three ensembles considered in point (b) (i.e. by fixing $N=5$ and $\alpha_{1}=0.8, \alpha_{2}=1, \alpha_{3}=1.2$ respectively).
(d) Find the function $p(N)$ of the Erdös-Rènyi random graph ensemble $\mathbb{G}_{N, p}$ which best approximate the Erdös-Rènyi random graph ensemble $\mathbb{G}_{N, L(N)}$.
(e) For the Erdös-Rènyi random graph ensemble $\mathbb{G}_{N, p(N)}$ found in point (d), write down the distribution $P(L)$ for the total number of links L in a graph. Calculate the variance of such distribution and find an expression for the ratio r between the standard deviation and the expectation value of L.
(f) Consider the Erdös-Rènyi random graph ensemble $\mathbb{G}_{N, p(N)}$ found in point (d), assume $N \rightarrow \infty$, and find the condition on α for the graphs to have a giant component. Find the same result using the Molloy-Reed criterion.
(g) Consider the Erdös-Rènyi random graph ensemble $\mathbb{G}_{N, p(N)}$ found in point (d), assume $N \rightarrow \infty$, and find the expected numbers of triangles and 4 -cliques as a function of α.

Solutions:

(a) By definition of Erdös-Rènyi random graph ensemble $\mathbb{G}_{N, L}$, all the graphs with N nodes and L links have the same probability to appear. Hence, the probability that a given graph $G=(V, E)$ is sampled from $\mathbb{G}_{N, L}$ is:

$$
P(G)=\left\{\begin{array}{cc}
\frac{1}{Z} & \text { iff }|V|=N \text { and }|E|=L \\
0 & \text { otherwise }
\end{array}\right.
$$

where Z is equal to the total number of graphs with N nodes and L links:

$$
Z=\binom{M}{L}=\frac{M!}{L!(M-L)!} \quad \text { where } \quad M=\binom{N}{2}=\frac{N(N-1)}{2}
$$

which is the number of different ways in which we can choose L pairs to connect among the possible M pairs.
Hance, the probability of finding a given graph $G=(V, E)$ in the ensemble $\mathbb{G}_{N, L(N)}$ is

$$
P(G)=\left\{\begin{array}{cc}
\frac{1}{Z} & \text { iff }|V|=N \text { and }|E|=\alpha N \tag{4}\\
0 & \text { otherwise }
\end{array}\right.
$$

where

$$
\begin{equation*}
Z=\binom{M}{L(N)}=\frac{M!}{(\alpha N)!(M-\alpha N)!} \quad \text { where } \quad M=\binom{N}{2}=\frac{N(N-1)}{2} \tag{4}
\end{equation*}
$$

(Notice: we therefore need to assume that α is such that αN is a natural number).
(b) We have: $M=\binom{5}{2}=\frac{5 \cdot 4}{2}=10$ pairs of nodes that we can connect.

The number of links in the three cases is:
$L_{1}=\alpha_{1} N=0.8 \cdot 5=4$,
$L_{2}=\alpha_{2} N=5$
$L_{3}=\alpha_{3} N=6$
Hence, the probability of finding a graph $G=(V, E)$ of 5 nodes in $\mathbb{G}_{5,4}$ is:

$$
P(G)=\binom{10}{4}^{-1}=\frac{4!6!}{10!}=\frac{1}{210}=0.0048
$$

if the graph G has $|E|=4$ links, while $P(G)=0$ otherwise
The probability of finding a graph $G=(V, E)$ of 5 nodes in $\mathbb{G}_{5,5}$ is:

$$
\begin{equation*}
P(G)=\binom{10}{5}^{-1}=\frac{5!5!}{10!}=\frac{1}{252}=0.0040 \tag{2}
\end{equation*}
$$

if the graph G has $|E|=5$ links, while $P(G)=0$ otherwise
The probability of finding a graph $G=(V, E)$ of 5 nodes in $\mathbb{G}_{5,6}$ is:

$$
\begin{equation*}
P(G)=\binom{10}{6}^{-1}=\frac{6!4!}{10!}=\frac{1}{210}=0.0048 \tag{2}
\end{equation*}
$$

if the graph G has $|E|=4$ links, while $P(G)=0$ otherwise
(c) The average node degree is:

$$
\begin{equation*}
\langle k\rangle=\frac{2 K(N)}{N}=\frac{2 \alpha N}{N}=2 \alpha \tag{4}
\end{equation*}
$$

We therefore have: $\langle k\rangle_{1}=1.6,\langle k\rangle_{2}=2,\langle k\rangle_{3}=2.4$.
(d) There are two ways to do this. Either we acknowledge that the probability of connecting two nodes in $\mathbb{G}_{N, L}$ is L / M. Hence:

$$
\begin{equation*}
p(N)=\frac{\alpha N}{N(N-1) / 2}=\frac{2 \alpha}{N-1} \tag{5}
\end{equation*}
$$

Or we acknowledge that, on average, the graphs in $\mathbb{G}_{N, p}$ will have $p M$ links and we set $p M=L$, which leads to same result as above.
(e) In $\mathbb{G}_{N, p(N)}$, the total number of links L can vary and is binomially distributed.

Since $p(N)=\frac{2 \alpha}{N-1}$, we have:
$P(L)=P($ \# links $=L)=\binom{M}{L} p^{L}(1-p)^{M-L}=\binom{N(N-1) / 2}{L}\left(\frac{2 \alpha}{N-1}\right)^{L}\left(1-\frac{2 \alpha}{N-1}\right)^{M-L}$

$$
\begin{gather*}
\bar{L}=M p=\frac{N(N-1)}{2} \frac{2 \alpha}{N-1}=\alpha N \tag{4}\\
\sigma^{2}(L)=M p(1-p)=\frac{N(N-1)}{2} \frac{2 \alpha}{N-1}\left(1-\frac{2 \alpha}{N-1}\right)=\alpha N\left(1-\frac{2 \alpha}{N-1}\right) \tag{2}\\
r=\frac{\sqrt{\sigma^{2}(L)}}{\bar{L}}=\frac{\sqrt{\sigma^{2}(L)}}{\alpha N}=\frac{\sqrt{1-\frac{2 \alpha}{N-1}}}{\sqrt{\alpha N}}=\sqrt{\frac{1}{\alpha N}-\frac{2}{N(N-1)}} \tag{2}
\end{gather*}
$$

(f) The graphs of $\mathbb{G}_{N, p(N)}$ have a giant component if $\langle k\rangle=p(N-1)$ is such that:

$$
\lim _{N \rightarrow \infty}\langle k\rangle>1
$$

We therefore have:

$$
\lim _{N \rightarrow \infty}\langle k\rangle=\lim _{N \rightarrow \infty} \frac{2 \alpha}{N-1}(N-1)=2 \alpha>1
$$

if $\alpha>0.5$.
The Molloy and Reed criterion says that almost every graph in the ensemble will have a giant component iff the degree distribution satisfies

$$
\left\langle k^{2}\right\rangle-2\langle k\rangle>0
$$

Using the Poisson approximation for the degree distribution we have:

$$
\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle=4 \alpha^{2}+2 \alpha
$$

Hence:

$$
\left\langle k^{2}\right\rangle-2\langle k\rangle=4 \alpha^{2}-2 \alpha=2 \alpha(2 \alpha-1)
$$

which is positive for $\alpha>1 / 2$.
(g) For large N, p can be approximated as

$$
\begin{equation*}
p=\frac{2 \alpha}{N^{z}} \text { with the exponent } z=1 \tag{2}
\end{equation*}
$$

Therefore, the expected number of triangles is:

$$
\begin{equation*}
\mathcal{N}^{\text {triangles }}=\frac{(2 \alpha)^{3}}{3!}=\frac{4}{3} \alpha^{3} \tag{3}
\end{equation*}
$$

while the expected number of 4 -cliques $\mathcal{N}^{4 \text {-cliques }}$ is 0 , because $z=1>2 / 3$.

End of Paper.

