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Question 1 (35 marks).
Robustness of uncorrelated networks to targeted attack of the high degree
nodes.
Consider an uncorrelated random network with degree distribution P (k).

- We initially damage a fraction f of nodes with highest degree.

- We indicate with kc(f) the highest degree of the nodes that are not initially
damaged.

- We indicate by S the probability that a node is in the giant component.

- We indicate by S ′ the probability that a link reaches a non damaged node of
degree k ≤ kc(f) that is in the giant component.

- The brackets 〈. . .〉 indicate the average over the degree distribution P (k).

a) Express f as a function of kc and of the degree distribution P (k). [4]

b) Show that S ′ satisfies the equation

S ′ =
∑
k

kP (k)

〈k〉
θ(kc(f)− k)

[
1− (1− S ′)k−1

]
, (1)

where θ(x) = 1 if x ≥ 0 otherwise θ(x) = 0. [5]

c) Show that S satisfies the equation

S =
∑
k

P (k)θ(kc(f)− k)
[
1− (1− S ′)k

]
. (2)

[5]

d) Show that in order to have a giant component in the network, i.e. S > 0 we
must have

〈k2θ(kc(f)− k)〉 − 〈kθ(kc(f)− k)〉
〈k〉

> 1. (3)

[5]

e) Given a scale-free network with power-law degree distribution P (k) = Ck−γ

with k ∈ [1,
√
N ] and γ ∈ (2, 3), calculate 〈k θ(kc(f)− k)〉 and

〈k2 θ(kc(f)− k)〉 in the mean-field, continuous approximation. [8]

f) Given the network of point e) and a finite f > 0, evaluate kc(f) in the
mean-field, continuous approximation using the expression found in point a).
For every finite f is 〈k2 θ(kc(f)− k)〉 calculated in point e) finite or infinite? [8]
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Question 2 (40 marks).
The Ising model on a network.
In the mean-field approximation of the Ising model the average local magnetization
〈si〉 of the node spin si of node i in a network with adjacency matrix aij satisfies
the equation

〈si〉 = tanh

(
βJ
∑
j

aij〈sj〉+ βh

)
, (4)

where β is the inverse temperature, J the coupling constant and h the external
magnetic field.

a) Show that in the mean-field annealed approximation the average
magnetization 〈sk〉 of a node of degree k, satisfies

〈sk〉 = tanh (βJkΘ + βh) , (5)

where

Θ =
∑
k

k

〈k〉
P (k) tanh (βJkΘ + βh) . (6)

[10]

b) Show that for h→ 0 there is a phase transition as a function of the
temperature and that the critical temperature in the annealed network
approximation is given by

Tc = J
〈k2〉
〈k〉

. (7)

[10]

c) Show that for 〈k2〉/〈k〉 → ∞, the critical temperature found at point c) is a
first order approximation of the exact result found by the cavity method

Tc = 2J

[
− ln

(
1− 2

〈k〉
〈k2〉

)]−1
. (8)

[6]

d) Consider an uncorrelated scale-free networks with power-law degree
distribution P (k) = Ck−γ , γ = 3 and k ∈ [1,

√
N ]. Evaluate 〈k〉 and 〈k2〉 in

the continuous approximation. [8]

e) Consider the network of point d). What is the value of the critical
temperature Tc given by Eq. (7) in the limit N →∞ ? What is the value of
the critical temperature Tc given by Eq. (8) in the limit N →∞ ? [6]
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Question 3 (25marks).
The SIR model on complex networks.
Consider the SIR model on a complex network, where β is the rate at which a
susceptible individual in contact with an infected individual becomes infected, and
µ is the rate at which an infected individual becomes removed.

a) Show that the probability density function P (τ) of times τ required for an
infected individual to become removed is given by

P (τ) = µe−µτ . (9)

[8]

b) The transmissibility T is given by the probability that an infected node
transmits the infection to a nearest neighbour in the susceptible state. Show
that the transmissibility T is given by

T = 1−
∫
dτP (τ)e−βτ =

λ

1 + λ
(10)

where λ = β/µ. [8]

c) Map the SIR model on a network to the percolation process on the same
network, by identifying the transmissibility T of the SIR model with the
probability p that a random node is not damaged in the percolation transition.
Show that the value λc is given by

λc =
〈k〉

〈k2〉 − 2〈k〉
. (11)

[6]

d) Which is this the epidemic threshold in a regular network of degree
distribution P (k) = δk,3? [3]

End of Paper—An appendix of 2 pages follows.
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