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Question 1.

(a) What is meant by an action of a group G on a set Ω? [3]

(b) Consider the action by conjugation of S = S4 on its conjugacy class C con-
sisting of the elements with cycle structure [2, 2], and let c = (1, 2)(3, 4). For
the given action, determine the following [you need not justify your answers]:

(i) the orbit OrbS(c); [2]

(ii) the stabiliser StabS(c); [2]

(iii) the kernel of the action. [2]

(c) State the Orbit-Stabiliser Theorem. [4]

(d) Let G be a finite group and suppose |G| = pa.m, where p is a prime, a is a
non-negative integer, and m is a positive integer not divisible by p. Apply the
Orbit-Stabiliser Theorem to prove that G has a subgroup of order pa. [You
may assume, without proof, that

(
pam
pa

)
is not divisible by p.] [12]

Question 2. Let G be a group, let Ω be a set with |Ω| > 1, and suppose that G acts
on Ω.

(a) What is meant by a G-congruence on Ω? What does it mean to say that G acts
transitively on Ω, and what does it mean to say that G acts primitively on Ω? [6]

(b) Now suppose that n is an integer greater than 1 and G is a subgroup of the
symmetric group Sn, acting naturally as permutations of {1, . . . , n}.

(i) Define a relation ≡ on {1, . . . , n} by i ≡ j if and only if i = j or the
transposition (i, j) is an element of G. Prove that ≡ is a G-congruence. [9]

(ii) Prove that Sn is generated by its set of transpositions. [5]

(iii) Deduce that if the action of G on {1, . . . , n} is primitive and G contains
a transposition then G = Sn. [5]
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Question 3.

(a) What is meant by a permutation of {1, . . . , n}, what is meant by an even
permutation of {1, . . . , n}, what is meant by the alternating group An, and
what does it mean to say that a group G is simple? [8]

(b) Prove that the alternating group A5 is simple. [You may state, without proof,
the sizes of the conjugacy classes of the elements of A5.] [7]

(c) Prove that if G is a simple group of order 60 then G ∼= A5. [You may assume
that A6 is simple and is the only subgroup of index 2 in S6.] [10]

Question 4. Suppose n is an integer greater than 1, F is a field, and V = F n.

(a) Define the groups GL(n, F ), SL(n, F ), and PSL(n, F ). [3]

(b) Give, without proof, the orders of the above groups, in the case where F is a
finite field with q elements. [3]

(c) Explain why PSL(2, 4) ∼= A5. [5]

(d) Let a be a non-zero vector in V . Define what is meant by a transvection
T (a, f) on V , and what is meant by the transvection group A(a). [4]

(e) Let a be a non-zero vector in V and let g ∈ GL(n, F ). Prove that g−1A(a)g =
A(ag). [10]

End of Paper.
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