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In this exam N = {1, 2, 3, 4, . . . }.

Question 1. Let

A = {1, 3, 4}; B = {1, 2, 5}; C = {1, 3, 5}.

For each of the following expressions, state whether it is a set, a number, or a
statement. For those expressions which are statements, state whether they are true or
false (giving a reason). For those expressions which are sets or numbers, evaluate them
(showing your working).

(a) A ∪ B [4]

(b) A ⊆ (B ∪ C) [4]

(c) |A| ∈ A [4]

(d) |A ∩ B|/|A ∪ B| [4]

(e) |A ∪ B| = |A|+ |C|− |A ∩ B| [4]

Question 2.
Suppose that P (x) and Q(x) are mathematical statements about some object x, and X
is some set.

(a) Write down a roadmap (as in lectures, I mean by this an outline of the structure a
proof could have including the starting point and conclusion but omitting the
details) for proving the following statement is true. [4]

For all x ∈ X, P (x) ⇒ Q(x).

Let S be the statement:

For all x, y ∈ R, if x+ y = 0 then xy ≤ 0.

(b) Decide whether the statement S is true or false, giving a proof or counterexample
as appropriate. [6]

(c) Write down the statement obtained by replacing the implication in S by its
converse. Decide whether this new statement is true or false, giving a proof or
counterexample as appropriate. [5]

(d) Write down the statement obtained by replacing the implication in S by its
contrapositive. Decide whether this new statement is true or false, giving a proof
or counterexample as appropriate. [5]
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Question 3. Let f : N → P(N) be the function defined by

f(n) = {n, n+ 1, . . . , 2n}.

(a) Find f(2) and f(3). [4]

(b) Decide whether each of the following statements is true or false giving a brief
reason for each answer.

(i) For all n ∈ N, we have |f(n)| = n+ 1. [4]

(ii) For all i, j ∈ N, we have f(i) ∩ f(j) �= ∅. [4]

(iii) The range of f is a finite subset of N. [4]

(iv) Every element of the range of f is a finite subset of N. [4]

Question 4.

(a) Explain what is meant by the complex plane and how to represent a complex
number a+ bi on it. [5]

(b) Let z be the complex number 7− 3i. Find:

(i) z2 [3]

(ii) |z| [3]

(iii) The complex number corresponding to the image of z under reflection in the
real axis of the complex plane. [3]

(iv) A complex number y such that z + y is a negative real number. [3]

(v) A complex number w such that zw is a negative real number. [3]

Question 5.

(a) Define what it means for a to divide n (written a | n) where a and n are integers. [4]

(b) Prove that for all integers a and n, if a | n then a2 | n2. [4]

(c) Identify the mistake in the following false proof that 7 divides 23n − 1 for all
n ∈ N. [4]

We have that 23n = 8n and so 23n is a multiple of 8. It follows that 23n − 1 is a
multiple of 8− 1. Hence 23n − 1 is a multiple of 7.

(d) Use induction to give a correct proof that 7 divides 23n − 1 for all n ∈ N. [8]

End of Paper.
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