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Question 1 [22]
Let C a curve in R? whose parametric equation reads r(t) = (cost,sint, 2t), and con-
sider the points A, B, C and D whose coordinates are, respectively, A = (1,0,0), B =
(0,1,7),C =(1,1,1) and D = (—1,0, 27).

(a) Describe what kind of curve C is, and make a sketch. 4]
(b) Briefly justify which points from {A, B, C, D} belong to the curve C. [4]
(c) Calculate the arc length of C, from A to D. 6]
(d) Consider the vector field F = 2zi 4 2yj + k. Calculate the line integral of F
over C, between A and D. 8]
Question 2 [21]

Let U be a suitably differentiable scalar field, and F be a suitably differentiable
vector field.

(a) Write down the expressions for VU, V - F and V x F in Cartesian
coordinates. 3]

(b) For each of the following expressions, state (without proof) whether it is (i) a
scalar field (ii) a vector field or (iii) not a valid expression:

UV xF); UV-F); Vx(VU); Vx(V-F) .

g

(c) Let F: R3 — R? a vector field. Prove that V- (V xF) =0 . [5]
Let F = (y+ 2)i+ xj + (x + 22)k.

(d) Is F solenoidal? Justify your answer. 2]

(e) Give the definition of a scalar potential, saying what condition is needed for a
scalar potential to exist. Show that this condition holds for F, and calculate a
scalar potential for F. [7]

Question 3 [12]

(a) State (without proof) the Divergence theorem (define the terms used and any
required conditions). 4]

(b) Apply this theorem to calculate the surface integral of the vector field F =
yi + 2yj — 3k over a cylinder such that 2% 4+ 32 < a2, 0 < z < b, where a,b
are positive constants. Explain all the assumptions you make to apply the
theorem. 8]
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Question 4 [11]
Consider the position vector r = xi + yj + zk.

(a) Express the cartesian coordinates (z,y,z) in terms of spherical coordinates

(r.0,9). 2]

(b) Express the spherical coordinate unit vectors (e,, e, €,) in terms of the carte-

sian unit vectors i, j, k. 3]

(c) Consider the vector field F' = —zk in the surface of a sphere of radius a with

vector area element dS. Calculate the scalar product F - dS. [6]
Question 5 [16]

Let f(z) be a periodic function of period 27 defined in (—m, ) by

f(x):{_l if —mr<z<0

1 f0o<ax<m.

(a) State (without proof) the general expression for a Fourier series S(z). 2]

(b) Show (without calculating the terms) that the Fourier series of f(z) does not

have any cosnz terms. 3]

(c) Calculate its Fourier series. [7]

(d) By suitably evaluating the Fourier series and by virtue of Dirichlet’s theorem,

calculate the sum Y 32 (—1)%/(2k + 1). 4]
Question 6 9]

Consider the Laplace equation V2¢ = 0 over a rectangle in the XY plane, subject to
some boundary conditions.

Briefly explain the method of separation of variables, and justify why this method
proposes that a possible solution to the problem takes the form

¢(z,y) = (Acos(kx) + Bsin(kz))(C cosh(ky) + D sinh(ky)),

where A, B, C, D are constants that depend on the boundary conditions.
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Question 7 9]
The Milky Way (see picture below) is a rotating galaxy. Let us define a function
V that describes the instantaneous velocity of a planet. The location of this planet

is referenced to the centre of the galaxy, where we put the origin of the coordinate
system.

(a) Justify why V is a vector field. 2]

(b) Explain how could you describe the average direction and magnitude of rotation
of the Milky Way close to its centre. 4]

(c) Assuming that the Milky Way is approximately a planar galaxy which belongs
to the XY plane, calculate the average direction of the rotation close to its
centre. 3]

End of Paper
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