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Question 1. [10 marks] Consider the linear system

x1 − x2 + x3 − x4 = 1
−x1 + 2x2 − 2x3 + 3x4 = 2
2x1 + x3 + 5x4 = 3

(a) Write down the augmented matrix of the system. [2]

(b) Bring the augmented matrix to reduced row echelon form (RREF). Indicate
which elementary row operation you use at each step. [5]

(c) Identify the leading and the free variables, and write down the solution set of the
system. [3]

Question 2. [15 marks]

(a) Explain what it means for a matrix M to be invertible and what is meant by the
inverse of M . [4]

(b) Suppose M and N are invertible matrices of the same size. Is it necessarily true
that M +N is also invertible? Give a proof or a counterexample. [3]

(c) Let

A =

�
0 1
−1 −1

�
.

Compute A2, A3, A2019 and A−1. [8]

Question 3. [15 marks] Let

A =




1 1 1 3
1 1 1 1
1 1 3 5
2 3 4 5


 .

(a) Calculate det(A). Hint: consider performing some elementary row operations. [4]

(b) Is A an invertible matrix? Justify your answer. [2]

(c) Denote by v1, v2, v3, v4 the columns of A, considered as vectors in R4.

(i) Are vectors v1, v2, v3 linearly independent? Justify your answer. [3]

(ii) Do vectors v1, v2, v3 span R4? Justify your answer. [3]

(iii) Do vectors v1, v2, v3, v4 span R4? Justify your answer. [3]
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Question 4. [20 marks]

(a) Give the definition of a subspace of a vector space. [4]

(b) Give the definition of a basis for a vector space. [2]

(c) Let
H =

�
A ∈ R2×2 : AT + A = O

�
.

(i) Show that H is a subspace of R2×2. [4]

(ii) Find a basis for H and determine dim(H). [4]

(d) Let B ∈ Rm×n.

(i) Define the nullspace N(B). [2]

(ii) Prove that N(B) is a subspace of Rn. [4]

Question 5. [12 marks]

(a) State the Rank-Nullity Theorem. [2]

(b) Let

A =




1 −1 3 1 2
4 −4 12 6 0
−3 3 −9 −4 −2


 .

(i) Find bases for row(A), col(A) and N(A). [7]

(ii) Determine the rank and nullity of A, and verify that the Rank-Nullity
Theorem holds for the above matrix A. [3]

Question 6. [18 marks] Let

A =



2 3 3
0 0 −2
0 1 3


 .

(a) Show that v1 =




3
−2
1


 is an eigenvector of A and find the corresponding

eigenvalue. [4]

(b) Find the characteristic polynomial of A and factorise it. Hint: the answer to (a)
may be useful. [4]

(c) Determine all eigenvalues of A and find bases for the corresponding eigenspaces. [6]

(d) Find an invertible matrix P and a diagonal matrix D such that P−1AP = D. [4]
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Question 7. [10 marks] Consider the least squares problem Ax = b, where

A =



1 0
1 1
1 2


 and b =



6
0
0


 .

(a) Write down the corresponding normal equations. [4]

(b) Determine the set of least squares solutions to the problem. [3]

(c) Let H = col(A) be the column space of A. Find the best approximation of b in H. [3]

End of Paper.
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