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Question 1 (35 marks).

Percolation of uncorrelated networks.

Consider an uncorrelated random network with degree distribution P(k) and aver-
age degree (k), where the nodes are randomly damaged.

Let S be the probability that a node is in the giant component.

Let S’ be the probability that following a link we reach a node that is in the giant
component.

Let p denote the probability that a node is not initially damaged.

a) Show that S’ satisfies the equation

[ ')k } (1)

[10]

b) Show that S satisfies the equation

S—p[ -3 P(k)(1- 8" } (2)
k=0
(10]
¢) Show that in order to have a giant component in the network, i.e. .S > 0, we must
have

(k(k = 1)

P ) =4, (3)

(10]
d) Starting from the condition p((le)) > 1 for having a giant component, show that
we can recover the Molloy-Reed condition for the existence of a giant component
m an uncorrelated network that is not damaged, i.e.

(%)
(k)

> 2. 4

(3]
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Question 2 (25 marks).

Robustness of uncorrelated networks with given degree distribution P (k).
a) Calculate the generating function

Fle)= Z P(k)z* 5
k
for a Poisson random network with average degree (k) = ¢ and degree distribution
Plg) = wce (6)
(5]
b) Using the properties of generating functions, calculate (k(k — 1)) for a Poisson
random network with average degree (k) = c and degree distribution given by equa-
tion (6). Therefore show that the percolation threshold of these networks is
1 1
—— e 7
(8]
c) Consider the uncorrelated scale-free networks with degree distribution P(k) =
Ck~" with power -law exponent v < 3, and structural cutoff K = 1/ (k) N. Calcu-
late (k%) in the large N limit in the continuous approximation for the degrees of the
nodes. Show that these scale-free networks have percolation threshold
Pe =0 (8)
as N — oo. [12]
Hint:The percolation threshold p. of a network is fixed by the equations
(k(k—1))
P~ = dx 9)
(k)
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Question 3 (40 marks).

Susceptible-Infected-Susceptible Model

Consider the Susceptible-Infected-Susceptible (SIS) model defined on a given net-
work with N nodes.

Let A be the probability that a susceptible node in contact with an infected node gets
the infection.

The mean-field dynamic equation for the probability p; that a node i = 1,2, . .. N
is infected is given by

N
pi==pi+MN1=p) ) ayp; (10)

J=1

where a;; indicates the (i, j) matrix element of the adjacency matrix a of the net-
work.

a) Find the stationary solution of (10) [5]
b) Decompose p; into the eigenvector f;(A) of the adjacency matrix a, correspond-

ing to the eigenvalue A, i.e.

pi =Y enfilh), (11)

A

where the eigenvectors f;(A) satisfy Zj\il fiA) fi(N') = 6(A, \') and where 6(x, y) =
lif z = y, and §(z, y) = 0 otherwise. Find the general expression for determining

the coefficients c4 from the vector p; in a given network. [5]
¢) Using the results obtained in (a) and (b), find the expression that the coefficients
ca satisfy at stationarity. [15]

d) Using the result in (c) find the epidemic threshold of the SIS model in the mean-
field approximation, assuming that close to the transition we have p; ~ ¢y, filA) <
1 where A, is the maximum eigenvalue of the adjacency matrix a. [15]

End of Paper.
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