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Question 1.

(a) Define what it means for a ring R to be a ring with identity. [3]

(b) Define what it means for a ring R to be a commutative ring. [3]

(c) Define what is meant by a unit in a ring with identity. [3]

(d) Define what is meant by a zero-divisor in a commutative ring. [3]

(e) Define what is meant by an integral domain. [3]

(f) Define what is meant by a field. [3]

(g) Define what is meant by a subring S of a ring R. [3]

(h) Define what is meant by an ideal I of a ring R. [3]

Question 2. Let T be the subring {[0]6, [2]6, [4]6} of Z6. [You are not
required to prove that T is a subring of Z6.]

(a) Is T a ring with identity? Justify your answer. [4]

(b) Is T a field? Justify your answer. [4]

(c) Is Z6 a field? Justify your answer. [4]

Question 3.

(a) Write down the units in Z15. [3]

(b) Write down the zero-divisors in Z15. [3]

Question 4. Let X be a set and let P(X) denote the Boolean ring whose
elements are the subsets of X, with addition being symmetric difference and
multiplication being intersection. [You do not have to prove that P(X) is a
ring.]

(a) What is the zero-element of P(X)? [2]

(b) Is P({1}) an integral domain? Justify your answer. [4]

(c) Is P({1, 2}) an integral domain? Justify your answer. [4]
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Question 5. Let R and S be rings, and let θ : R→ S be a homomorphism.

(a) Define what is meant by the image Im(θ) and by the kernel Ker(θ), of θ. [4]

(b) Apply one of the subring tests to prove that Im(θ) is a subring of S.
[You may make use of any basic properties of homomorphisms proved in
lectures.] [6]

(c) Apply the ideal test to prove that Ker(θ) is an ideal of R. [You may
make use of any basic properties of homomorphisms proved in lectures.] [6]

Question 6.

(a) Define what it means to be an irreducible element of an integral domain
R. [3]

(b) Let S = {a+ b
√
−5 : a, b ∈ Z}. Prove that 1 +

√
−5 is an irreducible

element of S. [You may assume, without proof, that S is an integral
domain, and that the only units in S are 1 and −1.] [7]

Question 7.

(a) Let R be a commutative ring with identity. Prove that if {0} and R are
the only ideals of R then R is a field. [You may assume, without proof,
that if a ∈ R, then 〈a〉 = aR is an ideal of R.] [4]

(b) Let R be a commutative ring with identity, and let I be an ideal of R.
Apply the Second Isomorphism Theorem to prove that if I is a maximal
ideal of R then R/I is a field. [6]

Question 8. In this question we consider the ring R[x] of polynomials with
real number coefficients. [You may assume, without proof, that R[x] is an
integral domain, and may apply any results from this module in your
justifications.]

(a) Is R[x] a principal ideal domain? Justify your answer. [4]

(b) Is the factor ring R[x]/〈x2− 1〉 an integral domain? Justify your answer. [4]

(c) Is the factor ring R[x]/〈x2 + 1〉 an integral domain? Justify your answer. [4]

End of Paper.
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