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Question 1. [20 marks] In an inertial frame F �, two events p and q occur simultaneously at a
spatial distance of 3 metres apart. In another inertial frame F moving with respect to F �, event
q occurs later than event p by 10−8 seconds.

(a) Draw this situation in a spacetime diagram. For simplicity, let event p be at the origin of
both frame F and frame F �. [10]

Write your solutions here
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(b) Let Δx be the spatial distance between events p and q in the F frame. Write down Δx in
metres. Take the speed of light to be c = 3×108 m/s. [5]

Write your solutions here
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(c) Write down the velocity v that frame F is moving with respect to frame F �, as a fraction
of the speed of light c. [5]

Write your solutions here
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Question 2. [15 marks] Let ds2 = gabdxadxb be a metric with components gab when written
in coordinates xa.

(a) Write down how the metric components gab transform under a general coordinate
transformation. [5]

Write your solutions here
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(b) The metric of flat two-dimensional space written in Cartesian coordinates xa = (x,y) is

ds2 = gabdxadxb = dx2 +dy2.

Express this metric in polar coordinates r,ϕ defined by x = r cosϕ , y = r sinϕ . [10]

Write your solutions here
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Question 3. [10 marks] Let�v be a vector with components va when written in coordinates
xa.

(a) Write down the squared norm ||�v||2 with respect to a metric ds2 = gabdxadxb. [2]

Write your solutions here
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(b) What are the conditions for�v to be timelike, spacelike, and null? [3]

Write your solutions here
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(c) Written in coordinates xa = (t,x,y,z), a vector�u has components
ua = (ut ,ux,uy,uz) = (α,0,3α,0), another vector�v has components
va = (vt ,vx,vy,vz) = (3β ,0,β ,0), and the metric is
ds2 = gabdxadxb =−dt2 +dx2 +dy2 +dz2. Here, α and β are real constants.
Determine whether�u and�v are timelike, spacelike or null. Under what conditions on α
and β would �w =�u+�v be null? [5]

Write your solutions here
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Question 4. [15 marks]

(a) The metric of the 2-sphere is written in spherical coordinates xa = (θ ,ϕ) as

ds2 = gabdxadxb = dθ 2 + sin2 θdϕ2.

Consider a curve xa(λ ) = (θ(λ ),ϕ(λ )) parametrised by λ . Show that the geodesic
equation on the 2-sphere has two components, given by





d2θ
dλ 2 − cosθ sinθ

�
dϕ
dλ

�2

= 0

d2ϕ
dλ 2 +2

cosθ
sinθ

�
dθ
dλ

��
dϕ
dλ

�
= 0.

[10]

Write your solutions here
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Write your solutions here
(continued)
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(b) Show that curves with ϕ = const are geodesics of the 2-sphere.
Remember, you can always parametrise by arc length so that these curves have
dθ/dλ = 1. [2]

Write your solutions here
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(c) Show that curves with θ = const are geodesics of the 2-sphere if and only if θ = π/2.
Remember, you can always parametrise by arc length so that these curves have
dϕ/dλ = 1. [3]

Write your solutions here
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Question 5. [10 marks] The vacuum Einstein field equations with a cosmological constant
Λ are

Rab −
1
2

Rgab +Λgab = 0.

where Rab are the components of the Ricci tensor, R is the Ricci scalar, and gab are the
components of the metric of a 4-dimensional spacetime.

(a) What number does the full contraction gabgab evaluate to in 4 dimensions? [2]

Write your solutions here
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(b) Write down the Ricci scalar R in terms of Λ for a 4-dimensional spacetime, by taking
the full contraction of the vacuum Einstein field equations with a cosmological constant. [3]

Write your solutions here
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(c) Using the result in part (b), show that the vacuum Einstein field equations with a
cosmological constant can equivalently be written in the much simpler trace-reversed
form

Rab = Λgab.

[5]

Write your solutions here
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Question 6. [10 marks] A gravitational wave metric written in coordinates xa = (t,x,y,z)
has components

gab =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


+




0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0


cos(ωt − kz),

where h+,h×,ω,k are constants.

(a) Describe the spacetimes with this metric. [2]

Write your solutions here
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(b) Consider the line xa(λ ) = (t(λ ),x(λ ),y(λ ),z(λ )) parametrised by some λ , from point
p with y =−1, to point q with y = 1, at fixed t = 0, x = 0, z = 0. Parametrise this line
by λ = y, and write down the resulting expression for the tangent vector dxa/dλ . [3]

Write your solutions here
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(c) The arc length of this line is the integral

� q

p

�
gab

dxa

dλ
dxb

dλ
dλ .

Again parametrising by λ = y so you can use your expression from part (b), write down
the arc length of the line in terms of the constants h+,h×,ω,k and as a function of t. [5]

Write your solutions here
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Question 7. [20 marks] The Schwarzschild metric written in static, spherical coordinates
xa = (t,r,θ ,ϕ) is

ds2 = gabdxadxb =− f (r)dt2 +
1

f (r)
dr2 + r2(dθ 2 + sin2 θdϕ2)

where f (r) = 1−2GM/r and G, M are constants.

(a) Describe the spacetimes with this metric. [2]

Write your solutions here
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(b) For any geodesic xa(λ ) = (t(λ ),r(λ ),π/2,ϕ(λ )) in the Schwarzschild spacetime, it is
possible to show that there are two constants E and L so that along the entire geodesic,

−E =− f (r)
dt
dλ

L = r2 dϕ
dλ

.

Write down the two properties of the Schwarzschild metric that go into justifying this
statement. You do not need to prove the result. [2]

Write your solutions here
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(c) Write down the norm squared of the tangent vector dxa/dλ for a null geodesic xa(λ ). [2]

Write your solutions here
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(d) For a null geodesic xa(λ ) in the Schwarzschild spacetime, using the constants E and L,
write down dr/dλ as a function only of r [6]

Write your solutions here
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(e) Write down the norm squared of the tangent vector dxa/dτ for a timelike geodesic
xa(τ) parametrised by proper time τ . [2]

Write your solutions here
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(f) For a timelike geodesic xa(τ) in the Schwarzschild spacetime, using the constants E and
L, write down dr/dτ as a function only of r [6]

Write your solutions here
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End of Paper – An appendix of 2 pages follows.
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Additional work
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You are reminded of the following information, which you may use without proof.

• Lower case Latin indices run from 0 to 3.

• The metric tensor of the Minkowski spacetime is ηab such that

ds2 = ηabdxadxb =−c2dt2 +dx2 +dy2 +dz2

• The Lorentz transformations between two frames F and F � in standard configuration are
given by

x� = γ(x− vt), t � = γ
�

t − vx
c2

�
, y� = y, z� = z

where
γ =

1�
1− (v2/c2)

and F � is moving with speed v relative to F .

• The covariant derivative of a covariant vector is given by

∇aVb = ∂aVb −Γ f
baVf .

• The covariant derivative of a contravariant vector is given by

∇aV b = ∂aV b +Γb
a fV f .

• The metric tensor satisfies:
gabgbc = δa

c.

• Christoffel symbols (connection):

Γc
ab =

1
2gcd (∂agbd +∂bgad −∂dgab) .

• The Riemann curvature tensor:

Ra
bcd = ∂cΓa

bd −∂dΓa
bc +Γa

ecΓe
bd −Γa

edΓe
bc.

• Euler–Lagrange equations:
d

dλ

�
∂L
∂ ẋc

�
− ∂L

∂xc = 0

• Geodesic equations:
ẍa +Γa

bcẋbẋc = 0.

End of Appendix.
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