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Question 1 (25 marks). (a) Let f : D → R be a real function, and let a ∈ D be an
inner point of the domain D ⊆ R. When is f called differentiable at a? What is the
derivative of f at a? [3]

(b) Straight from the definition of Part (a), show that the function f : R→ R given
by f(x) = −3x2 + 2 is differentiable everywhere with derivative f ′(x) = −6x. [6]

(c) State and prove the product rule for differentiation. [6]

(d) Suppose that the functions f, g : D → R are n-times differentiable on their
common domain D ⊆ R, where n is some positive integer. Show by induction that

(fg)(n)(x) =
n∑

k=0

(
n

k

)
f (k)(x)g(n−k)(x), x ∈ D

holds for all n ≥ 1. You may use without proof the fact that the binomial coefficients
satisfy (

n− 1

k − 1

)
+

(
n− 1

k

)
=

(
n

k

)
, 1 ≤ k ≤ n− 1

for all positive integers n. [10]
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Question 2 (25 marks). (a) Show: if a function f : D → R is differentiable at a
point a ∈ D, then f is continuous at a. [3]

(b) For each positive integer n, exhibit a function f : R→ R, such that f is n-times
differentiable on R, but not (n+ 1)-times. Please justify your answer. [10]

(c) Using the differential calculus, prove that

sin(x) > x− x3

6
, x > 0.

You may use here without proof the trigonometric formula

1− cos(x) = 2 sin2
(x
2

)
,

which follows from the addition theorem for cosine, as well as the fact that sin(x) <
x for x > 0. [6]

(d) (i) State the mean value theorem of differentiation. [2]

(ii) Show that a function f : [a, b]→ R satisfying the hypotheses of the mean value
theorem, whose derivative is zero on (a, b), is a constant. [4]

Question 3 (25 marks). (a) (i) Define what is meant by a primitive of a function
f : (a, b)→ R. [2]

(ii) Show: if a function f : (a, b)→ R has a primitive F (x), then{
F (x) + c : c ∈ R

}
is the set of all primitives of f . [6]

(b) Let f : [a, b] → R be a bounded function. Define the lower and upper inte-
grals of f , explaining briefly (without proofs) why these quantities are well defined.
Please define the terms used in you explanation. When is f as above called Riemann
integrable, and what is the corresponding Riemann integral

∫ b

a
f(x) dx? [10]

(c) Show that the function f : [a, b]→ R given by

f(x) =

{
0, x ∈ Q
1, x 6∈ Q

}
, a ≤ x ≤ b

is not Riemann integrable. Here, it is assumed that b > a. [7]
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Question 4 (25 marks). (a) State the Fundamental Theorem of Calculus, and use it
to compute the integrals ∫ 2

1

xn dx

for all integers n ≥ −1. [7]

(b) State and prove the formula for partial integration. [8]

(c) Using partial integration, obtain a recurrence relation for the integrals∫
sinn(x) dx

with n ≥ 1. [5]

(d) Compute the indefinite integral ∫
dx

x2 − a2

for constants a 6= 0. [5]

End of Paper.
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