ECOM073: Topics in Financial Econometrics

Lecturer: Liudas Giraitis, CB301, L.Giraitis@qmul.ac.uk

Exercise 3.

Problem 3.1.

(a) The sample autocorrelation function at lags 1, 2, ..., 9, 10 was computed from the sample with N = 100 observations.

The following values were obtained:

0.16, 0.15, 0.05, 0.12, 0.1, 0.05, 0.01, 0.011, 0.009, 0.04.

In addition, it is known that the Ljung-Box statistic Q(m) computed for m=8 lags has p-value 0.60.

Test for no correlation in this time series at 5% significance level.

(b) Assume that sample size is N = 100, and the sample autocorrelation function at lags 1, 2, ..., 9, 10 is taking values

-0.4, 0.12, -0.05, 0.2, 0.1, 0.05, 0.01, 0.011, 0.009, 0.04.

In addition, it is known that the Ljung-Box statistic Q(10) computed for m=8 lags has p-value 0.02.

Test at 5% significance level, that this time series is a white noise.

Solution. (a) To answer this question, we need to test the null hypothesis that there is no significant correlation at any lag $k \ge 1$ at significance level 5%:

 $H_0:
ho_k = 0$ (correlation not significant at lag k) against alternative

 H_1 : $\rho_k \neq 0$ (correlation significant at lag k).

Rule: Reject H_0 if

$$|\hat{\rho}_k| > 2/\sqrt{N} = 2/\sqrt{100} = 2/10 = 0.2$$

Do not reject H_0 if

$$|\hat{\rho}_k| \le 2/\sqrt{N} = 0.2$$

We find that for all lags $k = 1, \dots, 10$

$$|\hat{\rho}_k| < 0.2$$

which means that at lags 1 to 10 there is no correlation. Therefore the we cannot reject the hypothesis that the time series is a white noise.

How to obtain such rule?

From theory we know that if $\rho_k = 0$ then

$$t = \sqrt{N} \,\hat{\rho}_k \sim N(0,1).$$

According to statistical theory, we reject H_0 at 5% significance level, if

$$|t| \ge z_{2.5\%} \sim 2$$
, or $|\hat{\rho}_k| > 2/\sqrt{N}$.

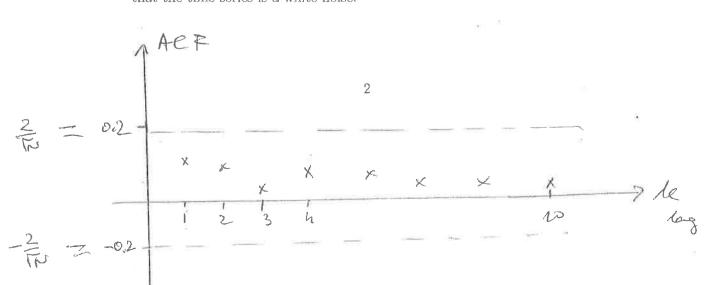
Alternative way of testing

If n=100 then the 95% confidence interval for zero correlation at any lag $k=1,2,\cdots$ is

$$\left[\frac{-2}{\sqrt{n}}, \frac{2}{\sqrt{n}}\right] = \left[\frac{-2}{10}, \frac{2}{10}\right] = \left[-0.2, 0.2\right].$$

We draw the graph and check if any of sample correlations lies <u>outside</u> the band. We see that all of them are inside. So we have no evidence in the data for correlation in this times series.

p values 0.60 is grater than significance level 0.05. So Ljung-Box test shows that there is no significant correlation at lags 1, ..., 8, which also suggests that the time series is a white noise.

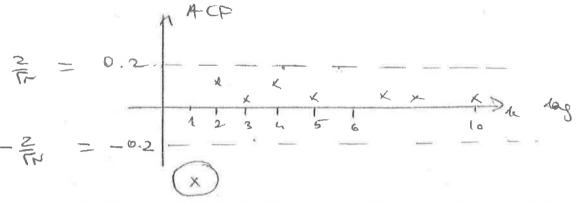


(b) Since N = 100 is same as above, we can use the same rule as in case (a).

We find that:
$$|\hat{\rho}_1| = 0.4 > 2/\sqrt{N} = 2/\sqrt{100} = 2/10 = 0.2$$

So correlation at lag 1 is significant, and therefore time series is not a white noise.

p values 0.02 is smaller than significance level 0.05. So Ljung-Box test shows that there is significant correlation at some lag 1, ..., 8, which also suggests that the time series is not a white noise.



Problem 3.2. In d-ibm3dx7008.txt you will find the daily simple stock returns r_t of IBM for the period 1926-2008

- (a) use e-views, to test for serial-correlation in r_t .
- (b) use e-views, to test for serial-correlation in r_t^2 .

Comment how you reached your decision, and what you are finding.

Solution. (a) Data set has N=996 observations. Below you we have the e-views output of ACF function for 12 lags.

Notice that $2/\sqrt{N} = 2/\sqrt{996} = 0.0634$. Notice that all sample autocorrelations in table satisfy

$$|\hat{\rho}_k| < 0.0634.$$

Hence, sample ACF are not significant at lags 1-12. They show no correlation.

The output includes ACF and Ljung-Box-test results, denoted by Q. We can use it for testing for correlation. Its output we should read as follows:

Line 1: m=1, p=0.207 which shows no correlation in lag 1 at significance level 5%, since p>0.05

Line 2: m=2, p=0.442 which shows no correlation in lag 1 and 2, since p>0.05

Line 3: m = 3, p = 0.581 which shows no correlation in lag 1, 2 and 3, since p > 0.05.

Line 10: m = 12, p = 0.173 which shows no correlation in lag 1 to 10, since p < 0.05.

We stopped at 10 since $\ln (n) = \ln (996) \sim 7$. We could go for larger m, but then Q test results will be not reliable.

Why? Notice that p value decreases when m increases. For m very large, we may found p < 0.05, which would lead to wrong conclusion the series is correlated. Such decision would be wrong, because we used m which is too large, i.e. $m >> \log N$

Answer: We found that times series r_t is a white noise.

Date: 01/31/12 Time: 17:49 Sample: 1926M01 2008M12 Included observations: 996

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
16	1 10	1	0.040	0.040	1.5919	0.207
1 1	1 (2	-0.006	-0.008	1.6329	0.44
111	i i	3	-0.018	-0.017	1.9568	0.58
g i	(I	4	-0.031	-0.030	2.9353	0.56
T)I	9	5	0.021	0.023	3,3682	0.64
C 1	(l)	6	-0.041	-0.043	5.0229	0.54
11	l iji	7	0.004	0.007	5.0407	0.65
ilj.	ih ih	8	0.067	0.067	9,6226	0.29
1)	ih.	9	0.054	0.049	12.538	0.18
10	()	10	0.038	0.032	13.990	0.17

(b). Now we test for correlation in r_t^2 . From finance we know that r_t^2 may be correlated (this is called ARCH effect). We discuss it later. We found that

$$|\hat{\rho}_k| > 0.0634$$

for all lags 1 to 9 except lag 7.

• Lung-Box test has p-values 0 for m = 1, ..., 10.

That shows significant correlation in r_t^2 . This times series is not a white noise.

Date: 01/31/12 Time: 17:51 Sample: 1926M01 2008M12 Included observations: 996

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Pro
i la		1 1	0.114	0.114	12.882	0.0
1 300	ı ja	2	0.095	0.083	21,951	0.0
1 1	山	3	0.065	0.046	26.139	0.0
1 🔤	· III	4	0.089	0.071	34.048	0.0
1 10	中	5	0.072	0.048	39.219	0.0
2 (m)	ığ.	6	0.086	0.061	46.710	0.0
1)	tit	7	0.030	-0.001	47.603	0.0
1	1団	8	0.204	0.186	89.674	0.0
1	1)	9	0.080	0.031	96.183	0.0
i))	100	10	0.037	-0.013	97.573	0.0

Problem 3.3. Consider the MA(1) time series

$$X_t = \varepsilon_t + \theta \varepsilon_{t-1}$$

where ε_t is white noise sequence with mean 0 and variance σ_{ε}^2 . 1. Show that following.

- (a) Find the man EX_t .
- (b) Find the variance $Var(X_t)$
- (c) Find the auto-covariance function γ_k and autocorrelation function ρ_k . Start with lag k=1, then for lags $k=2,3,\cdots$.
- 2. Is (X_t) a covariance stationarity time series?

Solution 2. Solving this problem we shall use the following properties of the white noise ε_t : $E\varepsilon_t = 0$, $Var(\varepsilon_t) = \sigma_u^2$, and $E[\varepsilon_t \varepsilon_s] = 0$ if $t \neq s$. (a) First we compute the mean

$$E[X_t] = E[\varepsilon_t + \theta \varepsilon_{t-1}] = E[\varepsilon_t] + \theta E[\varepsilon_{t-1}] = 0 + \theta(0) = 0.$$

$$Var(X_t) = E[(X_t - E[X_t])^2] = E[(\varepsilon_t + \theta \varepsilon_{t-1})^2]$$

$$= E[\varepsilon_t^2 + 2\theta \varepsilon_t \varepsilon_{t-1} + \theta^2 \varepsilon_{t-2}^2]$$

$$= E[\varepsilon_t^2] + 2\theta E[\varepsilon_t \varepsilon_{t-1}] + \theta^2 E[\varepsilon_t^2]$$

$$= \sigma_{\varepsilon}^2 + 2\theta(0) + \theta^2 \sigma_{\varepsilon}^2$$

$$= \sigma_{\varepsilon}^2 (1 + \theta^2).$$

(b) To find the autocovariance at lag-1 note, that by definition, for $k \geq 1$,

$$Cov(X_{t}, X_{t-k}) = E[(X_{t} - E[X_{t}])(X_{t-1} - E[X_{t-1}])] = E[X_{t}X_{t-1}]$$

$$= E[(\varepsilon_{t} + \theta\varepsilon_{t-1})(\varepsilon_{t-k} + \theta\varepsilon_{t-k-1})]$$

$$= E[\varepsilon_{t}\varepsilon_{t-k} + \theta\varepsilon_{t-1}\varepsilon_{t-k} + \theta\varepsilon_{t}\varepsilon_{t-k-1} + \theta^{2}\varepsilon_{t-1}\varepsilon_{t-k-1}]$$

$$= E[\varepsilon_{t}\varepsilon_{t-k}] + \theta E[\varepsilon_{t-1}\varepsilon_{t-k}] + \theta E[\varepsilon_{t}\varepsilon_{t-k-1}] + \theta^{2}E[\varepsilon_{t-1}\varepsilon_{t-k-1}].$$

Therefore the lag-1 auto-covariance is

$$\gamma_1 = E[\varepsilon_t \varepsilon_{t-1}] + \theta E[\varepsilon_{t-1} \varepsilon_{t-1}] + \theta E[\varepsilon_t \varepsilon_{t-2}] + \theta^2 E[\varepsilon_{t-1} \varepsilon_{t-2}]$$

= $0 + \theta \sigma_{\varepsilon}^2 + 0 + 0 = \theta \sigma_{\varepsilon}^2$.

The autocorrelation at lag 1 is

$$\rho_1 = Corr(X_t, X_{t-1}) = \frac{\gamma_1}{\gamma_0} = \frac{\gamma_1}{Var(X_t)} = \frac{\theta \sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 (1 + \theta^2)} = \frac{\theta}{(1 + \theta^2)}.$$

(c) If $k \geq 2$, then

$$\gamma_k = E[\varepsilon_t \varepsilon_{t-k}] + \theta E[\varepsilon_{t-1} \varepsilon_{t-k}] + \theta E[\varepsilon_t \varepsilon_{t-k-1}] + \theta^2 E[\varepsilon_{t-1} \varepsilon_{t-k-1}] = 0$$

because ε_t is a white noise, and therefore $E[\varepsilon_t \varepsilon_s] = 0$ if $t \neq s$. Then the autocorrelation

$$\rho_k = \frac{\gamma_k}{\gamma_0} = \frac{0}{\gamma_0} = 0, \qquad k \ge 2.$$

Hence, autocorrelation cuts off to 0 after lag 1.

- 2. (X_t) is covariance stationary time series, because
 - it has constant mean $EX_t = 0$,
 - it has constant variance $Var(X_t) = (1 + \theta^2)\sigma_u^2$.
 - $Cov(X_t, X_{t-k}) = \gamma_k$ depend only on the lag k.

