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Question 1. [25 marks]

(a) Let f : (a, b)→ R be a real valued function. State the definition for f to be
differentiable at a point x ∈ (a, b). [5]

(b) Consider the following function, g : R→ R given by

g(x) = x|x| =


x2, x > 0
0, x = 0
−x2, x < 0

Determine for which x ∈ R, g is differentiable and, if so, compute its derivative. [5]

(c) Show that if f is differentiable at x ∈ (a, b) then f is continuous at x. [5]

(d) Compute the following limits (with full justification) [5]

(i) limx→0

√
1+2x−

√
1−x

x ,

(ii) limx→0
exp(x)−1−x

x2 .

(e) Consider a differentiable function f : R→ R such that

f ′(x) = f (x) ∀x ∈ R

and f (0) = 1. Using the property above, show that f (x) f (−x) = 1 and that
f (x) 6= 0 for all x ∈ R. [5]

Question 2. [25 marks]

(a) State the definition of a uniformly continuous function. [5]

(b) Prove that f (x) = x
x+1 is uniformly continuous on [0, 2]. [5]

(c) State the Mean Value Theorem. [5]

(d) Show that if f : [a, b]→ R is continuous on [a, b] and differentiable on (a, b) that
if f ′(x) > 0 for all x ∈ (a, b) then f is strictly increasing. [5]

(e) Show that if f : R→ R is a function such that | f (x)− f (y)| ≤ M|x− y|2 for
some M > 0 and for all x, y ∈ R then f is constant. [5]
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Question 3. [25 marks]

(a) State the Inverse Function Theorem. [5]

(b) Let f (x) = 1
x−1 , x ∈ (1, ∞). Show that f is invertible and if g(y) = f−1(y) is the

inverse of f , compute the derivative of f−1(y) in terms of y. [5]

(c) Let h : (−1, 1)→ R be the function given by

h(x) =
1

1 + x
.

Using any correct method, compute the Taylor series of h about x = 0 together
with its radius of convergence. [7]

(d) For |x| < 1, show that

log(1 + x) =
∞

∑
k=1

(−1)k+1

k
xk. [8]

Question 4. [25 marks]

(a) State the Fundamental Theorem of Calculus. [5]

(b) Let fn(x) = x
n , x ∈ R.

(i) Let f (x) = limn→∞ fn(x). Compute f (x). [5]

(ii) Does fn converge to f uniformly on [0, 1]? Justify your answer. [5]

(iii) Show that the following limit exists and compute its value,

lim
n→∞

∫ 1

0
fn(x)dx. [5]

(c) Assume that h : [a, b2]→ R is a continuous function and let G : [a, b]→ R

denote the following function,

G(x) =
∫ x2

a
h(t)dt.

Show that G is differentiable and find its derivative.
[5]

End of Paper.
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