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Problem 1 [total 25 marks for Problem 1]
This problem is about investigating the map from x to h x  for x 2= that represents the 
simplified Newton method and comparing it with the map from x to g x  of the original Newton 

method to find a root  x*
 of a function f : =/= and f2C2. The two methods should use the same 

seed x0.

(You may use Maple to perform the computation or you may perform it by hand and use Maple to
write it down.)  

a) [5 marks]
Write down the map from x to g x  required for the original Newton method. 

b) [5 marks]
Write down the map from x to h x  required for the simplified Newton method. 

c) [5 marks]

Compute the derivative 
d
dx

g x  and evaluate it at the root x*. 

d) [5 marks]

Compute the derivative 
d
dx

h x  and evaluate it at the root x*. 
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e) [5 marks]
Explain briefly (in 1–3 sentences), by using the results from c) and d), why the original Newton 
method with g x  is a second order method and why the simplified Newton method with h x  
converges slower than the original Newton method.  

Answers
Before starting this question, execute this command:

restart;

Now save this document.

Problem 2 [total 25 marks for Problem 2]
The following Maple procedure computes a numerical solution to a given ordinary differential 

equation 
d
dt

x = f x  with x2= and f : =/=

by using an Euler forward method. The procedure is tested with f x = x, initial value x 0 = 1 
and time period 0, 5 . 

a) [6 marks]

Give the formula of the Euler forward method to compute a point x(t+∆ t) from a given point x(t).

b) [6 marks]

Give the formula of the modified Euler method (midpoint method) to compute a point x(t+2$ ∆ t) 
from a given point x(t).

c) [6 marks]
Change the ODE solver in the given Maple procedure from the Euler forward method to the 
modified Euler method.

d) [7 marks]
Compare the results of the two ODE solvers (Euler forward and modified Euler) by plotting the 
results in one diagram for the step sizes 0.1 and 0.01 between the discrete times of computed 
points. Give arguments why one of the two methods outperforms the other one.

Eulerforward := proc (t0::numeric, t1::numeric, x0::numeric,
f::procedure, Deltat::numeric) 

# t0: initial time

# t1: end time
# x0: initial value
# f: rhs of ODE
# Deltat: step size for Euler method
  local xold, xnew, tnew, soln; 
  xnew := x0; 
  tnew := t0; 
  soln := [t0, x0]; 
  while tnew < t1 do 
    tnew := tnew+Deltat; 
    xold := xnew; 
    xnew := xold+Deltat*f(xold); 
    soln := soln, [tnew, xnew]; 
  end do; 
  return [soln];
end proc:
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listresult := Eulerforward(0, 5.0, 1.0, x->x, 0.1);

listresult := 0, 1.0 , 0.1, 1.10 , 0.2, 1.210 , 0.3, 1.3310 , 0.4, 1.46410 , 0.5,
1.610510 , 0.6, 1.7715610 , 0.7, 1.94871710 , 0.8, 2.143588810 , 0.9,
2.357947691 , 1.0, 2.593742460 , 1.1, 2.853116706 , 1.2, 3.138428377 , 1.3,
3.452271215 , 1.4, 3.797498336 , 1.5, 4.177248170 , 1.6, 4.594972987 , 1.7,
5.054470286 , 1.8, 5.559917315 , 1.9, 6.115909046 , 2.0, 6.727499951 , 2.1,
7.400249946 , 2.2, 8.140274941 , 2.3, 8.954302435 , 2.4, 9.849732678 , 2.5,
10.83470595 , 2.6, 11.91817654 , 2.7, 13.10999419 , 2.8, 14.42099361 , 2.9,
15.86309297 , 3.0, 17.44940227 , 3.1, 19.19434250 , 3.2, 21.11377675 , 3.3,
23.22515442 , 3.4, 25.54766986 , 3.5, 28.10243685 , 3.6, 30.91268054 , 3.7,
34.00394859 , 3.8, 37.40434345 , 3.9, 41.14477780 , 4.0, 45.25925558 , 4.1,
49.78518114 , 4.2, 54.76369925 , 4.3, 60.24006918 , 4.4, 66.26407610 , 4.5,
72.89048371 , 4.6, 80.17953208 , 4.7, 88.19748529 , 4.8, 97.01723382 , 4.9,
106.7189572 , 5.0, 117.3908529

plotresult := plot(Eulerforward(0, 5.0, 1.0, x->x, 0.1), 
style = point, colour = red);

plotresult :=
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Answers
Before starting this question, execute this command:

restart;

Now save this document.

Problem 3 [total 25 marks for Problem 3]

The purpose of this question is to investigate the fixed point iteration xnC1 = f xn  with f(x)=
4
5

x

- 3.

a) [7 marks]
Compute the fixed point  of this map analytically (not numerically) with Maple or by hand.

b) [9 marks]
Compute x1, x2, ..., x30 of the fixed point iteration numerically with seed x0 =K14 and verify with 

that your result from a). 

c) [9 marks]
Explain why this fixed point iteration converges to the fixed point by investigating k-contractivity
with the distance d(x,y)=|x-y| . 



> > 

> > 

> > 

> > 

Answers
Before starting this question, execute this command:

restart;

Now save this document.

Problem 4 [total 25 marks for Problem 4]
The circumference of an ellipse with semi-major axis a and semi-minor axis b can be computed 
with the definite integral

    C = 4 
0

π

2

a sin t 2
C b cos t 2 dt .

                                                                                                          
a) [8 marks]
Write a Maple procedure which computes a numerical approximation of this integral using the 
trapezoidal rule. Your procedure should have as input the semi-major axis a, the semi-minor axis 
b, and the number of subintervals n. Your procedure should return the numerical approximation of
C. Use your procedure to compute C for an ellipse with a = 3 and b = 2 using 100 subintervals.

b) [8 marks]
Add to your program the computation of the numerical approximation of C also as Riemann sum. 
Write a new Maple procedure which produces a plot where you show the absolute value of the 
difference between the results of the two numerical integration methods over n for 
n = 2, 3, 4,..., 50.  Which method is the better choice and why?

c) [9 marks]
Use your result from b) to determine how the difference between the two methods depend on n. 
You should give an approximate formula for this dependence. You can determine the parameters 
from a plot. Hint: A loglogplot is useful.
 

Answers
Before starting this question, execute this command:

restart;

Now save this document.

Now save this document.
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