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MTH5104: Convergence and Continuity

You should attempt ALL questions. Marks available are shown next to the ques-
tions.

In completing this assessment:

• You may use books and notes.

• You may use calculators and computers, but you must show your working
for any calculations you do.

• You may use the Internet as a resource, but not to ask for the solution to an
exam question or to copy any solution you find.

• You must not seek or obtain help from anyone else.

All work should be handwritten and should include your student number.

The exam is available for a period of 24 hours. Upon accessing the exam, you will
have 3 hours in which to complete and submit this assessment.

When you have finished:

• scan your work, convert it to a single PDF file, and submit this file using the
tool below the link to the exam;

• e-mail a copy to maths@qmul.ac.uk with your student number and the module
code in the subject line;

• with your e-mail, include a photograph of the first page of your work together
with either yourself or your student ID card.

Please try to upload your work well before the end of the submission window, in
case you experience computer problems. Only one attempt is allowed – once you
have submitted your work, it is final.
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You may assume any standard properties of the functions sin(), cos(), exp() and
ln(), including the fact that they are continuous.

Question 1 [20 marks]. In this question, A, B ⊆ R are non-empty sets of real
numbers.

(a) Define what it means for x ∈ R to be an upper bound for A, and for it to be the
supremum of A. [4]

(b) For each of the specifications below, either give an example of a set A that meets
the specification, or state that no such set exists. No justification is required. [8]

(i) A countable set that is not bounded above.

(ii) A countable set that is bounded above but has no maximum.

(iii) An uncountable set that is bounded above but has no supremum.

(iv) An uncountable set that has a maximum.

(v) A finite set that has no maximum.

(c) Suppose A has no maximum. Starting with the definition of maximum of a set,
prove the following statement:

∀x ∈ A ∃y ∈ A : y > x. [4]

(d) Suppose B has the property that |x− y| < 1 for all x, y ∈ B. Prove that B has a
supremum. [4]

Question 2 [20 marks]. In this question (xn)∞
n=1, (yn)∞

n=1, (un)∞
n=1 and (vn)∞

n=1 are
sequences of real numbers.

(a) Define (using a quantifier expression) what it means for (xn)∞
n=1 to converge to

x ∈ R. [2]

(b) Suppose (xn) converges to x ∈ R and that a, b ∈ R are real numbers with a > 0.
Define the sequence (yn)∞

n=1 by yn = axn + b for all n ∈N. Prove, directly from
the definition of a convergent sequence, that (yn) converges to ax + b. [8]

(c) Assume now that (un)∞
n=1 is an increasing sequence. Define the sequence

(vn)∞
n=1 by vn = min{un, 1} for all n ∈N. Prove that (vn) converges to a limit.

You may appeal to any of the results covered in the course, provided you
indicate which you are using. [6]

(d) Suppose (un) and (vn) are as in part (c). If (un) converges to u and (vn) to v,
what relationship holds between u and v, and why? [4]
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Question 3 [20 marks]. For each of the sequences (xn)∞
n=1 defined in parts (a)–(e),

decide if the sequence converges and, if so, to what value. Justify your answers. You
may appeal to any of the results covered in the course, provided you indicate which
you are using.

(a) xn =
n + 1

n2

(
1 + cos(nπ/2)

)
. [4]

(b) xn =
n + 1

n
(
1 + cos(nπ/2)

)
. [4]

(c) xn =
1
n
+

n + 1
n

(
1 + cos(nπ/2)

)
. [4]

(d) xn =
a
√

n + b
c
√

n + d
, where a, b, c, d ∈ R satisfy c > 0 and d ≥ 0. [4]

(e) xn = exp
( n

n + 1

)
. [4]

Question 4 [20 marks].
Parts (a)–(c) of this question concern the power series ∑∞

k=1 xk/k. In these parts, you
may appeal to any of the results covered in the module, provided you indicate which
you are using.

(a) Prove that ∑∞
k=1 xk/k converges absolutely when |x| < 1. [4]

(b) Prove that ∑∞
k=1 xk/k does not converge when |x| > 1. [6]

(You may use the fact that (1 + α)k ≥ αk for all k ∈N and α > 0.)

(c) State whether ∑∞
k=1 xk/k converges when x = 1 and x = −1 (two cases). No

justification is required. [4]

(d) For each of the power series (i)–(iii) below, state whether it converges only at
x = 0, converges for all x ∈ R, or converges for some non-zero x but not all (in
which case, state the radius of convergence). No justification is required.

(i)
∞

∑
k=1

2kk! xk (ii)
∞

∑
k=1

2kxk (iii)
∞

∑
k=1

2k

k!
xk. [6]
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Question 5 [20 marks].

(a) Define (using a quantifier expression) what it means for a function f : R→ R to
be continuous at a point a ∈ R. [3]

(b) Prove directly from the definition that f : R→ R given by f (x) = x2 − x + 2 is
continuous at each point a ∈ R.

[Given ε, you may like to try δ of the form δ = min{cε, 1} for a suitable constant
c > 0.] [8]

(c) How do you know that the function g(x) = exp(x2 − x + 2) is continuous at all
points in R? [3]

(d) Using the Intermediate Value Theorem (IVT), show that the equation
x2 − x + 2 = exp(x) has a solution for x in the interval [0, 1]. Show explicitly
that the conditions of the IVT are satisfied. [6]

End of Paper.
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