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Question 1. [15 marks]

(a) Find all solutions z ∈ C of the equation z4 = 1 − i. [5]

Write your solution to Question #1(a) below
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(b) What is the image of the line {z = t + (1 − t)i | t ∈ R ∪ {∞}} under the
transformation z→ 1/z = w ? Provide the equation for the image and sketch
the line in the z-plane and its image in the w-plane. [5]

Write your solution to Question #1(b) below
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(c) Let the function f (z) be defined on the set of non-zero complex numbers by
the formula f (z) = z/z̄. Show that f is not differentiable anywhere. [5]

Write your solution to Question #1(c) below
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Additional space for Question 1
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Question 2. [15 marks]

(a) State the Ratio Test. [5]

Write your solution to Question #2(a) below
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(b) Using the Ratio Test, or otherwise, determine the values of z for which the
power series

∞∑
n=1

( z
i n

)n

converges. What is the radius of convergence? [10]

Write your solution to Question #2(b) below
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Question 3. [20 marks] Consider the function f (z) =
z − 7

z2 + z − 2
.

(a) Find the coefficients A, B, a, and b so that the function f (z) has the following
representation:

f (z) =
A

z − a
+

B
z − b

.

[1]

Write your solution to Question #3(a) below
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(b) Using part (a), find the coefficients an and bn of the Laurent series

∞∑
n=0

anzn +

∞∑
n=1

bnz−n

of f (z) on the annulus 1 < |z| < 2. [14]

Write your solution to Question #3(b) below
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(c) Determine the residue of f (z) at the point z = 1. [5]

Write your solution to Question #3(c) below
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Additional space for Question 3
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Question 4. [15 marks]

(a) Suppose f is a complex function. Define what is meant by an isolated
singularity of f . Define what is meant by an essential singularity of f .

[5]

Write your solution to Question #4(a) below
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(b) Find all singularities of the function

f (z) =
sin (z − 1)
z2 + 2z − 3

,

and determine the nature of each of these singularities. [10]

Write your solution to Question #4(b) below
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Additional space for Question 4
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Question 5. [15 marks]

(a) State Rouché’s Theorem. [5]

Write your solution to Question #5(a) below
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(b) How many zeros (counted with multiplicity) does the polynomial

f (z) = 4z4 − 29z2 + 5

have in the annulus 2 < |z| < 4? Justify your answer. [10]

Write your solution to Questions #5(b) below
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Additional space for Question 5
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Question 6. [20 marks]

(a) State the Residue Theorem. [5]

Write your solution to Question #6(a) below
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(b) Using the Residue Theorem, or otherwise, compute∫
C

z + 1
(z − 1)(z + 2)2 dz,

where C is the positively oriented circle of radius 5 centred at the origin. [15]

Write your solution to Question #6(b) below
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Additional space for Question 6
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This page is for additional work and will NOT be marked.

End of Paper.
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