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Question 1. (20 marks)

Let {Xt}t=1,2,... be a time series such that

Xt = β0 + β1t+ β2t
2 + Yt,

where β0, β1, β2 denote unknown constant parameters and Yt denotes a zero-
mean weakly stationary process.

(a) Describe briefly two methods of removing trend from such a time series:
the differencing method and the method of least squares estimation of
the unknown parameters. What is the main advantage and disadvantage
of each of these two methods? [6]

(b) Show that ∇2Xt is a weakly stationary process and give its autocovari-
ance function in terms of the process Yt. [7]

(c) Give the definition of the convolution operation on the linear filters {aj}
and {bk}. [2]

(d) Show that the operator ∇2 is a convolution of two filters of the form
(−1, 1). [5]

Question 2. (20 marks)
A time series data set of size n = 100 was modelled as an AR(2) process

Xt = φ1Xt−1 + φ2Xt−2 + Zt, Zt ∼ WN(0, σ2).

(a) Give the Yule-Walker equations for estimation of the AR parameters and
of the variance of the white noise. Briefly explain your notation. [5]

(b) Find the estimates of the model parameters φ1, φ2 and σ2 knowing that
the estimates of the series’ variance and the autocorrelation at lags 1 and
2 are

γ̂(0) = 1.6, ρ̂(1) = 0.6, ρ̂(2) = 0.4.

[6]

(c) Calculate 95% confidence intervals for φ1 and for φ2.
Note that for a standard normal random variable U and for uα such that
P (|U | > uα) = α we have uα = 1.96 for α = 0.05. [7]

(d) Predict value x101 of the series knowing that x100 = 2.4 and x99 = 1.6. [2]
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Question 3. (20 marks)
Consider the ARMA(1, 1) model of a Time Series {Xt}t=1,2,...,

Xt − φXt−1 = Zt + θZt−1,

where φ and θ denote unknown constant parameters, φ + θ 6= 0 and Zt is a
white noise random variable.

(a) What conditions do parameters φ and θ have to meet for Xt to be causal
and invertible? Explain what it means for a time series to be causal and
invertible. [4]

(b) Give the definition of a linear process. [4]

(c) Use the linear process form of an ARMA(1,1) time series, which is

Xt = Zt + (φ+ θ)
∞∑
j=1

φj−1Zt−j

to obtain the autocorrelation function of ARMA(1,1) at lag 1. [12]

Question 4. (20 marks)
Write down a general model for each of the following series. Use the backshift
operator and explain your notation.

(a) ARMA(1, 1)12 [4]

(b) MA(2)4 [4]

(c) AR(1) [4]

(d) ARIMA(2, 0, 1)× (0, 1, 0)12 [4]

(e) ARIMA(2, 1, 0) [4]

Question 5. (20 marks)

Consider the seasonal model AR(1)4 given by

Xt = ΦXt−4 + Zt,

where Zt ∼ WN(0, σ2) and |Φ| < 1.

(a) Using the method of matching coefficients obtain the linear form of the
series Xt. [12]

(b) Hence, show that the autocorrelation function of the series is [8]

ρ(τ) =


1 if τ = 0,
Φk if τ = 4k, k = 1, 2, . . .,
0 otherwise.

End of Paper.
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