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In this examination R stands for the set of real numbers.

Section A: Each question carries 10 marks. You should attempt all four ques-

tions.

Question 1.

(a) Give the definition of a metric space (X, d). [2]

(b) Define what is meant by an open ball B(c, r) in a metric space (X, d). [2]

(c) Explain what it means for a set U ⊆ X to be open. [2]

(d) Prove that the union of any family of open sets is an open set. [4]

Question 2.

(a) When do we say that a sequence {xn}n>1 of points in a metric space X con-

verges? [2]

(b) Give the definition of a Cauchy sequence in a metric space (X, d). [2]

(c) Prove that any convergent sequence is a Cauchy sequence. [2]

(d) Explain what is meant for a metric space (X, d) to be complete. [2]

(e) Give an example of a metric space which is not complete. [2]

Question 3.

(a) Prove that a closed subset of a complete metric space is complete with respect

to the induced metric. [3]

(b) Let X be a metric space and let A ⊆ X be a subset which is not closed. Show

that A is not complete with respect to the induced metric. [3]

(c) Which of the following subsets of R are complete when considered as sub-

spaces of R with the usual metric? Briefly explain your answer.

(i) {n−2; n = 1, 2, . . . }, [2]

(ii) {n−2;n = 1, 2, . . . } ∪ {0}. [2]
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Question 4.

(a) Define the sup metric on the set C[0, π] of all real continuous function on the

closed interval [0, π]. [3]

(b) Is C[0, π] complete? (No proof is required.) [3]

(c) Decide whether the sequence of functions

fn(x) = sin(nx), x ∈ [0, π],

converges in C[0, π] with respect to the sup metric. [4]

Section B: Each question carries 30 marks. You may attempt all three ques-

tions. Except for the award of a bare pass, only marks for the best two ques-

tions will be counted.

Question 5.

(a) Define what is meant by the closed ball B[c, r] ⊆ X in a metric space X . [2]

(b) Show that, viewed as subsets of X , the open ball is open and the closed ball

is closed. [5]

(c) Give the ε – δ definition of continuity of a map f : X → Y between metric

spaces (X, dX) and (Y, dY ). [3]

(d) Show that if a map f : X → Y is continuous then for any open set U ⊆ Y

the preimage f−1(U) ⊆ X is open. [4]

(e) Give an example of a non-constant continuous map f : R → R and an open

subset U ⊆ R such that the image f(U) ⊆ R is not open. [5]

(f) Show that if a map f : X → Y is continuous then for any closed set F ⊆ Y

the preimage f−1(F ) ⊆ X is closed. [4]

(g) Is it true that the image of a closed set under a continuous map is closed?

Explain your answer. [7]
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Question 6.

(a) When do we say that a metric space is compact? [2]

(b) Prove that any compact subset of a metric space is bounded. [5]

(c) Prove that any compact subset of a metric space is closed. [5]

(d) State the criterion of compactness for subsets of the Euclidean space R
n. [3]

(e) Which of the following subsets of the real line R are compact; briefly explain

your answer:

(i) [0, 1]; [3]

(ii) (0, 1); [3]

(iii) [0,∞); [3]

(iv) R; [3]

(v) {n−1;n = 1, 2, . . . }. [3]

Question 7.

(a) Let (X, d) be a metric space. When do we say that a mapping f : X → X is

a contraction? [4]

(b) State the contraction mapping theorem. [5]

(c) Consider R2 with d1 metric, i.e. d1(v, v
′) = |x−x′|+|y−y′| where v = (x, y)

and v′ = (x′, y′). Is this metric space complete? [5]

(d) Let f : R2 → R
2 be given by f(v) = (1

2
y, 1

2
(x+ 1)) where v = (x, y). Show

that f is a contraction with respect to d1-metric. [10]

(e) Find the fixed point of f . [6]

End of Paper.
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