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In this exam we will assume that assets pay no dividends.
Please write clearly. Text that is unreadable cannot be graded.

Question 1 (25 marks).

(a) What is the return on an investment? What is the annualised return?
Calculate these amounts in the case I invest £100 which after two years
results in £105. [5]

(b) Assume that bank A offers a monthly compounded interest rate of r1M and
bank B offers a yearly compounded interest rate of r1Y . Show that if
1 + r1Y < (1 + r1M/12)

12 there is an arbitrage opportunity. Explain how you
would take advantage of this arbitrage. [5]

(c) Let r be the quarterly compounded interest rate and reff the corresponding
effective rate. Is reff bigger or smaller than r? Prove your claim.

Hint: Quarterly refers to a period of three months. Assume r > 0. [4]

(d) You wish to fund a gap year starting the following year. You will need £900
every month for 12 months paid at the start of the month and starting in 12
months from now. Given a monthly compounded rate of r, how much money
should you save every month starting today in order to fund this? You may
use the variable α = 1/(1 + r/12)12. Simplify the result as much as possible.

You can use the following diagram to help understand the sequence of
cashflows:

Now

£A

1M

£A

11M

£A

12M

£900

13M

£900

23M

£900

[7]

(e) In the presence of deterministic variable interest rates, if P (t) indicates the
value of an account that starts with P (0) = £1, how can you derive the
instantaneous interest rate r(t)? [4]
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Question 2 (25 marks).

(a) State the Arbitrage Theorem. Use it to prove that E(S(T )) = erTS(0) and
Call = e−rTE

(
(S(T )−K)+

)
. The notation is as in the lectures: S(t) is the

price of the asset at time t, r is the continuously compounded rate (assumed
constant), and Call indicates the price of a European call option with strike
K and expiring at time T . [5]

(b) Using the expression for the value of a call option in the previous question
and the equivalent equality for a put option:

Put = e−rTE
(
(K − S(T ))+

)
,

derive the formula for Call-Put parity, Call− Put = e−rT (FT −K), where
FT = erTS(0) is the forward price. Indicate how call-put parity might be
useful. [5]

(c) From the Black-Scholes expression for the price of a call option,

Call = e−rT (N(d1)FT −N(d2)K) ,

derive using Call-Put parity the Black-Scholes price of a put option. [5]

(d) In the lectures we have proved that the price of a call option is convex in the
variable K. What can you say, by using Call-Put parity, about the convexity
of the price of a put option?

Hint: Show that ∂2Call/∂K2 = ∂2Put/∂K2. [5]

(e) Using the equality FTn(d1) = Kn(d2) proved in the lectures, derive an
expression for the vega of a call option defined as V = ∂Call/∂σ.

Hint: You might wish to use the formulæ for d1 and d2 in the appendix. [5]
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Question 3 (25 marks). A straddle with strike K and expiry T is a portfolio
consisting of:

• a call option to buy one unit of the asset with strike K and expiring at time
T , and

• a put option to sell one unit of the asset with strike K and expiring at time T .

So that at time T you have both the option to buy and the option to sell the asset at
price K.

(a) Write down the payoff function for a straddle as describe above. Draw a
graph of the payoff function. [5]

(b) Show that the price of a straddle is

e−rT [FT (2N(d1)− 1)−K (2N(d2)− 1)]

Hint: You might wish to use the equality N(−x) = 1−N(x). [5]

(c) Show that the delta of a straddle is 2N(d1)− 1. [5]

(d) Find the strike, K, such that the delta of the straddle is zero.

Hint: The increasing function N(x) reaches 1/2 exactly at x = 0. [5]

(e) The price of a call option is decreasing as a function of strike K. Explain
why this is the case using a financial intuitive argument or example; and also
prove it mathematically by using the payoff functions for a call option with
strike K and a call option with a larger strike K + ε (ε > 0). [5]
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Question 4 (25 marks).

(a) Explain the meaning of systemic risk and idiosyncratic risk in the CAPM. [5]

(b) Prove the equality Var (Ri) = β2
iVar (RM) + Var (ei) , where the variables

are as in the CAPM. Namely: Ri indicates the return of investment i over the
investment period, RM indicates the return of the market, ei is the
idiosyncratic part of the return, and βi is the beta of the asset. [5]

(c) Consider the function u(x) = xβ defined for x > 0. For what values of β is
u(x) a risk-averse utility function. [5]

(d) Consider investing a fraction α of your capital £X in an investment that
doubles the invested amount with probability p and halves it with probability
q = 1− p. Write down the payoff function. Calculate the expected payoff.
Simplify the result as much as possible. [5]

As you know from the lectures, the expected payoff calculated in the previous
question is not always the best form to evaluate an investment. A better way is to
evaluate the expected utility of the payoff.

(e) Assume that your utility function is u(x) =
√
x. Find the α that maximizes

the expected utility of the payoff in the previous question. [5]

End of Paper—An appendix of 1 page follows.
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The Black-Scholes Formula
The price of a European call option with strike K and years to expiry T is

Call = e−rT (FTN(d1)−KN(d2))

d1 =
log(FT/K)

σ
√
T

+
1

2
σ
√
T

d2 =
log(FT/K)

σ
√
T

− 1

2
σ
√
T

where FT = erTS is the forward price, r the interest rate, S = S(0) the current
value of the asset, and σ its volatility.
N(x) is the standard normal cumulative distribution function. We also use
n(x) = N ′(x) to denote the density of the standard normal distribution, 1√

2π
e−x

2/2.
The price of a European put option is

Put = e−rT (−FTN(−d1) +KN(−d2)) .

The delta of a call option is
N(d1),

and the delta if a put option is
−N(−d1).

Geometric sum
For integers a ≤ b, we have:

xa + xa+1 + · · ·+ xb =
xa − xb+1

1− x
.

End of Appendix.
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