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Question 1

Structure and centrality measures for a given network
Consider the adjacency matrix A of a network of size N = 4 given by

A =


0 0 0 0
0 0 1 1
1 0 0 0
1 0 0 0

 .

a) Is the network directed or undirected? (Give reasons) (6 marks)
b) Draw the network. (6 marks)
c) Write the in-degree sequence {kin1 , kin2 , kin3 , kin4 } and the out-degree sequence
{kout1 , kout2 , kout3 , kout4 }. (8 marks)
d) Write the in-degree distribution of the network P in(k) for k = 0, 1, 2, 3 and the
out degree distribution of the network P out(k) for k = 0, 1, 2, 3. (8 marks)
e) The Katz centrality vector x has elements xi indicating the Katz centrality of
node i = 1, 2 . . . N . Calculate x using the following definition

x = β(I− αA)−11 = β
∞∑
n=0

αnAn1, (1)

where α > 0 and β > 0 and where we have indicated with 1 the column vector with
elements 1i = 1 ∀i = 1, 2 . . . , N and with I the N ×N identity matrix. (12 marks)

Question 2

Giant component in random networks with given degree distribution
A random network with given degree distribution P (k) has a giant component if and
only if the Molloy-Reed criterion is satisfied, i.e. 〈k

2〉
〈k〉 > 2, where 〈. . .〉 indicates the

average over the degree distribution of the network.
a) Using the properties of the generating function G(z) =

∑
k P (k)zk for a Poisson

random network with degree distribution P (k) = cke−c/k! and c > 0 show that

• i) 〈k〉 = c

• ii) 〈k(k − 1)〉 = c2.

(10 marks)
b) Using the result of part a) show that that for a Poisson random network the
Molloy-Reed criterion is equivalent to the following condition on the average degree:
〈k〉 = c > 1. (5 marks)
c) Evaluate, in the continuous approximation, 〈k〉 and 〈k2〉 for a scale-free network
of N nodes with degree distribution P (k) = Ck−γ where C is the normalization
constant and the power-law exponent γ is greater than 2, i.e. γ > 2. Assume that
the maximal degree K is given by K = min(

√
N,N1/(γ−1)) and the minimal degree

is given by kmin = 1. (10 marks)
d) Show that in large N limit, scale-free networks with power-law exponent γ ∈ (2, 3]
always satisfy the Molloy-Reed criterion. (5 marks)
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Question 3

The Barabasi-Albert model
The Barabasi-Albert (BA) model is the simplest growing network model that exhibits
a power-law degree distribution. At time t = 0 the network is formed by two nodes
joined by a link.

• At every time step a single new node joins the network, so that at time t there
will be exactly N = 2 + t nodes. Every new node has initially m = 1 links.

• Each new link is attached to an existing node of the network. The target
node i is chosen with probability Πi following the preferential attachment rule
Πi = kiPN

j=1 kj
, where ki is the degree of the node i.

a) What is the time evolution ki = ki(t) of the average degree ki of a node i in the
mean-field approximation? (10 marks)
b) What is the degree distribution of the network at large times in the mean-field
approximation? (10 marks)
c) Using the degree distribution obtained in part (b) and assuming that the maximal
degree of the network is K =

√
t, calculate 〈k2〉 in the continuous approximation,

where 〈. . .〉 indicates the average over the degree distribution of the network. Com-
ment on the limit of 〈k2〉 for t→∞. (10 marks)

End of Paper
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