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Question 1. [18 marks]

(a) State a test for a subset S ⊆ R of a ring R to be a subring. [4]

(b) Let X be a set and P(X) the set of subsets of X. State the standard ring
operations and zero element for P(X). (You are not asked to prove anything.) [3]

Now let X = {1, 2, 3} and let S = {∅, {1}, {2, 3}, X}.

(c) Prove that S is a subring of P(X). [7]

(d) Is S an ideal of P(X)? Justify your answer. [4]

Question 2. [20 marks]

(a) Let I ⊆ R be an ideal of a ring R. Show that M2(I) is an ideal of M2(R). [6]

(b) Is it true, for every ring R with identity, that any ideal of M2(R) is of the form
M2(I) for some ideal I ⊆ R? You are not asked to prove anything. [2]

(c) Define what is meant by a ring homomorphism θ : R→ S between rings R, S. [4]

(d) Given a ring homomorphism θ : R→ S, define ker(θ) and prove that it is an
ideal of R. You may assume elementary facts about rings. [8]

Question 3. [18 marks]

(a) Let I ⊆ R be an ideal of a ring R. State the definition of the factor ring R/I, i.e.,
what are its elements and what are their addition and product operations. You
are not asked to prove anything. [6]

(b) Using the 2nd isomorphism theorem, or otherwise, find all subrings of Z/8Z.
Explain your reasoning. [8]

(c) Which of the subrings in part (b) are ideals? Briefly justify your answer. [4]
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Question 4. [18 marks]

(a) Define what is meant by an integral domain. You should include a definition of
what it means for an element of a ring to be a zero divisor. [4]

(b) Define what it means for two elements of an integral domain to be associates
and for an element to be irreducible. [6]

(c) Define what is meant by a unique factorisation domain. [6]

(d) State an example of a unique factorisation domain which is not a principal ideal
domain. You are not asked to prove anything. [2]

Question 5. [16 marks]

(a) Specify a map making the integral domain Z[
√
−1] = {m + n

√
−1 | m, n ∈ Z}

into a Euclidean domain. You are not required to prove anything. [2]

Now let I = {m + n
√
−1 | m, n ∈ Z, m + n ∈ 2Z}.

(b) Prove that I is an ideal of Z[
√
−1]. [7]

(c) Find an element a ∈ Z[
√
−1] such that I = 〈a〉. Justify your answer, starting

with the meaning of the notation 〈a〉 from lectures. [7]

Question 6. [10 marks] Let F be a field and F[x] the ring of polynomials with
coefficients in F.

(a) What property of a polynomial f ∈ F[x] ensures that the factor ring F[x]/〈 f 〉 is
a field? [2]

Now let F = F2 = {0, 1} be the field of two elements and let f = 1 + x + x2 ∈ F2[x].

(b) Show that the property alluded to in part (a) holds for f . [4]

(c) Let α = 〈 f 〉+ x as an element of F2[x]/〈 f 〉. Find α−1 as an element of
F2[x]/〈 f 〉. [4]

End of Paper.
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