

Main Examination period 2023 – January – Semester A

# MTH5104: Convergence and Continuity

**Duration: 2 hours** 

The exam is intended to be completed within **2 hours**. However, you will have a period of **4 hours** to complete the exam and submit your solutions.

You should attempt ALL questions. Marks available are shown next to the questions.

All work should be **handwritten** and should **include your student number**. Only one attempt is allowed – **once you have submitted your work, it is final**.

#### In completing this assessment:

- You may use books and notes.
- You may use calculators and computers, but you must show your working for any calculations you do.
- You may use the Internet as a resource, but not to ask for the solution to an exam question or to copy any solution you find.
- You must not seek or obtain help from anyone else.

#### When you have finished:

- scan your work, convert it to a **single PDF file**, and submit this file using the tool below the link to the exam;
- e-mail a copy to **maths@qmul.ac.uk** with your student number and the module code in the subject line;

Examiners: Claudia Garetto, Navid Nabijou

## Question 1 [25 marks].

(a) Prove that the equation

$$x^4 = x + 1$$

does not have any rational solution.

[10]

(b) Let

$$A = \left\{ \frac{n^2 - 1}{n^3 - 1} : n \in \mathbb{N}, n \neq 1 \right\}.$$

- (i) Prove that  $A \subseteq \mathbb{R}$  is bounded. [5]
- (ii) Prove that  $\inf A = 0$ . Can you replace  $\inf$  with min? Justify your answer. [5]
- (iii) Let B be a bounded from above subset of  $\mathbb{R}$ . Prove that -B+A is bounded from below. [5]

### Question 2 [25 marks].

- (a) Let  $(a_n)$  be an increasing sequence of real numbers bounded from above and  $(b_n)$  be a decreasing sequence.
  - (i) Is  $(a_n b_n)$  necessarily convergent? Justify your answer. [5]
  - (ii) Prove that if in addition  $b_n \ge 1$  for all  $n \in \mathbb{N}$  then the sequence  $(a_n b_n^{-1})$  is convergent. [5]
- (b) Let  $(a_n)$  be the sequence defined recursively by

$$a_1 = \sqrt{3},$$
  
 $a_n = \sqrt{2a_{n-1} + 3}, \qquad n \ge 2.$ 

- (i) Prove that  $(a_n)$  is bounded. [5]
- (ii) Prove that  $(a_n)$  is increasing. [5]
- (iii) Making use of (i) and (ii) prove that the sequence  $(a_n)$  is convergent and compute its limit. [5]

### Question 3 [25 marks].

(a) Decide whether the following series  $\sum_{n=1}^{\infty} a_n$  is absolutely convergent, conditionally convergent or divergent. Carefully justify your answer.

(i) 
$$a_n = \frac{\sin n}{(n+2)(n+3)} + \frac{2^n + 5^n}{2^n + 9^n};$$

[7]

(ii)

$$a_n = (-1)^n \frac{1}{\sqrt{\sqrt{n}+4}}.$$

**[7]** 

(b) (i) Find the radius of convergence R of the series

$$\sum_{n=0}^{\infty} (-2)^n n^4 (x-1)^n;$$

[5]

(ii) What can you say for the series (i) when  $x = 1 \pm R$ ? Justify your answer. [6]

## Question 4 [25 marks].

(a) Prove that the equation

$$x + \ln(\sin(x) + 2) = 1$$

has a solution  $x \in \mathbb{R}$ .

[15]

(b) Can you find a continuous function  $f:[0,1]\to\mathbb{R}$  such that for all c>0 there exists  $x\in[0,1]$  such that

$$|f(x)| > c?$$

Justify your answer.

[10]

#### End of Paper.