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Question 1 (10 marks).

(a) Let a and b be integers. What does it mean to say that a divides b? [2]

(b) Suppose that c≥ 2 is a natural number which is not prime. Show that there is a natural
number d ≥ 2 such that d | c and d ≤

√
c. [8]

Question 2 (10 marks).

(a) Let Ω be a set, and let A, B and C be subsets of Ω. Define the following sets:

(i) A∪B, (ii) A∩B, (iii) A\B, (iv) A4B. [4]

(b) Consider the following statements.

(i) If A, B and C are sets, then A∪ (B∩C) = (A∪B)∩C.

(ii) If A, B and C are sets with A⊆ B, then C \B⊆C \A.

For each of them decide whether it is true or false. If it is true prove it without
appealing to Venn diagrams; if it is false give a counterexample. [6]

Question 3 (10 marks). Let A be a set.

(a) Explain what is meant by the power set P(A) of A. [2]

(b) Prove that there is no matching between A and P(A). [6]

(c) Is the set of sets of natural numbers countable? Give reasons for your answer. [2]

Question 4 (10 marks).

(a) Let R be a relation on a set A. Explain what is meant by saying that R is

(i) reflexive, (ii) symmetric, (iii) transitive. [3]

(b) Give an example of a relation on N which is reflexive and transitive, but not symmet-
ric. [2]

(c) Let A and B be sets, and let f : A→ B be a function. Define a relation R on A by
setting a1 R a2 if f (a1) = f (a2). Show that R is an equivalence relation on A. [5]

Question 5 (10 marks). Prove, using induction, that 1+2n≤ 3n for every n ∈ N.

Question 6 (10 marks).

(a) Let a and b be natural numbers. Explain what is meant by the greatest common divisor
of a and b. [2]

(b) Use Euclid’s algorithm to find the greatest common divisor of 69 and 78. [8]
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Question 7 (10 marks).

(a) Explain what is meant by a rational number and an irrational number. [2]

(b) Let x and y be real numbers. Prove that if xy is irrational, then x or y is irrational. [6]

(c) Give an example of an irrational number (proof of irrationality not required). [2]

Question 8 (10 marks).

(a) Let

z =
1√
2
(1+ i).

Determine the modulus and argument of z. Hence, or otherwise, find the real and
imaginary part of z8. [4]

(b) Let F : C→ C be given by F(z) = z8.

(i) Is F injective?

(ii) Is F surjective?

In each case, give reasons for your answers. [6]

Question 9 (10 marks). Let n and m be natural numbers. Consider the following statement.

If n is prime and m is odd, then nm is odd.

(a) Write down the contrapositive. [2]

(b) Write down the converse. [2]

(c) Is the statement true? Is the contrapositive true? Is the converse true? Give reasons
for your answers. [6]

Question 10 (10 marks). Find the mistakes in the following proof.

Theorem For every natural number n, the number 4n−1 is divisible by 3.

Proof For a natural number n, let P(n) be the statement that 3 divides 4n−1.
We start by observing that P(1) is true, since 41−1 = 3 which is divisible by 3.
Suppose now that P(n) is true for every n ∈ N. Thus 4n−1 = 3k for some natural number
k. Then

4n+1−1 = 4 ·4n−1 = 4(3k +1)−1 = 12k +3 = 3(4k +1)

which is divisible by 3. Thus P(n+1) holds.
Thus, since P(1) is true, and P(n) and P(n + 1) are true, the statement P(n) is true for all
natural numbers n, by the principle of induction. �

End of Paper.
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