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Question 1.

(a) In an encryption competition called Cipher Challenge you are permitted to use
one of the following two methods to encrypt your message: A) a combination
of at most 3 Vigenères with each key length at most 6, B) a combination of
at most 2 Vigenères with each key length at most 9. Which method will you
use? Justify your answer. [4]

(b) The following text has been encrypted using a Vigenère key of length 3.

ZHYW IQBO SUPJ DNXX

You have reason to believe that the plaintext starts with What. Decrypt it. [6]

(c) The Rotokas alphabet has 12 letters. How many affine ciphers are there in this
alphabet? [4]

Question 2. Let n be a positive integer.

(a) Define the Carmichael function λ(n) and the Euler function φ(n). [4]

(b) Prove that if the positive integer l is coprime to λ(n), then the function Tl :
Z∗

n → Z∗
n, x 7→ xl (mod n), is a bijection. Here Z∗

n denote the set of congru-
ence classes modulo n coprime to n. [6]

(c) You are given that T5 : x 7→ x5 (mod 221) is the inverse to T29 : x 7→ x29

(mod 221). Use this information to factorise 221. (The marks are for the
method not the factorisation.) [7]
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Question 3.

(a) Define the complexity classes NP and NP-complete. Give an example of an
NP-complete problem and explain why it is in NP. [6]

(b) State Shannon’s Theorem for one-time pads. Explain, using an example, how
a stream cipher produced using a substitution table that is not a Latin square
can give away information about the plaintext. [5]

(c) The following ciphertext has been encyrpted by a stream cipher which uses a
keystring generated by a 6-bit shift register:

Z = 10001111000010.

Your spies have informed you that the polynomial of this shift register is of
the form 1 + ax+ bx2 + cx3 + x6, but they do not know the values of a, b, c.
They have also told you that the plaintext starts with

P = 001111101....

Determine the rest of the plaintext. Is this shift register primitive? [8]

Question 4.

(a) Explain the Diffie-Hellman key establishment. Why is it a fairly secure way
of sharing a key? [6]

(b) Bob’s ElGamal public key is (p, g, h) = (71, 5, 57). However, this is a poorly
chosen key. Explain why it is so, and exploit the weakness of the key to find
Bob’s secret key. (Hint: there is something wrong with g = 5.) [5]

(c) Let n be an odd positive integer. We say that a is a primitive root modulo n if
a has order φ(n) modulo n. Prove that if such an a exists, then n must be of
the form n = pr for some prime number p and positive integer r. [6]
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Question 5.

(a) Let N be a positive integer. Suppose that m is a positive integer such that for
every a coprime to N we have am ≡ 1 (mod N). Prove that λ(N)|m. [5]

(b) Show that for every a coprime to 440, we have a20 ≡ 1 (mod 440). [5]

(c) Show that there exists an integer a coprime to 440 such that a50 6≡ 1 (mod 440). [4]

Question 6.

(a) Explain how one can use orthogonal arrays to implement a secret sharing
scheme. [6]

(b) The following is an orthogonal array on the alphabet {a, b, c}. Determine the
degree k and the strength t of this orthogonal array. [3]

1 a b c a b c a b c a b c a b c a b c a b c a b c a b c
2 a b c b c a c a b b c a c a b a b c c a b a b c b c a
3 a b c c a b b c a b c a a b c c a b c a b b c a a b c
4 a a a a a a a a a b b b b b b b b b c c c c c c c c c

(c) Use this orthogonal array to share the password acacba between your three
vice-presidents VP1, VP2 and VP3 so that three of them together can recover
the password but no two of them can. [6]

(d) In your method explain in detail why if only VP1 and VP2 are present they
cannot get any clue about the password. [4]

End of Paper.
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