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Question 1 (10 marks) (a) What is a prime number?
(b) Prove that there are infinitely many prime numbers.

(¢) Use your method of proof to find a prime number different from 2, 3 and 5.

Question 2 (10 marks) Let p be a prime number, and let x1,x7,...,x, be natural numbers.
Consider the statement

If x1,x2,...,x, are consecutive numbers, then at least one of them is divisible
by p.

(a) Write down the contrapositive and the converse of this statement.
(b) Is the original statement true? Give a proof or counterexample.

(c) For each of the statements in your answer to (a), is that statement true or false? (Proofs
not required.)

Question 3 (10 marks) (a) Use Euclid’s algorithm to find the greatest common divisor
of 57 and 111.

(b) Explain carefully why Euclid’s algorithm, applied to any two natural numbers a and
b, will terminate. (You are not required to show that it gives the right answer.)

Question 4 (10 marks) (a) How many subsets of the set {1,2,3,4,5} are there?
(b) How many of these subsets contain three elements?
(c) How many of the subsets in (a) contain the number 4?

(d) How many of the subsets in (c) contain three elements?
(You are not required to prove your assertions, but if you use a formula, you should state
it clearly.)

Question 5 (10 marks) (a) Suppose that the relation R on the set N of natural numbers
is defined by x R y if and only if x +y is even. Is R reflexive? Is it symmetric? Is it
transitive?

(b) You are given that the relation S on the set {1,2,3} is an equivalence relation and has
equivalence classes {1,2} and {3}. Write down all the pairs (a,b) for which a S b
holds.

Question 6 (10 marks) (a) What does it mean to say that a set X is countably infinite?

(b) Prove that the set of all real numbers x between 0 and 1 is not countably infinite.

(© Queen Mary, University of London (2014)

(2]
[6]
(2]

(4]
(4]

(2]

[4]

(6]

(2]

(2]

(3]
(3]

[6]

(4]

(2]
(8]



MTH4110 (2014) Page 3
Question 7 (10 marks) Let A be the set of all positive rational numbers, and let B and C be
the subsets of A defined by
B={xcA:x* <2}, C={xcA:x*>2}.
(a) Show that BNC = 0.
(b) Why is BUC = A? (Give a brief explanation: detailed proof not required.)

(c) Does B contain a greatest element? Give a brief explanation.

Question 8 (10 marks) (a) Let F : C — C be the function defined by F(z) = 2 IsF
injective? Is it surjective?

(b) Find a number w € C satisfying F(w) = 2i.

(c) Let G(z) =" +a,_12" ' +---+ajz+ap be a polynomial of degree n over C, where
n > 0. Explain briefly why 0 is in the range of G. (You may use a theorem to show
this but you should state the theorem.)

Question 9 (10 marks) (a) Let p be a prime number. Explain why the binomial coeffi-
cients (%), fork=1,2,...,p— 1, are all divisible by p.

(b) State the Binomial Theorem.

(c) Prove by induction that p divides n” — n for any natural number p.

Question 10 (10 marks) (a) Find the flaw in the following proof:

b
Theorem If a and b are positive real numbers, then CHZ_ > Vab.
Proof
b
4 —; > Vab
b 2
= (a: ) > ab
= (a+b)? > 4dab
= a*+2ab+b*> > 4ab
= a>—2ab+b* > 0
= (a—b)? > 0
which is true, because any number squared is > 0. (Il
(b) How can it be fixed?
End of Paper
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