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Question 1. Let G be a group and let Ω be a set, with |Ω| > 1.

(a) Suppose G acts transitively on Ω. What is meant by a G-congruence on Ω?
What does it mean to say that G acts primitively on Ω, and what does it
mean to say that G acts doubly transitively on Ω? [6]

(b) Prove that if G acts doubly transitively on Ω then G acts primitively on Ω. [5]

(c) What does it mean for a permutation of {1, . . . , n} to be even, and what is
meant by the alternating group An? [4]

(d) Prove that if n ≥ 4 then the alternating group An acts doubly transitively on
{1, . . . , n}. [You do not need to prove that An is a group.] [5]

(e) Give an explicit example of a group H acting doubly transitively on a set S
of size n, such that |H| < n!/2. [You should briefly justify your answer.] [5]

Question 2.

(a) What is meant by a Sylow p-subgroup of a finite group G? [3]

(b) State all parts of Sylow’s theorems on the existence and properties of Sylow
p-subgroups. [6]

(c) For each p ∈ {2, 3, 5}, determine explicitly a Sylow p-subgroup of the
alternating group A5. [You do not have to justify your answers.] [3]

(d) Let G be any simple group of order 60.

(i) Apply Sylow’s theorems to prove that G is isomorphic to a subgroup of
the symmetric group S6. [6]

(ii) Then prove that G is isomorphic to A5. [You may assume that A6 is
simple and is the only subgroup of index 2 in S6.] [7]
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Question 3. Let G be a group.

(a) Define what is meant by an automorphism of G, and what is meant by an
inner automorphism of G. [4]

(b) Assuming that the set Aut(G) of all automorphisms of G forms a subgroup
of Sym(G), and that each inner automorphism of G really is an
automorphism of G, prove that the set of inner automorphisms of G is a
normal subgroup of Aut(G). [8]

(c) Suppose now that G is a non-trivial finite group, such that the group Aut(G)
(in its natural action on G) acts transitively on the set of non-identity
elements of G.

(i) Prove that each non-identity element of G has the same order p, for
some prime p, and so deduce that G is a group of order pa, for some
integer a > 0. [You may make use of any results proved in the lectures.] [7]

(ii) Prove that G is abelian. [You may make use of any results proved in the
lectures.] [6]

Question 4. Suppose n is an integer greater than 1 and that F is a field.

(a) Define the groups GL(n, F ), SL(n, F ), and PSL(n, F ). [6]

(b) Give, without proof, the orders of the above groups, in the case where F is
the finite field Fq. [3]

(c) Explain why PSL(2, 2) ∼= S3 and PSL(2, 3) ∼= A4. [4]

(d) Describe briefly and precisely the main steps of the proof that PSL(n, F ) is
simple, except in the two cases n = 2, F = F2 and n = 2, F = F3. [12]

End of Paper.
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