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Question 1 Parts (a)–(c) of this question concern the Markov chain X0, X1, X2, . . .
with state space S = {1, 2, 3, 4, 5}, and transition matrix

P =


0 1

3
2
3 0 0

0 0 1
2

1
2 0

0 3
4 0 0 1

4

0 0 0 1 0

0 0 0 0 1

 .

(a) Define the term absorbing state. Which are the absorbing states in the given
Markov chain? [3]

(b) Let ai be the probability of absorption in state 5, given that the Markov chain
starts in state i. By conditioning on X1 (“first-step analysis”) write down
equations satisfied by ai. Explain how you arrived at the equation involving a1. [8]

(c) Hence compute the probability of absorption in state 5 given that the Markov
chain starts in state 1. [3]

(d) In general, the equations derived from first-step analysis may not have a unique
solution. This happens when there is some state from which it is impossible to
reach any absorbing state. Suggest a way to modify the first-step analysis (as
used above) to calculate absorption probabilities in this situation. Illustrate
your answer with reference to the Markov chain on state space S as before,
but with transition matrix

P =


0 1

3
2
3 0 0

0 1
2 0 1

2 0

0 3
4 0 0 1

4

0 1
2 0 1

2 0

0 0 0 0 1

 .

(Note that it is impossible to reach the sole absorbing state 5 from either state 2
or state 4.) What is the probability of eventual absorption in state 5, given
that the Markov chain starts in state 1? [6]
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Question 2 Let P be the transition matrix of a Markov chain on a finite state
space S.

(a) Explain what it means for P to be (i) irreducible and (ii) regular. [4]

(b) What does it mean for probability vector w to be an equilibrium distribution
for P? [2]

(c) Suppose P is irreducible and define Q = 1
2(I + P ), where I is the identity

matrix. Prove that Q is regular, and has the same (unique) equilibrium distri-
bution as P . [5]

Now specialise P to be the transition matrix of the Ehrenfest Urn Model with
three balls:

P =


0 1 0 0
1
3 0 2

3 0

0 2
3 0 1

3

0 0 1 0

 .

(d) What is the equilibrium distribution of P? Does P have a limiting distribution?
Justify your answer. [6]

(e) Let Q be the transition matrix of the following “lazy” version of the Ehrenfest
Urn Model (with three balls). At each transition of the lazy model we flip a
fair coin. If it comes up heads, we do nothing; if it comes up tails we move a
ball according to the usual rule. What is the equilibrium distribution of Q?
Does Q have a limiting distribution? Justify your answer. [3]

Question 3 This question concerns a discrete-time Markov chain X0, X1, X2, . . . on
state space N.

(a) Define the return probability fii for a state i, and say what it means for state i
to be recurrent. [3]

(b) Give a condition, in terms of the t-step transition probabilities p
(t)
ii , for state i

to be recurrent. [3]

Now let 0 < p < 1 and suppose that the transition probabilities of the Markov
chain are given by pi,i+1 = p, pi,0 = 1 − p for all i ∈ N (with all other probabilities
being 0).

(c) Calculate Pr(X2 = 2 | X0 = 0) and Pr(X2 = 0 | X0 = 0). [4]

(d) Calculate p
(t)
0,0 for all t ≥ 1, and decide whether state 0 is recurrent. [4]

(e) Does the Markov chain have an equilibrium distribution? [2]

(f) Calculate p
(t)
1,1 for all t ≥ 1. [4]
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Question 4 Let (X(t) : t ≥ 0) be a Poisson process of rate λ.

(a) State the distribution of X(t)−X(s) for given s, t with 0 ≤ s < t. [3]

(b) Calculate the following probabilities, showing your working or reasoning. [8]

(i) Pr(X(3) = 4),

(ii) Pr(X(3) = 4 | X(2) = 3),

(iii) Pr(X(2) = 3, X(3) = 4),

(iv) Pr(X(3) = 3 | X(2) = 4).

(c) Suppose 0 < u ≤ t. Compute the conditional probability

Pr(X(u) = 1 | X(t) = 1).

Hence deduce the distribution of the first arrival, conditioned on there being
exactly one arrival in the interval (0, t]. [5]

(d) Customers arrive in a shop according to a Poisson process of rate λ per minute.
Each customer leaves the shop after exactly 10 minutes. What is the condi-
tional expectation of the number of customers in the shop after it has been
open for one hour, given that n customers arrived in total during the hour. [4]

Hint. Use a generalisation of the fact you derived in part (c).

Question 5 (a) Explain what it means for a stochastic process X(t) on N to be
a birth process. [4]

The remainder of the question concerns a birth process X(t) with (birth) parameters
λn = n and initial state X(0) = 1.

(b) Describe a plausible situation in which such a birth process (or an approxima-
tion to it) might arise. [2]

(c) For n ≥ 1 define pn(t) = Pr(X(t) = n). Show that the functions pn(t) satisfy
the equations

p′n(t) = (n− 1)pn−1(t)− npn(t),

for all n ≥ 1. [5]

(d) (i) Use the equations from part (c) to find p1(t).

(ii) Use the equations to find p2(t).

(iii) Hence determine the probability that there are at least 3 individuals at
time 1. [9]

End of Paper
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