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Question 1. [20 marks] Suppose that Y1, . . . , Yn are independent beta random
variables with probability density function

fY (y) = θ(1− y)θ−1, 0 < y < 1,

where θ > 0.

(a) Use Neyman’s factorisation theorem to show that
∏n

i=1(1− Yi) is a sufficient
statistic for θ. [7]

(b) Show that the Cramér-Rao lower bound for unbiased estimators of θ−1 is (nθ2)−1. [6]

(c) (i) Show that Y is a member of the exponential family of distributions and use
the Lehmann-Scheffé Theorem to show that the statistic

∑n
i=1 log(1− Yi) is

complete and therefore that the statistic
∏n

i=1(1− Yi) is also complete. [4]

(ii) Given that E(log(1− Y )) = −1/θ, explain why −
∑n

i=1 log(1− Yi)/n is the
unique minimum variance unbiased estimator of 1/θ. [3]

Question 2. [20 marks] Let Y1, . . . , Yn be independent Bin(m,π) random variables,
where m is known.

(a) Consider the estimator for π

Tn =
1

(n+ 1)m

n∑
i=1

Yi.

Show that
bias(Tn) = − π

n+ 1

and

Var(Tn) =
nπ(1− π)

(n+ 1)2m
.

Show that the sequence of estimators Tn is consistent. [8]

(b) Show that the least squares estimator of π is

1

m
Y =

1

mn

n∑
i=1

Yi.

[8]

(c) Now, suppose that Yi ∼ Bin(m,πi) independently for i = 1, 2, . . . , n, where the πi
are not all equal. Why is it no longer appropriate to use least squares as a method
of estimation? [4]
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Question 3. [20 marks] Suppose that Y1, . . . , Yn are independent Pareto distributed
random variables with mean 2θ/(θ − 1) and probability density function

fY (y) =
θ2θ

yθ+1
, y ≥ 2,

where θ > 1.

(a) Show that the maximum likelihood estimator of θ is

θ̂ =
n∑n

i=1 log(Yi/2)
. [7]

(b) Show that the Cramér-Rao lower bound for estimating θ is θ2/n and obtain the
asymptotic distribution of θ̂. Hence, write down an approximate 100(1− α)%
confidence interval for θ. [7]

(c) Show that the method of moments estimator of θ is

Y

Y − 2
,

where Y = 1
n

∑n
i=1 Yi. [6]

Question 4. [20 marks] Suppose that Y1, . . . , Yn1 are N(µ1, σ
2) random variables and

Yn1+1, . . . , Yn1+n2 are N(µ2, σ
2) random variables, all independent, where σ2 is known.

(a) Show that the maximum likelihood estimators of µ1 and µ2 are

µ̂1 =
1

n1

n1∑
i=1

Yi

and

µ̂2 =
1

n2

n1+n2∑
i=n1+1

Yi. [7]

(b) State a pivot for µ1 − µ2 and give an exact 100(1− α)% confidence interval for
µ1 − µ2. [7]

(c) Use the confidence interval found in part (b) to obtain a test of H0 : µ1 = µ2

against H1 : µ1 6= µ2 at the 5% level of significance. [6]
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Question 5. [20 marks] Let Y1, . . . , Yn be independent mean zero normal random
variables with probability density function

fY (y) =
1√
2πσ

exp

{
− y2

2σ2

}
, −∞ < y <∞,

where σ2 > 0, and consider testing H0 : σ = σ0 against H1 : σ = σ1 where σ1 > σ0 for
fixed σ0 and σ1.

(a) Write down the likelihood, L(σ2; y), and hence find the likelihood ratio given by
Λ(y) = L(σ2

0; y)/L(σ2
1; y). [8]

(b) Show that the general form of the most powerful test of H0 against H1 is to reject
H0 if

∑n
i=1 y

2
i > c for a constant c. [6]

(c) Given that under H0,
∑n

i=1 Y
2
i /σ

2
0 ∼ χ2

n, derive the form of the critical region of
the test with significance level α. [6]

End of Paper.

c© Queen Mary University of London (2018)


