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Problem 1 [26 marks]

(a) [6 marks]
Compute a floating-point approximation of m in 6-digit precision. Compute also the relative error in this

approximation.

Answer to Problem 1(a)



(b) [8 marks]

Compute \j! /50 /50 —5.0 and explain why the result seems to be a complex number.

Answer to Problem 1(b)

>

(¢) [12 marks]

The Padovan sequence is the sequence of integers defined by P(0)=P(1)=P(2)=1,and
P(n)=P(n—2)+P(n—3) for n > 3 . Write a procedure that takes as input a non-negative integer n and
returns the value of P(n) . Use your procedure to compute P(21).

Answer to Problem 1(c¢)

>

Problem 2 [22 marks]

(a) [10 marks]

Plot both of the functions f(x)=x" and g(x) =(x— 1)*cos(x) together on a single picture, for x = [-3, 3]
. Using the Newton-Raphson method, define an iteration map that could be used to compute the point at which
the graphs of f(x) and g(x) intersect. You should explain your reasoning, but you are not required to
compute the point of intersection.

Answer to Problem 2(a)

>

(b) [12 marks]
Recall that the inverse of a function h(x) is the function p~'(y) with the property that ;~'(y) =x if and only

if h(x)=y- Consider the function h(x) =x— 0.5-sin(x) . Write a procedure that takes as input a floating-point
number y and approximates " (y) using the Newton-Raphson method with absolute error at most 10.07° .
Use your procedure to compute an approximation to (2.5).

Answer to Problem 2(b)

>

Problem 3 [28 marks]

(a) [10 marks]

Write a procedure that computes a root of a function via the bisection method. Your procedure should take as
input a function f(x) , the endpoints of an interval [a, b] for which either f(a) <0 and f(b) >0 or
f(a) >0 and f(b) < 0, and an error threshold &. The absolute error in the output should be at most ¢.



Answer to Problem 3(a)

>

(b) [10 marks]

Plot the function f(x) = xz-exp( x) — % over the interval [-4, 1]. Use your procedure with error threshold

£=10.0""? to compute the three solutions of f(x) =0 .

Answer to Problem 3(b)

>

(c) |8 marks]

Suppose that the bisection method has been performed on some function with initial interval [1.5,4.25], and
has returned the value 3.21875 . Explain the bisection steps that must have been performed in order to obtain
this output, and determine an upper bound for the associated absolute error.

Answer to Problem 3(c¢)

>

Problem 4 [24 marks]

(a) [10 marks]

Write a procedure that uses the trapezoidal rule to compute an approximation to the definite integral
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3 +2 cos(x)
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Your procedure should have a single input, the number of sub-intervals n.

Answer to Problem 4(a)

>

(b) [8 marks]

Produce a plot that shows the absolute error in your approximation for n =1, 2,..., 25 . Explain how the
absolute error depends on n. (Hint: you may wish to load the plots package by running the command
with(plots):, and then use the /istplot command to produce your plot.)

Answer to Problem 4(b)

>

(¢) [6 marks]

: : : 2 : 2 :
The integral in part (a) is exactly equal to T . Use your procedure to approximate —_K with absolute
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error less than 10.07% . How many sub-intervals are required? Justify your answer.



Answer to Problem 4(c)

>



