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Question 1 (One-dimensional systems) [30 marks|

Consider a one-dimensional dynamical system which is governed by the following
phase portrait:

< o < O\ N
-1 0 1 2 3
a) Sketch an z-t diagram which is consistent with such a phase portrait. Your
diagram should display solutions with initial conditions z(0)=-1/2,0,1/2, 1,
3/2,2,5/2, and 3. [8 marks]

b) State an analytic expression for a differential equation & = f(x) which is con-
sistent with the phase portrait. [6 marks]

c) Compute the linear stability of every fixed point of the differential equation

you have stated in part b). [6 marks]

d) Write down a potential V(x) for the differential equation you have stated in
part b). [6 marks]

e) For every stable fixed point of the differential equation stated in part b) write
down the basin of attraction. [4 marks]
Question 2 (Bifurcations) [34 marks]

Consider the differential equation

:t:r:v—i—x?’—mS

with odd right hand side, which depends on a real parameter r.

a) Using linear stability analysis, compute the range of parameter values such that
the trivial fixed point, x, = 0, is linearly stable, and the range of parameter
values for which it is linearly unstable. If you find bifurcations of the trivial
fixed point state with a reason the type of the bifurcation. [8 marks]

b) Compute the parameter values r = r, and the points x = x, in phase space
where nontrivial fixed points, x, # 0, undergo a saddle node bifurcation. [8 marks]

c) Using the results from parts a) and b), or otherwise, sketch the bifurcation
diagram of the differential equation. Your diagram should indicate the stabil-
ity of each fixed point. The diagram should also contain phase portraits for
parameter values where phase portraits qualitatively differ. [8 marks]

d) The bifurcation values r, computed in parts a) and b) split the parameter axis
into intervals (see also the diagram constructed in part c)). State for each of
these parameter intervals the number of stable and unstable fixed points. For
the stable fixed points state the basins of attraction. [10 marks]
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Question 3 (Two dimensional systems) [36 marks|

Consider the system of two differential equations:
. OO 2
r=y—ux, y=-—-zcr+zx

a) Compute the fixed points of the two dimensional system. For each fixed point

perform a linear stability analysis and classify the type of fixed point. Sketch

the flow in the phase plane in a small neighbourhood of each fixed point.
[10 marks]

b) Show that the system given by the two differential equations is not a gradient
system. [4 marks]

c) Show that the system given by the two differential equations is not a Hamil-
tonian system. [4 marks]

d) Using the Bendixson criterion, or otherwise, show that the system of differential
equations does not have a limit cycle. [4 marks]

e) Compute the nullclines of the system of differential equations. Sketch the
nullclines in the phase plane.

The nullclines partition the phase plane into different regions. For each region,
and on each nullcline, indicate the direction of the flow. [8 marks]

f) Using the results from parts a), d), and e), or otherwise, sketch the full phase
portrait of the two dimensional system. The phase portrait should be consistent
with the diagram produced in part e). If the system has a stable fixed point
then shade its basin of attraction. [6 marks]

End of Paper
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