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Throughout this exam the term measurable is used to mean Lebesgue measurable.

Question 1.  (a) Given a subset A C R, how is the outer measure m*(A) defined? (4]
(b) What does it mean to say that a subset A C R is null? [2]
(c) Briefly describe the construction of a set C which is both uncountable and null. Pro-

vide the proof that C is null. 4]
(d) Prove thatif A C B C R then m*(A) < m*(B). 4]
(e) If A and B are subsets of R, prove that m*(AUB) < m*(A) +m*(B). [6]

(f) Making use of parts (d) and (e) above, or otherwise, prove that if the set AAB is null
then m*(A) = m*(B), where AAB := (A\ B)U(B\ A) is the symmetric difference of
the two sets A and B. [5]

Question 2.  (a) State the definition of a measurable subset E C R. [3]

(b) Prove that every null set is measurable (you may use without proof the results of parts
(d) and (e) of question 1). [5]

(c) Let E41:={x+t:x€ E} wheret € R. Prove that E C R is measurable if and only
if £ +1 is measurable. You may assume without proof that m*(A+1) = m*(A) for any
ACR. [5]

(d) What does it mean to say that the collection .# of all measurable subsets of R forms
a o-field? 3]

(e) What does it mean to say that Lebesgue measure m : .# — [0,0] is countably addi-
tive? (3]

(f) Let £y and E> be disjoint (i.e. £} NE> = ¥) and measurable subsets of R. Prove that
E1 UE> is measurable and

m*(EyUEy) =m*(E)) +m" (Ez).

Again, you may use without proof the results of parts (d) and (e) of question 1. [6]
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Question 3.  (a) What does it mean to say that a function f : R — R is measurable?

(b) Show that if the set f~!((a,)) = {x: f(x) > a} is measurable for any a € R then so
are the sets £~ ((—oo,a]), £~ ((~0,a) and £~ (fa,e5)).

(¢) Using the condition that a function f : R — R is measurable if f~!((a,o)) is mea-
surable for all a € R, show that the constant function, i.e. f(x) = c for all x € R, is
measurable.

(d) Suppose the functions f: R — R, g: R — R and #: R — R are all measurable. Show
the combined function F(x) = f(x) + g(x)exp(h(x)) is also measurable. You may use
the fact that every open set in R? decomposes into a countable union of rectangles.

(e) Define the essential supremum and essential infimum of a measurable function f :
E — R, where R = [—o0, 00| denotes the extended real line.

(f) Find the essential supremum of the following two functions

(i)

flay=4 o EERAO)

" (x) x€Q
] explx) x¢g

8(x) = { sin(x) x¢ Q.

Question 4.  (a) Define what it means for a non-negative function ¢ : R — R to be simple
and state the definition of its integral |, g @dm, where E C R is measurable.

(b) For a non-negative simple function ¢ : R — R and two disjoint measurable sets
Ey.E; C R show that

/ q)dm:/ odm+ [ @dm.
. EIUEZ E, E;

(c) Given a measurable set E state the definition of the integral [ fdm for a non-negative
measurable function f : E — R.

(d) State Fatou’s Lemma for a sequence of measurable functions { f, }.

(e) Give an example of a function for which Fatou’s Lemma gives a strict inequality and
explain why this is the case.

(f) State the Monotone Convergence Theorem.

(g) Suppose that {f,} and f are non-negative, measurable and f,, /* f almost everywhere.
Using the Monotone Convergence Theorem show that for a measurable set £

lim f,,dm:/fdm.
E E

n—reo

You may assume the statement in part (b) above also holds for measurable functions.

End of Paper.
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