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Question 1.

(a) Is the knot depicted by chiral? Justify your answer. [2]

(b) Define (i) the writhe W of a knot diagram; (ii) the Kauffman bracket B(x) of
a knot or link diagram; (iii) the Jones polynomial J(t) of a knot. [9]

(c) State how B(x) behaves under a Reidemeister move of type I. [2]

(d) Compute J(t) for the knot with diagram

You may assume (c) and that

B( ) = −x10 + x6 − x2 − x−6.

[8]

Question 2. Let γ be a parametrised curve in R3 with curvature K and torsion T .

(a) State the Serret-Frenet equations for the unit tangent vector t, the principal
normal n and the conormal b of γ. [4]

(b) Suppose that γ has constant ||γ̇|| =
√

2 and K = T = 1
2
. Show using (a) that

n̈ = −n. [3]

(c) You may assume without proof that the equation in (b) has general solution
n = A cos t+ B sin t for some constant orthogonal unit vectors A,B. Show
using (a) that γ̇ = A sin t−B cos t+ C for some C orthogonal to A,B. [5]

(d) Hence, or otherwise, show that γ has the shape of a circular helix. [3]
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Question 3. Let γ = (t3, sin t) be a curve in the x− y-plane, where t ∈ (0, π
2
).

(a) Sketch the curve. [5]

(b) Compute γ̇(t) as t→ 0+ and as t→ π
2
−, and mark the directions of these

vectors on your sketch. State the accumulated angular change in direction on
going along the curve. [3]

(c) Compute the signed curvature KS of the curve. [4]

(d) Using parts (b)-(c) and a general result from Lectures, or otherwise, prove
that ∫ π

2

0

2t cos t+ t2 sin t

9t4 + cos2 t
dt =

π

6
.

[4]

Question 4. Let S be a surface of revolution with surface patch

σ(u, v) =
2

3

(
(1− u)3/2 cos v, (1− u)3/2 sin v, u3/2

)
, 0 < u < 1, 0 < v < 2π.

(a) Sketch the surface. [5]

(b) Compute the normal N and indicate it at a typical point on your sketch. [5]

(c) Compute the 1st and 2nd fundamental forms FI , FII for the surface. [10]

Question 5. In the surface of revolution S of Question 4, let

f(u) =
2

3
(1− u)3/2

be the axial distance function, γ(t) = σ(u(t), v(t)) a curve in S and Ω = f 2v̇.

(a) Show using FI from Question 4 that γ is unit speed if and only if
u̇ = ±

√
1− Ω2

f2
. [3]

(b) State a condition on Ω for a unit speed γ to be a geodesic. [You are not
required to prove anything.] [2]

(c) Suppose that γ is a unit speed geodesic starting at an initial point where u, v
are close to 0 and v̇ = 1, u̇ > 0. Sketch how the geodesic proceeds on the
surface, justifying your answer. [8]

c© Queen Mary, University of London (2016) Turn Over



Page 4 MTH5109 (2016)

Question 6. Let γ = ∪i=8
i=1γi be the curvilinear polygon as shown on the 2-holed

torus S.
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S

Here γ2, γ4, γ6, γ8 all lie in a plane that cuts S in half. The semicircles γ1, γ3, γ5, γ7

come up from this plane and coincide with parts of meridians on a standard torus.

(a) Are γ1, γ3, γ5, γ7 geodesics? Justify your answer. [2]

(b) Are γ2, γ4, γ6, γ8 geodesics? Justify your answer. [5]

(c) Use the Gauss-Bonnet theorem for curvilinear polygons to deduce that∫
S

KGdA = −4π

where KG is the Gauss curvature. You may assume that
∫
KGdA = 0 over

the half-torus on the left and the half-torus on the right. [8]

End of Paper.
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