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Question 1. [20 marks] In this question, V is a finite-dimensional vector space over
a field K.

(a) Define what it means for a list (v1, . . . , vn) of vectors in V to be (i) linearly
independent, (ii) spanning, and (iii) a basis. [6]

(b) Which of the following statements are true in general and which false? (No
explanation is required.)

(i) Every basis of V has the same cardinality.

(ii) V has a unique basis up to reordering of vectors.

(iii) If (v1, . . . , vn) is a basis and w ∈ V is any vector, then (v1 + w, . . . , vn + w)
is a basis.

(iv) If (v1, . . . , vn) is a basis and c ∈ K any non-zero scalar, then (cv1, . . . , cvn) is
a basis. [4]

(c) Let u1, . . . , ur be vectors in V. Define the span 〈u1, . . . , ur〉 of u1, . . . , ur. [3]

(d) Suppose that the list (u1, . . . , ur) is linearly independent but not spanning.
Show that there exists a vector ur+1 ∈ V such that (u1, . . . , ur, ur+1) is linearly
independent. [4]
Hint. Choose ur+1 to be outside the span 〈u1, . . . , ur〉 of the original vectors.

(e) Deduce that any linearly independent list in V can be extended to a basis of V. [3]

Question 2. [20 marks] This question concerns n× n matrices over a field K.

(a) In this part only, set n = 3. Write down the elementary matrices corresponding
to the elementary row operations of (i) adding row 2 to row 1, (ii) interchanging
rows 2 and 3, and (iii) multiplying row 1 by the scalar c ∈ K. [6]

(b) Let A be an n× n matrix. Describe how det(A) changes when (i) one row of A
is added to another, (ii) two rows of A are interchanged, and (iii) one row of A
is multiplied by a scalar c ∈ K. (No justification is required.) [6]

(c) Let A and B be non-singular matrices. Prove that det(AB) = det(A)det(B).
You may use without proof the fact that any non-singular matrix may be
written as the product of elementary matrices.
Hint. Write A as a product of elementary matrices A = Pt . . . P1. Now compare
det(A) = det(Pt . . . P1 I) with det(AB) = det(Pt . . . P1B), where I is the n× n
identity matrix. [5]

(d) Suppose that A, B and P are non-singular matrices satisfying B = P−1AP.
Show that det(B) = det(A). [3]
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Question 3. [20 marks] Suppose α is a linear map on a finite-dimensional vector
space V.

(a) Define the kernel Ker(α) and image Im(α) of the linear map α. [4]

(b) State, without proof, an identity relating the dimensions of

Ker(α) + Im(α), Ker(α) ∩ Im(α), Ker(α) and Im(α).

You may assume without proof that Ker(α) and Im(α) are subspaces of V. [3]

(c) Define what it means for π to be a projection on V. [3]

(d) Which of the following linear maps on R2 are projections?

(i)
[

1 0
0 1

]
, (ii)

[
2 0
0 2

]
, (iii)

[
0 1
1 0

]
and (iv)

[
2 −1
2 −1

]
.

No explanation is required. [4]

(e) Suppose π is a projection on V. Prove that Ker(π) ∩ Im(π) = {0}. [4]

(f) Deduce that dim
(

Ker(π) + Im(π)
)
= dim(Ker(π)) + dim(Im(π)). [2]

Question 4. [20 marks] In this question, α is a linear map on a finite-dimensional
vector space V, and A is a square matrix representing α relative to some basis.

(a) Define the characteristic polynomial pA(x) of A. [3]

(b) State the Cayley-Hamilton Theorem as it applies to A. [3]

(c) Define the minimal polynomial mα(x) of α. (You are not required to explain
why the polynomial exists and is unique.) [4]

Recall that the characteristic polynomial of α is defined to be the characteristic
polynomial of any matrix A representing it. (The choice of basis is not significant.)

(d) A certain linear map α on R3 has characteristic polynomial
pα(x) = (x− 1)(x2 + 1). Is α diagonalisable? Explain your answer. [3]

(e) A certain linear map α on C3 has characteristic polynomial
pα(x) = (x− 1)(x2 + 1). Is α diagonalisable? Explain your answer. [3]

(f) A certain linear map α on R3 has characteristic polynomial pα(x) = (x− 1)3.
Show, by giving two examples, that α may or may not be diagonalisable. [4]
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Question 5. [20 marks]
In this question, V is a real inner product space, and α : V → V a linear map on V.

(a) Define the adjoint α∗ of α. (You are not required to prove existence and
uniqueness.) What does it mean for α to be self-adjoint? [4]

(b) Suppose U and W are subspaces of V. Define what it means for U and W to be
orthogonal. [3]

(c) Define the orthogonal complement U⊥ of subspace U. [3]

From now on, assume α is self-adjoint.

(d) Suppose v is an eigenvector of α with eigenvalue λ. Let U be the orthogonal
complement of 〈v〉, the one-dimensional subspace spanned by v. Show that
α(u) ∈ U for any u ∈ U. [5]

(e) Without giving details, explain how the observation in part (d) is used in the
proof of the Spectral Theorem. [5]

End of Paper.
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